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ABSTRACT. The convergence properties of the non-stationary mul-
tisplitting iteration method, a variant of the parallel chaotic mul-
tisplitting iteration method for solving the large sparse system of
linear equations presented in:

R. Bru, L. Elsner and M. Neumann: Models of parallel chaotic iter-
ation methods, Linear Algebra and Its Applications, 103(1988),175-
194)

are further discussed when the coefficient matrix is an H-matrix and
a positive definite matrix, respectively.

Moreover, when the coefficient matrix is a monotone matrix,
the monotone convergence theory and the monotone comparison
theorem about this method are established. This directly leads to
several novel sufficient conditions for guaranteeing the convergence
of this parallel non-stationary multisplitting iteration method.



§1. Introduction

Consider the parallel solution of the large sparse system
of linear equations

Az = b, A€ L(R") nonsingular, =z,b€ R" (1.1)

on a multiprocessor system.

The parallel multisplitting iteration method in

[OW] D.P. O’Leary and R.E. White: Multi-splittings of matri-
ces and parallel solution of linear systems, STAM J. Alg. Disc.
Methods, 6(1985), 630-640:

Suppose the multiprocessor system have K processors, which
are connected to a host processor that may be taken by any
of the K processors.

Let (Bk,Ck, Ex)(k=1,2,--- ,K) be a multisplitting of the co-
efficient matrix A € L(R"), that is, the collection of triples
(Bk,Cr, Er)(k=1,2,--- , K) satisfies
(1) A:Bk—Ck, k = 1,2,--- ,K;
(2) Bx(k=1,2,--- ,K) are nonsingular; and
(3) Ex(k=1,2,--- ,K) are nonnegative n x n diagonal ma-
K
trices such that ) FE; = I (the identity matrix).
k=1
Then the multisplitting iteration method in [OW] can be
written as

K K
' =3 BB Cra? + Y ExBy'b,  p=0,1,2,---. (L2)
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e In practical implementations, at each major stage of the
iteration (1.2) the k-th processor computes only those en-
tries of the local iteration

Pk = B,;lck:cp + Bk_lb
which correspond to the nonzero diagonal entries of Fj.

e The processor then scales these entries so as to be able to
deliver the vector E;zP* to the host processor.

e The asymptotic and monotone convergence properties of
this multisplitting iteration method were studied in:

[1] D.P. O’Leary and R.E. White, Multi-splittings of matri-
ces and parallel solution of linear systems, SIAM J. Alg. Disc.
Methods, 6(1985), 630-640.

[2] M. Neumann and R.J. Plemmons, Convergence of par-
allel multisplitting iterative methods for M-matrices, Linear
Algebra Appl., 88-89(1987), 559-573.

[3] A. Frommer and G. Mayer, Convergence of relaxed par-
allel multisplitting methods, Linear Algebra Appl., 119(1989),
141-152.

[4] De-Ren Wang and Zhong-Zhi Bai, On the monotone con-
vergence of matrix multisplitting iteration methods, In Pro-
ceedings of ’92 Shanghai International Numerical Algebra and Its
Applications Conference, E.X. Jiang eds., China Science and
Technology Press, Beijing, 1994.

[5] Zhong-Zhi Bai, Jia-Chang Sun and De-Ren Wang, A
unified framework for the construction of various matrix
multisplitting iterative methods for large sparse system of
linear equations, Computers Math. Appl., 32:12(1996), 51-76.

¢ The multisplitting iteration method (1.2) can attain max-
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imum efficiency in practical implementation provided the
multiple splittings A = By,—Ci(k =1,2,--- , K) and the weight-
ing matrices Fx(k = 1,2,--- ,K) are carefully chosen such
that the workload carried by all processors is roughly equally
distributed.

¢ When such a balance can be achieved, then the individual
processors are ready to contribute towards their update of
the global iteration zPt! at the same time, which, in turn,
minimizes idle time.

However, there are applications in which the original
physical properties lead to problem (1.1) which quite natu-
rally divide into subproblems of unequal sizes.

