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Matrix Multisplitting Methods with Applications to LCP

Introduction

Given a matrix M = (my;) € R"*" and a vector ¢q =
(qr) € R", the linear complementarity problem is to
find a vector z € R" such that

Mz+q>0, 2z>0 and 2/ (Mz+4q)=0. (1)

Based on several splittings of the system matrix
M € R"™ ", the linear complementarity problem (1)
can be decomposed into independent linear com-
plementarity problems of smaller sizes.

Through solving these sub-problems in parallel on
the multiprocessor system without any communi-
cation barrier, we presented synchronous, chaotic
and asynchronous multisplitting iterative method.

The asynchronous multisplitting iterative meth-
ods were established in accordance with the prin-
ciple of using sufficiently and communicating flex-
ibly the known information. Hence, they have the
potentials to achieve high parallel computing effi-
ciency in actual computations.

Numerical examples showed that the relaxed asyn-
chronous multisplitting methods are quite efficient
for solving the large sparse linear complementar-
ity problems on the high-speed multiprocessor sys-
tems.
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The Elementary Matrix Multisplit-
ting Methods for System of Linear
Equations

“Turn large into small’ and “divide and conquer”
are elementary principles for constructing various
parallel algorithms. The matrix multisplitting idea
is just an actual application of these principles to
the large sparse system of linear equations

Mz =0b, M € R"" nonsingular , be R". (2
A multisplitting of the matrix M € R"*" is a collec-
tion of triples (B;,C;, F;)(i = 1,2,...,«a) satisfying
(a) M =B;+C;,i=1,2,..., 0
(b) B; is nonsingular, i.e., det(B;) #0, i = 1,2,..., a3
and
(c) Ei(i =1,2,...,a) are nonnegative diagonal matri-
ces such that

S E; = I(the n x n identity matrix).
1=1

Here:

« is the number of processors of the referred mul-
tiprocessor system

Ei(i=1,2,...,a) are the weighting matrices.
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The matrix multisplitting method for the system
of linear equations (2) can then be described as
follows:

Method 1 (O’LEARY AND WHITE 1985).
Given an initial vector 2" € R".
For p=0,1,2,... until {zP} convergence, compute

(0] .
Pt = ¥ EiaPt
i=1
where

' = B (b — Czl), i=1,2...,«.
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Several typical properties of this method are:

(a) For a fixed iterate index p, the computations of
zP'(i = 1,2,...,a) are independent of each other
for various i, and therefore, they can be fulfilled
in parallel on a high-speed multiprocessor sys-
tem;

(b) The weighting matrices F;(i = 1,2,...,a) can be
used to coordinate the computations of the over-
lapping and non-overlapping variables so that
the distributions among the processors of the
task are possibly well balanced;

(c) If some diagonal elements of the weighting ma-
trix E; are zero, then the corresponding ele-
ments of 27’ need not be computed. Hence, con-
siderable savings on the computational work-
loads are possible;

(d) Suitable choices of the « splittings can result
in a lower-dimensional systems, and therefore,
each processor only needs to solve a system of
linear equations of smaller size; and

(e) In practical implementations, suitable choices of
the splittings and the weightings can greatly im-
prove the convergence properties and the par-
allel efficiency of this method.
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Method 1 is the original of the below reviewed
synchronous, chaotic, and asynchronous multisplit-
ting iterative methods for the large sparse linear
complementarity problem (1).
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Some Basic Properties of the Lin-
ear Complementarity Problem

Some useful notations and concepts:

C = (cg;) € R™": an real n xn matrix, with its (k,j)-
th element being c;; (or (C);; or
[Clis)

diag(C): the n x n diagonal matrix coinciding in its

diagonal with C

A S B: if Qf S bk]'

A nonnegative: if a;; > 0

p(A): the spectral radius of the matrix A

This definition carries immediately over to vec-
tors by identifying them with n X 1 matrices

|A| = (|ak;|) € R™*": the absolute value of the matrix
A = (ay;) € R

(A) = ({(ax;)) € R"": the comparison matrix of A €
Rnxn, where <akk> = |akk| and

(akj) = —lag;| for k#j
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A = (ay;) € R™" is called
an L-matrix: if it satisfies a;; <0 for k£ # j, and az, > 0
an M-matrix: if it is nonsingular with a;; < 0 for k£ # j,

and with A~! >0
an H-matrix: if (A) is an M-matrix

an H . -matrix: if A is an H-matrix with all diagonal el-
ements being positive

If M € R"™" is an H,-matrix, then the linear com-
plementarity problem (1) has a unique solution for
any q € R"
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For a given matrix M € R"", let B,C' € R"" be
such that M = B+ C. Then (B, () is called a split-
ting of the matrix M.

The splitting (B, C) is called
a convergent splitting: if the spectral radius of the matrix
(B~'C) is less than one

a weak regular splitting: if B! >0 and B7'C <0
a regular splitting: if B! >0 and C <0

an M-splitting: if B is an M-matrix and C <0
an H-splitting: if (B) — |C| is an M-matrix

an H-compatible splitting: if (M) = (B) — |C|

a Q-splitting: if B is a Q-matrix

In particular, the splitting (B, C) is called an H,-
splitting and H.-compatible splitting if it is an H-
splitting and H-compatible splitting, respectively,
with B an H -matrix.
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Let the splitting (B,C) be such that (B) is non-
singular, and let (F,G) be a matrix pair. Then we
call the matrix pair (F,G) a majorizing pair of the
splitting (B, C) if F' is an H-matrix and it holds that
(B)™! < (F)~! and |C| < |G|. In such a case, we say
that (B, () is majorized by (F,G). Note that here
(F, G) is not necessarily a splitting of the matrix M.