To avoid loss of time and efficiency in processor utiliza-
tion,

[BEN]: R. Bru, L. Elsner and M. Neumann, Models of paral-
lel chaotic iteration methods, Linear Algebra Appl., 103(1988),
175-194.

further improved the multisplitting iteration method (1.2)
and suggested a parallel chaotic multisplitting iteration method.

Moreover, they proved the convergence of this method
when the coefficient matrix A € L(R") is monotone and the
multiple splittings are weak regular.

This method was also called the parallel non-stationary mul-
tisplitting iteration method by other authors.



In this talk, we will report further investigatations on the
convergence properties of the above parallel non-stationary
multisplitting iteration method.

e After briefly stating a convergence theorem about the H-
matrix class, we prove the convergence of a generalized vari-
ant of the parallel non-stationary multisplitting iteration
method when the coefficient matrix A € L(R") is symmet-
ric positive definite and the multisplittings satisfy certain
conditions.

e Then, for the monotone matrix class, we establish the
monotone convergence theory as well as the monotone com-
parison theorem of the parallel non-stationary multisplit-
ting iteration method.

e Therefore, the convergence theory of this class of paral-
lel non-stationary multisplitting iteration method is com-
pleted.



§2. The parallel non-stationary multisplitting iteration
methods

Let Ny = {0,1,2,---}, and (Bpk,Cp i, Epr)(k = 1,2,--- |, K),
p € Ny, be a sequence of multisplittings of the matrix A €
L(R™). That is to say, for Vp € Ny and Vk € {1,2,--- , K}, it
holds that:

(1) A= By r — Cp ks

(2) B, i is nonsingular; and

(3) E, 1 is an n x n diagonal matrix, satisfying >, Epx =
I.

Note that here we permit negative entries on the diagonal of
E, 1. Then we consider the following parallel non-stationary
multisplitting iteration method for solving the system of
linear equations (1.1).

METHOD 2.1. (Parallel Non-Stationary Multisplitting Method)
Step 1. Choose an arbitrary starting vector z° € R"™. Set p := 0.
Step 2. For each k € {1,2,--- ,K}, set zP%0 := 2P and take a
positive integer [ip .

Step 3. For each k € {1,2,--- , K} and = 1 to uy, let zPF* be
the solution of the linear system:

Bp,kx = Cp,kwp’k"u_l + b.

Step 4. For each k € {1,2,---, K}, set xPtHk = gPFbp.i,

K
Step 5. zPT! = Y E, jaPthE,
k=1

Step 6. If zPT! = 2P, then stop. Otherwise, set p := p + 1 and
return to Step 2.



For each k£ € {1,2,---, K} and each p € Ny, we introduce the
affine operator Fj; : R — R" as follows:

Fpi(z) = B, Cprz+ B, b, Vo e R"
Furthermore, if for a nonnegatlve integer u we define

u times
-

F;k — }"p,k oFppo---o0 Fp,;, when u > 0,

I, when p =0,
where g is the number of compositions of Fj; with itself, then
Method 2.1 can be rewritten as the following concise form:

Pt = ZE R0 (2P),  p=0,1,2,---. (2.1)

Evidently, for the original stationary multisplitting (Bg, Ck, Ex)(k =
1,2,---, K) of the matrix A € L(R"™), Method 2.1 becomes the par-
allel chaotic multisplitting iteration method studied in Bru, Elsner
and Neumann[BEN], that is,

Model A: P! = Z EyFy7*(zP), p=0,1,2,-- -,
k=1
where for each k£ € {1,2,--- K}, Fix(z) = Bk_lcka: + Bk_lb (Vz €
R™).

In particular, when pp, =1 (k=1,2,--- , K,p € Nyp), it recovers
the parallel matrix multisplitting method (1.2) originated in O’Leary
and White[OW]. Otherwise, if (B, k, Cp k, Ep)(k =1,2,--- ,K)is a
dynamic multisplitting of the matrix A € L(R"), Method 2.1 intro-
duces a new parallel non-stationary multisplitting iteration method.
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In the implementations of Method 2.1, each processor can carry
out a varying number of local iterations until a mutual phase time
is reached when all processors are ready to contribute towards the
global iteration. Therefore, this method can achieve high parallel
efficiency, even for the case of unbalanced workload distribution.