Evidently, if M = B+ (C' is an H-splitting, then M
and B are H-matrices and

p(B~'C) < p((B)THC|) < 1

if it is an H-compatible splitting and M is an H-
matrix, then it is an H-splitting and thus conver-
gent; and

if (F,G) is a majorizing pair of the splitting (B, C)
such that (F) — |G| is an M-matrix, then (B,(C) is a
convergent splitting

More Notations:

N :={1,2,...,n}

Ny ={0,1,2,...}

A={1,2,...,a}

Ji(i = 1,2,...,«) is called a decomposition of the
number set N, if J;(i = 1,2, ..., «) are nonempty sub-
sets of NV such that U J; =N
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Synchronous Multisplitting Iterative
Methods

Based on several splittings of the system matrix
M € R™", and through weighting combination of
the solutions of the linear complementarity prob-
lems resulted from these splittings,
Machida, Fukushima and Ibaraki and Bai
presented a class of synchronous multisplitting it-
erative method for solving the linear complemen-
tarity problem (1).

This method is a technical extension of the ma-
trix multisplitting method for the system of linear
equations to the linear complementarity problem.
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Method 2 ( MACHIDA, FUKUSHIMA AND IBARAKI 1995 AND

BAI 1999).
Given a starting vector 2V € R™.
For p=0,1,2,... until {2#},en, convergence, compute

(6 .
P = S EP
i=1

where, for each i € A, 2P is an arbitrary solution of the
following linear complementarity problem LCP(B;, q,;) :

2>0, Biz+gq;>0 and 2/ (Biz+4g,,) =0,
with
@i = Ciz" + q.

Here, (B;,C;, E;)(i = 1,2,...,a) is a multisplitting of the
matrix M € R™".
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Note that the
LCP(BZ, Qp,z)(z = 1, 2, o, QLD - N0>

may not have a solution. Hence, it is necessary for
us to assume in this method that the splittings

M:Bi—i—C'i(i:l,Q,...,a)

are Q-splittings, so that the iterative sequence {2”},cn,
is well defined.

Analogous to Method 1, Method 2 has quite good
parallel properties:

e At every iteration step p, each of the sub-problems
LCP(B;,qy;)(t =1,2,..., ) is solved independently
on one processor of the multiprocessor system,
and therefore, Method 2 can be implemented in
parallel.

e The « splitting matrices B;(i = 1,2,...,a) and the
a weighting matrices F;(i = 1,2,...,a) may be
chosen in such a way that the tasks distributed
on the a processors of the multiprocessor system
are evenly balanced so that Method 2 achieves
high parallel efficiency.

e Considerable savings on the computational work-
loads are available because the entries of 2 cor-
responding to the zero-diagonal elements of the
weighting matrix £; need not be computed.
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When the linear complementarity problem (1) is
symmetric, we have the following convergence the-
orem for Method 2.

Theorem 1 Let M € R"™" be a symmetric matrix,
and (B;,C;,E;)(i = 1,2,...,a) be its multisplitting
such that

(a) M =B;+C;(i=1,2,...,a) are Q-splittings;
(b) Bi—C;(i=1,2,...,a) are positive definite matri-

ces; and
(c) f(f: E;2P") < nax f(z""), where
i=1 <<
1
f(z) = ézTMz +21q.

Assume that f(z) is bounded below on z > 0, and
that

0#£2>0, Mz>0 and Mz =0

— qu > 0.

Then for any starting vector 2° € R", the iter-
ative sequence {2’},cn, generated by Method 2 is
bounded and any accumulation point of it solves
the linear complementarity problem (1).
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Theorem 1 does not require that the diagonal el-
ements of the weighting matrices E;(i = 1,2,...,a)
be nonnegative.

Moreover, various choices of the weighting matri-
ces F;(i = 1,2,...,a) satisfy condition (c) in Theo-
rem 1.

One of the possibilities is given by the choice of
Ei=oI (i =1,2,...,a), where «o;(i = 1,2,...,«a) are

(6
nonnegative real numbers satisfying > «o; = 1.
i=1

In this case, condition (c) is automatically satis-
fied if either of the following two classes of restric-

tions are further imposed:

(1) for a positive integer sequence {i,} € A,

1 for ¢+ =1, .
= ’ Ti=1,2,... N,
Q; {07 fOI"i?é’l:p, ? ) &y , &, p € Ny,

where the indices iy(p € Ny) are chosen either

randomly at every iteration, or in a certain pre-

determined order such as the cyclic rule, or based
on the function values f(z"')(i = 1,2,...,a) such

that, for p € N,

F(7) = min f()

1<i<a

and

(2) M € R™" is a positive semidefinite matrix.



Matrix Multisplitting Methods with Applications to LCP

For the nonsymmetric linear complementarity prob-
lem and for general nonnegative diagonal weighting
matrices, we have the following convergence theory
for Method 2.

Theorem 2 Let M € R"™" be an H, -matrix, and
(B;, Ci, Ei)(i = 1,2,...,a) be its multisplitting such
that

(a) Bi(i=1,2,...,a) are H,.-matrices; and

(b) for each i, there exists a majorizing pair (B;, C;)
of the splitting (B;,C;), satisfying

Hu<6u  H=Y% E(B)YC|,  Vpe N3
1=1

for some mnonnegative constant 6 € [0,1) and
some positive vector u € R".

Then for any starting vector 2’ € R", the iterative
sequence {z’},cn, generated by Method 2 converges
to the unique solution of the linear complementar-
ity problem (1).
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In this theorem, no restriction is imposed on the
weighting matrices E;(i = 1,2,...,a). Hence, we can
choose them suitably such that Method 2 achieves
high parallel computing efficiency.

The restriction on the matrix splittings M = B, +
Ci(i = 1,2,...,a) in Theorem 2 is quite different
from that in Theorem 1.

However, both these classes of conditions natu-
rally originate from the standard conditions for the
parallel matrix multisplitting iterative methods of
the systems of linear equations.
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Two concrete choices of the multiple splittings
satisfying condition (3) are given in the following
examples.

Example 1 Assume that M = (m;;) € R"" is an
H. -matriz, and

D = diag(M), B=M —D.

For a given positive constant § > 1, let D;(i =
1,2,...,a) be positive diagonal matrices satisfying

D<D,<BD, i=12, ... a.
Take
Bi=D;, Ci=M-D; i=12,....ap=012....
Then condition (3) is satisfied, because

Bi=D;, C;=D;—D+|B|, i=1,2,..., 0,
u=(M)"te with e = (1,1,...,1)1 € R*, and

1
f = max<0,1 — :
{ max {ﬂmkkuk}}

1<k<n
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Example 2 Assume that M = (m;;) € R"" is an
H,-matrix, and

D = diag(M), B=M —D.
For each i € A, take
B = () € R™" and C;=(c) e R™"

in accordance with the following rule:

mgj, fO’I" k= j7
bgj) = b,(fj) € [0, my;], for k # j and my; > 0,
b,(;]) € [my;, 0], for k # j and my; <0,
(@) 0, Jor k = j,
Ckj = o b(l) L '
mk] kjo fO'r' # J-

Then condition (3) is satisfied, because
Bi=(B),Ci=|Cj|, i=1,2,...,0,p=0,1,2,...,
u=(M)"te withe=(1,1,...,1) € R*, and

1
6 = max {O, 1— } :
max {mkkuk}

1<k<n
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The following result is a direct and concrete ap-
plication of Theorem 2.

Theorem 3 Let M € R™" be an H . -matrix, and
(B;, Ci, Ei)(i = 1,2,...,a) be its multisplitting such
that
(a) B;(i=1,2,...,a) are H -matrices;
(b) for each i € A, there exists a majorizing pair
(B;,C;) of the splitting (B;, C;), satisfying

[ (B:) — |Ci| > M;,

u >0, M;u >0 (4)

— 1 —
— (Bj)u < 1—M¢u for some 0 € [0,1),

for some matrices M; € RV"(i = 1,2,...,a), for
which there exists a positive vector u € R" sat-
isfying Mu > 0.

Then for any starting vector z° € R", the iterative
sequence {2’ },cn, generated by Method 2 converges
to the unique solution of the linear complementar-
ity problem (1).
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Theorem 2 and Theorem 3 immediately give the
following results.

Theorem 4 Let M € R"™ be an H.-malrix. As-
sume that for each 1 € A, M = B, + C; s a split-
ting with B, having positive diagonal elements,
and there exist matrices M; € R"”"(i = 1,2,...,q),
a constant 6 € [0,1) and a positive vector u € R"
such that M;u > 0 and

1
Then for any starting vector 2’ € R", the iterative
sequence {2’ },cn, generated by Method 2 converges
to the unique solution of the linear complementar-

ity problem (1).

Theorem 5 Let M € R"" be an H.-matrixz. As-
sume that for each 1 € A, M = B, +C; is an H,-
compatible splitting. Then for any starting vector
' € R", the iterative sequence {z’},cn, generated
by Method 2 converges to the unique solution of
the linear complementarity problem (1).
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Chaotic Multisplitting Iterative Meth-
ods

The synchronous multisplitting iterative methods
discussed in the last section are much profitable
for solving the large sparse linear complementarity
problems in parallel in the synchronous comput-
ing environments, since the a subproblems can be
independently solved on the a processors of the
multiprocessor system.

In actual computations, however, to start the next
iterate, some of the processors may need to wait
until all of them have completed their calculations
of the current local iterates, in particular, when
there is load imbalance or processing difference
among the processors.

Hence, if the splittings and the weightings are
chosen so that the workloads carried by all pro-
cessors are exactly equally distributed, these syn-
chronous multisplitting iterative methods can at-
tain maximum efficiency.

When such a balance can be achieved, then the
individual processors are ready to contribute to-
wards their updates of the current global iterate
at the same time, which, in turn, minimizes idle
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time.

Nevertheless, there are many applications that
the concrete physical properties of the original prob-
lems lead to linear complementarity problems which
are quite naturally divided into subproblems of un-
equal sizes.

Hence, the synchronous multisplitting iterative
methods are intrinsically not efficient for solving
this kind of linear complementarity problems.

To avoid loss of time and efficiency in processor
utilization, we studied the chaotic variants of the
aforementioned synchronous multisplitting meth-
ods based on the implicit splittings of the matrix,
for which each processor can carry out a varying
number of local iterations until a mutual phase
time is reached when all processors are ready to
contribute towards the global iteration.

Hence, the synchronous waits among different pro-
cessors may be greatly decreased and the efficient
numerical computation on each processor may be
largely increased.

This, therefore, makes these chaotic multisplit-

ting iterative methods be possible to achieve high
parallel computing efficiency.



Matrix Multisplitting Methods with Applications to LCP

Method 3 (Bar 1999).
Given a starting vector 2’ € R".

For p=10,1,2,... until {2#},en, convergence, compute
(0% .
T = 21 E; =z
1=

where, for each ¢ € A,
D0 . PP = Zp,z,u(p,l)

and for k = 1,2,..., u(p, 1), 2% is an arbitrary solution of
the linear complementarity problem LCP(B;, qp.i):

z >0, Biz+¢qir>0 and z "Bz + Qik) =0,
with
ik = CizP"* 1 4 ¢

and p(p, i) the composite numbers.

To ensure the existence of the solution of LCP(B;, g, )
so that the iterative sequence {z’},cn, is well de-
fined, we need to assume in Method 3 that the
splittings M = B;+C;(i = 1,2,...,a) are Q-splittings.