When the coefficient matrix A € L(R"™) is monotone and the
multiple splittings are weak regular, we can prove the following con-
vergence theorem for Method 2.1.

THEOREM 2.1. Let A € L(R™) be a monotone matrix,
(Bpks Cp s Ep i) (k =1,2,--- ,K), p € Ny, be a sequence of multi-
splittings of the matrix A.

Assume that the weighting matrices E,r > 0(k = 1,2,--- ,K,p €
No),

all the splittings A = B, — Cpr(k =1,2,--- ,K,p € Ny) are weak
regular,

there exist monotone matrices By(k = 1,2,--- , K) such that Bp_,,i >
By (k=1,2,--- ,K,p€ Np).

Then for any initial vector z° € R™, the sequence {zP},cn, generated

by Method 2.1 converges to the unique solution z* € R™ of the sys-

tem of linear equations (1.1) whenever pp > 1(k=1,2,--- ,K,p €
Nop).

We remark that the assumption ppr > 1(k=1,2,--- , K,p € Np)
can be weakened as follows: p, 5 > 0(k =1,2,--- ,K,p € Ny) and
for infinitely many p’s, ppr > 1, forall k =1,2,--- | K.

The difference between these two kinds of conditions is that the
latter permits, if necessary, for any processor to skip its contribution
to any major step of the iteration provided that infinitely often all
processors contribute simultaneously towards a global iteration.
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More generally, we can prove the convergence of Method 2.1 for
the H-matrix class.

THEOREM 2.2. Let A € L(R") be an H-matrix

(Bp ks Cpies Epi)(k =1,2,--- ,K), p € Ny, be a sequence of multi-
splittings of the matrix A.

Assume that the weighting matrices Ep, > 0(k = 1,2,--- ,K,p €
No),

all the splittings A = Bpr — Cpr(k=1,2,--- ,K,p € Ny) satisfy

k=1,2,--- K, p=0,1,2,---.
(A) = (Bpk) — |Cpil, P

{ diag(B, k) = diag(A),
Then for any initial vector z° € R", the sequence {z? },cn, generated
by Method 2.1 converges to the unique solution x* € R™ of the sys-

tem of linear equations (1.1) provided p, > 1(k=1,2,--- ,K,p €
N()) holds.

We point out that the same remark about Theorem 2.1 is valid
for Theorem 2.2.
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§3. Convergence theory for the positive definite matrix

Let {Ap}pen, be a sequence of matrices in L(R™). Then we call
Ap(p € Np) positive definite uniformly in p if there exists a positive
constant ¢, independent of p, such that 27 A,z > czTz holds for all
x € R™.

When the coefficient matrix A € L(R"™) is symmetric positive
definite, we have the following convergence theorem for Method 2.1.

THEOREM 3.1. Let A € L(R™) be a symmetric positive definite
matrix,

for every p € No, (Bpk,Cpk, Epr)(k =1,2,---,K) be a multisplit-
ting of the matrix A such that

(a) Bpr +Cpi(k=1,2,---, K) are positive definite uniformly in
p; and

K

(b) F(3 Bpua?'*) < max_f(eP*1+), where f(z) = a7 Az -
k=1 1<k<K

zTb.

Let ppr(k=1,2,--- ,K,p € Ny) be positive integers bounded uni-
formly from above.

Then the sequence {xP},en, generated by Method 2.1 converges,
independently of the positive integer sequences {{ipk}pen, (kK =
1,2,---,K), to the unique solution z* € R"™ of the system of lin-
ear equations (1.1).