The composite numbers ,u(p, ) in Method 3 can be
determined either precedently before the starting
of the iteration, or dynamically during the imple-
mentation of the method.

If u(p,i)=1 (i € A,p € Ny), then Method 3 reduces
to Method 2.
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The following convergence theorems hold for Method 3
for the cases that the system matrix M € R"™" is
symmetric and nonsymmetric, respectively.

Theorem 6 Let M € R"™" be a symmetric matrix,
and (B;,C;,E;)(i = 1,2,...,a) be its multisplitting
such that

(a) M =B;+C;(i=1,2,...,a) are Q-splittings;
(b) Bi—C;(i =1,2,...,a) are positive definite matri-
ces; and

(c) f(3 Biz") < max f("'), where
1=1

1<i<a
1
f(z) = ézTMz +21q.

Assume that f(z) is bounded below on z > 0, and
that

0#£2>0, Mz>0 and Mz =0

— ¢l 2> 0.

Then for any starting vector ' € R", indepen-

dently of the positive integer sequences {/(p,1)}pen,
(i =1,2,...,a), the iterative sequence {z’},cn, gen-
erated by Method 3 is bounded and any accumula-
tion point of it solves the linear complementarity
problem (1).
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Theorem 7 Let M € R™™" be an H, -matric.

Assume that for each i € A\, M = B, + C; is an
H, -compatible splitting, satisfying

diag(B;) < B diag(M)

for some positive constant 5 > 1.

Then for any starting vector 2 € R", the itera-
tive sequence {?’},cn, generated by Method 3 con-
verges, independently of the positive integer se-
quences {u(p,i)}pen, (¢ = 1,2,...,a), to the unique
solution of the linear complementarity problem (1).



Z. Z. Bai

Asynchronous Multisplitting Itera-
tive Methods

Due to the intrinsic superiority of the parallel mul-
tiprocessor system to the single computer system,
asynchronous iterative methods are much more ef-
ficient than their synchronous and chaotic coun-
terparts, in particular, when there are load imbal-
ances among the tasks distributed on the proces-
Sors.

To this end, in accordance with the principle of
using sufficiently the available information, exchang-
ing flexibly the current message, increasing largely
the useful computation and decreasing possibly the
useless communication, we studied various asyn-
chronous multisplitting iterative methods for solv-
ing the large sparse linear complementarity prob-
lems on the high-speed multiprocessor systems.

These asynchronous multisplitting iterative meth-
ods not only avoid simultaneous waits among the
processors, but also exploit the parallel efficiency
of the multiprocessor system.

Therefore, they are quite suitable for high-performance
computing in actual applications.
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The descriptions of the asynchronous multisplit-
ting iterations need the following elementary nota-
tions.

(a) for p € Ny, J(p) is used to denote a nonempty
subset of the number set A;

b) for + € A, {s;(p) },en, are used to represent « infi-
PNy
nite nonnegative integer sequences, with

si(p) € Ny, Vie A and Vpe N,.

We assume that the subsets J(p) and the sequences
{si(p) }pen, (i € A) satisfy the following properties:

(1) for i € A, the sets {p € Ny:i € J(p)} are infinite;
(2) for i € A and p € Ny, s;(p) < p hold; and
(3) for i € A, Jim si(p) = oo hold.
If we define
s(p) = min{si(p)},
then it obviously holds that

s(p) <p and Jim s(p) = oo.
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The above-described synchronous and chaotic mul-
tisplitting methods can achieve high parallel com-
puting efficiency provided the task is evenly dis-
tributed onto all processors.

However, such an assumption of the balanced dis-
tribution does not always hold in many applica-
tions, probably due to some special physical prop-
erties of the original problem.

To exploit the parallel computing efficiency of the
multiprocessor system as far as possible, we pre-
sented a class of asynchronous multisplitting relax-
ation methods for solving the linear complementar-
ity problem (1).

They are quite suitable for implementing in the
asynchronous parallel computing environments, since
no mutual wait among the processors is demanded.
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Method 4 (Bal AND HUANG 1999).
Given a starting vector 2’ € R".
For p=10,1,2,... until {2#},en, convergence, compute

(6 .
AT = Bt
=1

where, for each ¢ € A,

. 5D — W)z '
ijlz{wz + (1 —w)z%i® fori € J(p), —19...a

2P, for i ¢ J(p), TS

and 2P is an arbitrary solution of the linear complementarity
problem LCP(B;, q,.):

220, Biz+¢,;>0 and zT(Biz + qpﬂ;) =0,
with

Here, w € (0,00) is a relaxation factor, and (B;, C;, E;)(i =
1,2,...,«) is a multisplitting of the matrix M € R"*".
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In Method 4, each processor is allowed to update
or retrieve the global approximate solution residing
in the host processor at any time.

Hence, currently available information can be used
promptly to renew the dated one so that Method 4
achieves high parallel computing efficiency in ac-
tual applications.

On the other hand, If J(p) = A and s;(p) = p hold
for p € Ny and ¢« € A, then Method 4 reduces to
Method 2 when w = 1, and it gives an extrapolated
variant of Method 2 when w # 1.
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We have the following asymptotic convergence
theorem for Method 4.

Theorem 8 Let M € R™" be an H.-matriz,
D = diag(M) and B=M—D.

Assume that (B;,C;,E;)(i = 1,2,...,a) is a mul-
tisplitting of the matrix M, and for each it € A,
M = B; + C; ts an H,-compatible splitting satisfy-
ing diag(B;) = diag(M).

Then for any starting vector 2 € R", the itera-
tive sequence {Z’},cn, generated by Method 4 con-
verges to the unique solution of the linear com-
plementarity problem (1), provided the relaxation
parameter w satisfies

2
I+ p(D[B])

I<w<
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Multi-parameter Generalizations

The above-described methods are implicit iterative
methods, in the sense that they need the solutions
of a linear complementarity problems of smaller
sizes. This makes these methods less convenient in
actual computations.

The introduction of relaxation parameters not only
can produce various applicable iterative methods,
but also can improve the convergence properties of
these methods as well.

If a multisplitting method is constructed by using
one forward and one backward relaxation sweeps,
and if each processor is allowed to update or re-
trive any piece of the global iterate residing in the
host processor at any time, then we can formu-
late multi-parameter relaxed synchronous, chaotic,
and asynchronous multisplitting methods for solv-
ing the linear complementarity problem (1).

In this section, we will emphatically discuss the
multi-parameter relaxed asynchronous multisplit-
ting iterative methods and their convergence the-
ories.

The synchronous and the chaotic multisplitting
iterative methods can be treated as special cases.
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We first give the concept of the generalized block
triangular multisplitting.

For a given matrix M = (my;) € R"™", we denote
D = diag(M). For i = 1,2,...,a, let L; € R™" and
U, € R be strictly lower-triangular and strictly
upper-triangular matrices, respectively, W, € R"*"
be zero-diagonal matrices, F;, € R"*" be nonneg-
ative diagonal matrices, and J;(i = 1,2,...,a) be a
decomposition of the number set NV, such that they
have the following particular structures:

' 1) for k,j € J; and k > j,
L = ([Lilxj), [Lilkj = { & J J

0, otherwise,

(4) : .
u;.;, for k,j € J;, and k < 7,
Ui = ([Uilk;), [Uilk; = { & J J

0, otherwise,
0, for k = j,
memm,[WM{(o

Wijs otherwise,

(4) > (0. for k € J;
E; = diag([Ew), [Eile =1 = ]
iag([Eiler),  [Eilk { 0, otherwise,

\

and satisfy the following properties:

(a) D is nonsingular, i.e., det(D) # 0;
(b)M=D+L,+U;+W,;, i=12,...,a; and
(c) fleZ = [ (the n x n identity matrix),

Then the collection (D+L;, D+U;, W;, E)(i =1,2,...,q)
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is called a generalized block triangular multisplit-
ting of the matrix M € R"™".

The following notations are elementary for the
description of the asynchronous multisplitting it-
eration.

(a) for i € A and p € Ny, Ji(p) is used to denote a
subset of the number set J;;

(b) for £ € N and p € Ny, denote
Ni(p)={i: ke Ji(p), i=1,2,...,a};
and

(c)forie Aand k € N, {s,(f) (p) }pen, are used to repre-
sent infinite nonnegative integer sequences, with

s,g)(p) €Ny, for iecA and pe N
We assume that the subsets J;(p) and the sequences

{s,(f) (p) }pen, satisfy the following properties:

(1) for i € A and k € N, the sets {p € Ny : k € Ji(p)}
are infinite;

(2) for p € Ny, UL, J;(p) # 0 hold;
(3)for i € A, k € N and p € N, s\ (p) < p hold; and
(4) for i € A and k € N, Jim s}’ (p) = 0o hold.
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If we define

s(p) = min min{s;” (p)},

then it obviously holds that
s(p) <p and  lim s(p) = oo.

Note the difference between these notations and
the ones introduced at the beginning of the last
Section.

Here:
a is the number of the processors

J; is the subset of variables assigned to processor
i

Ji(p) is the subset of variables updated by proces-
sor ¢ at iteration p

Ni(p) is the subset of processors updating the k-th
entry of the global variable at iteration p

s,(f) (p) is the iteration index for the k-th entry of
the global variable received by processor i from the

host processor at iteration p.
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Method 5 (Bal AND HUANG 1999).
Given a starting vector 2’ € R".

For p = 0,1,2,... until {2#},en, convergence, successively

compute

2"y, = > ei(gi)[zpﬂ’i]k—h > e,(f)[zp]k, k=1,2,...,n,
ZENk‘(p) ZéNk(p)

where zP*1'(i € A) are determined by the following two relax-
ation sweeps:

(I) THE FORWARD RELAXATION SWEEP:

Successively compute [27+1/2],.(k € Ji(p)) element by ele-
ment through

. k=l ; §(0)
0, it m X () - [0

=1 "

tur[ M2 + gy
> Mg [Zs(z) (P)]k’

[Zp+1/2,i]k < i ol i |
0 S (T — )
Mk j=1 0
— LM 4 g),
Mgk

otherwise.
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(IT) THE BACKWARD RELAXATION SWEEP:

Successively compute [2PT1].(k € J;(p)) element by ele-
ment through

( k=1 , ,
0, iy X u ([P [TRY)
= .
+wp[ M 2P gy
> mkk[2p+1/2’i]k,

. k=1 ; ;
(212 ([ )

mgk j=
w2

[Zp+1,i]k —

MY 4 gl
Mg

otherwise,

with
M\
( , ...,zS"(p)) , forie Aandp e N,.

Here, v; € [0,00)(j = 1,2) are relaxation factors, and w; €
(0,00)(j = 1,2) are acceleration factors.
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We have the following asymptotic convergence
theorem for Method 5.

Theorem 9 Assume that M € R"*" is an H,-matriz,
D = diag(M) and B=M—D.

Let

(D—FLZ,D—FUZ,WZ,EZ)(Z = 1,2,...,0&)
be a generalized block triangular multisplitting of
the matriz M € R™", with

Then the iterative sequence {z’},cn, generated by
Method 5 converges to the unique solution of the
linear complementarity problem (1), provided the
relaxation parameters v, and wi, k=1,2, satisfy

2

. k=1,2.
1+ p(D~1B|)

0 < v < wg and 0<wi <
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Numerical Experiments

We remark that Method 5 is quite suitable for both
the tightly coupled multiprocessor and the multi-
computer having a shared global memory.

Method 5, its synchronous and sequential coun-
terparts, together with some of their typical cases
resulted from special choices of the relaxation pa-
rameters, will be the experiment methods of this

paper.
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The Experimental Problems

We consider the following three practical problems
of the LCP (M, q).

Problem 1 The linear complementarity problem with
the system matrix M € r"*" corresponding to the
Laplacian 5-point finite difference operator:

r -1
-1T7T -1
M= € RV,
-1 T -1
-1 T
4 -1
-1 4 -1
T — el v .. eRﬁxﬁ,
-1 4 -1
—1 4

and the known vector q € R" suitably chosen, e.g.,

q=1,-1,..., (=)L (=) € R,

where n = n2.

Note that M € R"" is an H,-matriz.
Therefore, the LCP(M,q) has a unique solution.
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Problem 2 The linear complementarity problem with
the system matrix M € R"" corresponding to the
Journal Bearing finite difference operator:

T — 61
—pl T — Bl o
e ™,
—Bi—ol Ti_1 —Bh—11
—Ba1l T

m+m —0
=B mEkt+me =02
Tk: .., .., . GRﬁXﬁ,
—Bri—2 Mk + N1 —Ba-1
—Bh-1 Nk + N

and the known vector q € R" suitably chosen, e.g.,

q = (50,507, ...,50m)T € R",

where m denotes the ratio of the circumference of
a circle to its diameter,

1 1 1
Be=(k+3)%  me = (k+0) +(k—3)" k=1,2,... 7
Note that M € R™" s a K-matriz.

Therefore, the LCP(M,q) has a unique solution.
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Problem 3 The linear complementarity problem with
the system matrix M € R"" corresponding to the
Laplacian 9-point finite difference operator:

T S
ST S
M = el tel te, e R™",
S T S
S T
20 —4
—4 20 —4
T = el el e e RV,
—4 20 —4
—4 20
|
-1 4 -1
S = ERﬁXﬁ,
-1 4 -1
—1 4

and the known vector q € R" suitably chosen, e.g.,
q = (17 _17 SR (_1)ﬁ_17 <_1>ﬁ>T € R".

Note that M € R™" is an H_ -matriz.
Therefore, the LCP(M,q) has a unique solution.
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We remark that the finite difference discretiza-
tions at equidistant grids of a free boundary value
problem about the flow of water through a porous
dam may result in linear complementarity prob-
lems of the types of Problem 1 and Problem 3,
and that of a journal bearing problem may result

in linear complementarity problems of the type of
Problem 2.
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The Experimental Environment

We run our programs on an SGI Power Challenge
multiprocessor computer as PVM applications.

This parallel machine consists of four 75 MHz
TFP 64-bit RISC processors.

These CMOS processors each delivers a peak the-
oretical performance of 0.3 GFLOPS.

The data cache size is 16 Kbytes.
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The Experimental Methods

The tested methods in our numerical experiments
are listed in the following three tables:

(a) the sequential relaxation methods:

Method | 71 | w1 | 72 | wo Description
SOR w | w | 0| 0| the successive overrelaxation method
SSOR | w | w |w | w the symmetric SOR method
USOR | v | v |w | w the unsymmetric SOR method
AOR v | w | 0] O |the accelerated overrelaxation method
SAOR | v | w |7 | w the symmetric AOR method

(b) the synchronous multisplitting relaxation methods:

Method | v, | w1 | 72 | we Description

MSOR |w | w | 0] 0 | the multisplitting SOR method
MSSOR | v | w | w | w | the multisplitting SSOR method
MUSOR | v | v | w | w | the multisplitting USOR method
MAOR | v | w | 0| 0 | the multisplitting AOR method
MSAOR | v | w | v | w | the multisplitting SAOR method

(c) the asynchronous multisplitting relaxation methods:

Method | v | wi | 72 | wo Description

AMSOR |w | w | 0| 0| the asynchronous MSOR method
AMSSOR | w | w | w | w | the asynchronous MSSOR method
AMUSOR | v | v | w | w | the asynchronous MUSOR method
AMAOR | v | w | 0| 0 | the asynchronous MAOR method
AMSAOR | v | w | v | w | the asynchronous MSAOR method
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For the convenient of application and without loss
of generality, the block triangular multisplittings
(D + Lp,ia D + Up,ia Wp,ia EZ><Z = 1, 2, ceey oz), p = 0, 1, 2, ey
are now chosen to be stationary ones (i.e., they are
independent of the iterate index p), and they have
the following structures:

p i my;, for k,j € J, and k > j,
L = @) o =

0, otherwise,
YY) (i) my;, for k,j € J; and k < j,
Upi = Uyj"), Uy N { 0, otherwise,
| | [0, for k=j,
Wi = W), wig? = 0, forkje

my;, otherwise,
I, 1<k<mn, i=1,
0.0, njn+1< k< n;n,

: ; 2<i1<
E. :d (Z) (7’) — — = 9
’ iag(er), e | 05, A +1<k < figih,
1< <a-—1,
| 1L, nan+1<k<n, i=aq
where for : =1,2,...,a, n; = Int (a’—fl), and

Ji=A{fian+ 1L, 0 +2,..., AR}

Here, Int(e) denotes the integer part of the corre-
sponding real number.
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The Starting and the Stopping Cri-
terions

All the computations are started from an initial
vector having all components equal to 40.0, and ter-
minated once the current iterations z” obey

(M2 +q)
AT
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Numerical Results

The three problems of the LCP(M,q) of various
sizes are tested by the sequential, the synchronous
and the asynchronous relaxation methods in Tables
(a)-(c) when the processor number a ranges from
{1,2,3,4}, respectively.

For n = 4900 and o = 3, some of the representative
numerical results are listed in the following tables
and depicted by the following figures.

We use CPU to denote the CPU time (in seconds)
required for an iteration to reach the above stop-
ping criterion, co to denote that an iteration does
not satisfy the stopping criterion after 5000 itera-
tions, and SP to denote the speed-up of a parallel
execution, which is defined to be the ratio of the
CPU times of the sequential to the corresponding
parallel runnings.
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Performance of Example 1

w 0.6 0.7 0.9 1.1 1.3 1.5
SOR | 91.92 | 73.14 | 48.09 | 32.51 | 21.38 | 13.23
SSOR | 45.98 | 37.03 | 24.27 | 16.26 | 10.72 00

Tabel (A;): CPUs for the sequential SOR-like methods
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w 0.6 0.7 0.9 1.1 1.3 1.5
CPU | 48.12 | 37.70 | 24.92 | 16.82 | 11.10 | 6.97
MSOR
SP 1.91 | 1.94 | 1.93 | 1.93 | 1.93 | 1.90
CPU | 23.23 | 19.06 | 12.55 | 8.47 | 5.62 00
M
SSOR SP 1.98 | 1.94 | 1.93 | 1.92 | 1.91 -

Tabel (Ay): CPUs and SPs for the multisplitting SOR-like methods



Matrix Multisplitting Methods with Applications to LCP

w 0.6 0.7 0.9 1.1 1.3 1.5
CPU | 42.41 | 33.59 | 22.09 | 14.99 | 10.04 | 6.34
AMSOR SP 2.17 | 2.18 | 2.18 | 2.17 | 2.13 | 2.09
CPU | 21.30 | 16.80 | 11.26 | 7.70 | 5.12 00
AM
SSOR SP 2.16 | 2.20 | 2.16 | 2.11 | 2.09 -

Tabel (A3): CPUs and SPs for the asynchronous multisplitting SOR-like methods
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Tables (As) and Tables (A3) show that the asyn-
chronous multisplitting SOR and SSOR methods
outperform the synchronous multisplitting SOR and
SSOR methods, and the multisplitting SSOR-like
methods outperform the corresponding multisplit-
ting SOR-like methods, respectively, in terms of
both elapsed time and parallel speed-up.
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¥ 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.7 | 1.8 | 1.9

w 1.0 1.0 1.0 1.1 1.1 1.1 1.2 1.2 | 1.2 | 1.2

AOR | 63.03 | 54.90 | 47.08 | 35.65 | 28.53 | 21.42 | 13.06 | 9.79 | 6.50 | 3.03

SAOR | 29.69 | 26.03 | 22.97 | 17.79 | 14.87 | 11.42 | 7.21 | 5.59 | 3.91 | 2.04

USOR | 39.31 | 31.74 | 25.37 | 18.41 | 13.94 | 9.93 o0 o0 00 o0

Tabel (A,): CPUs for the sequential AOR-like methods
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0% 0.4 0.6 0.8 1.0 1.2 1.4 1.6 | 1.7 | 1.8 | 1.9

w 1.0 1.0 1.0 1.1 1.1 1.1 1.2 | 1.2 | 1.2 | 1.2
MAOR. CPU | 33.17 | 28.74 | 24.52 | 18.59 | 15.00 | 11.35 | 7.04 | 5.43 | 3.68 | 2.00
SP 1.90 | 1.91 | 1.92 | 1.92 | 1.90 | 1.89 | 1.86 | 1.80 | 1.77 | 1.52
MSAOR CPU | 15.14 | 13.59 | 11.97 | 9.48 | 7.31 | 6.16 | 4.01 | 3.12 | 2.21 | 1.29
SP 196 | 1.92 | 1.92 | 1.88 | 2.03 | 1.85 | 1.80 | 1.79 | 1.77 | 1.58

CPU | 20.45 | 16.53 | 13.19 | 9.76 | 7.46 | 5.25 00 00 00 00

MUSOR SP 192 | 1.92 | 1.92 | 1.89 | 1.87 | 1.89 - - - -

Tabel (A;): CPUs and SPs for the multisplitting AOR-like methods
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y 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.7 1.8 1.9
w 1.0 1.0 1.0 1.1 1.1 1.1 1.2 1.2 1.2 1.2
CPU | 28.80 | 25.16 | 21.91 | 16.53 | 13.35 | 10.25 | 6.30 | 4.84 | 3.30 | 1.82
AMAOR
SP 2.19 2.18 | 2.15 2.16 | 2.14 | 2.09 | 2.07 | 2.02 | 1.97 | 1.66
AMSAOR CPU | 13.64 | 12.14 | 10.72 | 8.40 6.86 5.47 | 3.52]2.7211.96 | 1.19
SP 2.18 2.14 2.14 2.12 2.17 2.09 [ 2.08 |2.061.99|1.71
CPU | 18.15 | 14.67 | 11.78 | 8.73 6.63 4.76 00 o0 o0 o0
AM
USOR SP 2.17 2.16 2.15 2.11 2.10 2.09 - - - -

Tabel (As): CPUs and SPs for the asynchronous multisplitting AOR-like methods
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Tables (A4)-(Ag) show that the asynchronous mul-
tisplitting AOR, SAOR and USOR methods out-
perform the synchronous multisplitting AOR, SAOR
and USOR methods, respectively, and the two-
sweep relaxed multisplitting methods outperform
the one-sweep relaxed multisplitting methods, cor-
respondingly, in terms of both elapsed time and
parallel speed-up.

Moreover, the two-parameter relaxed multisplit-
ting AOR-like methods have larger convergence
domains than the corresponding two-parameter re-
laxed multisplitting SOR-like methods.

In Figures (A;)-(43), we give the behaviours of
the asynchronous multisplitting AOR, SAOR and
USOR methods, respectively.

The r and w axes in each figure correspond to the
v and w axes, respectively.

It is clearly demonstrated that all these meth-
ods have good convergence properties over a wide
range of the relaxation parameters.
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Performance of Example 2

The computing results of this problem are depicted
by Figures (B)-(B7).

In these figures, the x-axis corresponds to the re-
laxation parameter, and the y-axis corresponds to
the CPU in logarithmic scale.

Note that here we only investigate a representa-
tive curve from the two-dimensional surface of the
CPU vs. the relaxation parameters v and w for the
two-parameter relaxed methods, which was cut off
by the hyperplane w = 1.3.
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Obviously, Figures (B;) — (B3) show that:

the AMAOR method always outperform the MAOR
method, and the MAOR method almost always
outperform the AOR method except for the points
nearby the optimum.

Note that the AMAOR method has larger con-
vergence domain than the MAOR method.

The AMSAOR method always outperform the
MSAOR method, and the MSAOR method almost
always outperform the SAOR method except for
the points nearby the optimum.

That both synchronous and asynchronous multi-
splitting relaxation methods perform worse than
the corresponding sequential relaxation method in
the nearby of the optimal points of the relaxation
parameter is probably because the convergence prop-
erties of the parallel methods are not better than
the sequential method when the relaxation param-
eters are much close to the optimal values.
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Evidently, Figures (B,) — (B7) show that:

the MSOR method always outperform the SOR
method, and its convergence property is quite com-
parable with the AMSOR method, except for the
points nearby the optimum.

Around the optimal point, the MSOR method
has the best numerical behaviour, while the AM-
SOR method has the worst one.

However, the AMSOR method has larger conver-
gence domain than both MSOR amd SOR meth-
ods.

Figure (Bg) depicts the performance of the SSOR,
MSSOR and AMSSOR methods.

The MSSOR method always outperform the SSOR
method, and its convergence property is quite com-
parable with the AMSSOR method, except for the
points nearby the optimum.

Around the optimal point, the MSSOR method
has the best numerical behaviour, while the SSOR
method has the worst one.

However, the AMSSOR method has larger con-

vergence domain than both MSSOR and SSOR
methods.
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Hence, the asynchronous multisplitting relaxation
methods almost always outperform the synchronous
multisplitting relaxation methods and the sequen-
tial relaxation methods.

That the convergence speeds of these three classes
of methods are quite different in the nearby of the
optimums of the relaxation parameters is probably
because the drastic difference of the convergence
properties of these methods when the relaxation
parameters are close to the optimums.
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Performance of Example 3

The computing results of this problem are depicted
by Figures (C)-(C).

In these figures, the x-axis corresponds to the re-
laxation parameter, and the y-axis corresponds to
the CPU in logarithmic scale.

Again, note that here we only investigate a rep-
resentative curve from the two-dimensional surface
of the CPU vs. the relaxation parameters v and w
for the two-parameter relaxed methods, which was
cut off by the hyperplane w = 1.3.
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In Figures (Cy) — (C3), the classes of USOR, AOR
and SAOR methods were compared in both se-
quential and parallel settings, and in Figures (Cy4) —
(C7), the classes of SOR, SSOR and AOR methods
were done in these situations, too.

The numerical behaviours of these methods for
this example are quite analogous to those for Ex-
ample 2, correspondingly.
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Conclusions

The synchronous, the chaotic, and the asynchronous
multisplitting relaxation methods reviewed in this

paper afford various choices of parallel algorithms

for solving the large sparse linear complementar-

ity problems on the high-speed multiprocessor sys-

tems

The asynchronous multisplitting iterative meth-
ods are much more efficient than their correspond-
ing synchronous and chaotic alternatives, in terms
of both computing efficiency and algorithmic gen-
erality

In asynchronous computing environments, even if
there are load imbalances, each processor is allowed
to update the global iterate, or to retrive any piece
of the global iterate residing in the host processor,
at any time. This is one of the main advantages of
these asynchronous multisplitting iterative meth-
ods

The convergence properties of these methods are
demonstrated for some typical classes of matrices
and under some suitable restrictions on both the
multiple splittings and the involved parameters,
which, therefore, gives theoretical guarantees for
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the applications of these methods

These works are not only developments of the
classical iterative methods for the system of linear
equations to the linear complementarity problem,
but also improvements of the existing sequential
SOR method and theory for the linear complemen-
tarity problem to the synchronous, the chaotic, and
the asynchronous multisplitting iterative methods.
Hence, they present both systematic algorithmic
models in the sense of multisplitting and reliable
theoretical guarantees in the sense of asymptotic
and (or) monotone convergence for solving the large
sparse linear complementarity problems on the mod-
ern high-speed multiprocessor systems.

The numerical computations show that: In terms
of CPU time and parallel efficiency, the asynchronous
multisplitting relaxation methods are superior to
the corresponding synchronous multisplitting re-
laxation methods

The multisplitting accelerated overrelaxation meth-
ods are superior to the corresponding multisplit-
ting successive overrelaxation methods

The two-sweep relaxed multisplitting methods are
superior to the corresponding one-sweep relaxed
multisplitting methods
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In particular, the advantages of the AMAOR and
AMSAOR methods over the AMSOR, AMSSOR
and AMUSOR methods, respectively, are, roughly
speaking, that:

(i) when the latter ones diverge, the former ones
can still converge;

(ii) when the latter ones converge, the former
ones converge faster with higher parallel efficiency;
and

(iii) the former ones are less sensitive to the relax-
ation parameters and they have larger convergence
domains than the latter ones

Moreover, the numerical property of the AMU-
SOR method is almost comparable with that of the
AMSAOR method.

Therefore, we can conclude that the two-sweep
multi-parameter relaxed asynchronous multisplit-
ting methods have better numerical properties than
their corresponding synchronous alternatives, and
they should be our choice of methods in actual
computations
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AMSAOR, Three-Processor Case
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