PROOF: Through straightforward deduction we can obtain the iden-
tity

1
f(z)— f(z*) = 5(:1: — )T Az — z¥), Ve e R". (3.1)
Therefore, x* is the unique solution of the system of linear equations
(1.1) if and only if it is the unique global minimum point of the
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quadratic function f(z). Furthermore, let A = B — C' be a splitting
of the matrix A, i.e., B € L(R") is a nonsingular matrix, and define
T = B~1Cz + B~ !'b(Vz € R"). Then we can obtain the equality

@)~ 1@ = 3 e-D'(B+C)a-7).  (32)

From (3.2) and Method 2.1 we have

flaPPEmt) — faPk)
1

— i(xpaka/'l'_]- _ Z]Z‘p’k’M)T(Bp,k- _|_ Cp,k_)(mpakal"‘_]- — xpakall')’

lu:1727"'71up,k7 pENO

In accordance with assumption (a) there exists a positive constant
¢, independent of p and k, such that

mT(BP,k+CP,k)$ZC$T$7 k = 1727"' 7K7 p€N07 Vz € R".
Therefore,

Mp,k

c —
f(xP) — f(xPForer) > 5 Z |xPRor—t — aPFoH |2, (3.3)
p=1

In addition, by further noticing that p,x(k = 1,2,--- ,K,p € Np)
are uniformly bounded from above by a positive integer, say J, we
can get

12



Mp,k 2

Z (:Lrpaka/'l’_]- _ :L:pakal'l’)

p=1

H-’Bp — pPkppk ||% —

2

Mp,k 2
p=1

Mp,k

p=1
Hp,k
S J Z ||$paka/1’_]- _ xpaka/*l’”%.
p=1

Substituting this estimate into (3.3) yields

c
f(ch)—f(:cp+1’k) > ﬁﬂwp—:cp"'l’kﬂg, k=1,2,--- K, p€ Ny.

(3.4)
From assumption (b) and (3.4) we know that
K
f(@?) = f@*) = f(@) = F(3_ Epra®™tF)
k=1
Py _ p+1,k
> f(=P) 1%2XKf($ ) (3.5)
= f(a?) = f(aPthEr)
c
> ||pP — pPtLEpi1)2
> jla? — a3

holds for all p € Ny, where kp 1 is an index such that f(zPT1ke+1) =
maxlSkSK f($p+1’k).
We now prove that the sequence {2P},¢ N, is bounded. Otherwise,

suppose that the sequence {zP},en, is unbounded. Then there ex-
13



ists at least one subsequence {xP%}scn, such that |[zP¢||2 — oo and
{ o } — 7, as £ — 00, but T AZ = 0. This obviously contra-
LEN,

l[zP]]2
dicts the symmetric positive definiteness of the matrix A € L(R™).
Therefore, the sequence {zP},cn, must be bounded.

We will further demonstrate that the sequence {zP},en, gener-
ated by Method 2.1 converges to the unique solution of the system
of linear equations (1.1). To this end, we only need to verify that
every accumulation point of the sequence {z?},¢en, is a solution of
the system of linear equations (1.1). Let z be an arbitrary accumu-
lation point of the sequence {zP},cn,, and {zP?}scn, be a subse-
quence that converges to z. Since {f(zP?)}scn, converges to f(Z)
as £ — oo and {f(«?)}pen, is nonincreasing by (3.5), the entire se-
quence {f(zP)}pen, converges to f(Z), too. Let the positive integer
kp+1 € {1,2,--- , K} be defined as in (3.5). Then by taking a fur-
ther subsequence if necessary, we may assume that there exists some
index k € {1,2,---, K} such that k,,11 = k for all £ € Ny. Then the
sequence {xP¢ — zP¢T1EY, n converges to zero by (3.5), and the se-
quence {zP¢T1kE}, N converges to 7 as £ — oo. From (3.3) it further
holds that for any p € {1,2,--- ’“pe,lé}’ the sequence {zP***}ycn,

+1,k

converges to T as £ — co. Because zP* is a solution of the linear

system

p€+1ai%a/-‘l/ ]2;_1 _ pla’%
pe, kT e - Cpe,ﬁx + b,

it follows that Z solves the system of linear equations (1.1).

Up to now, the proof of this theorem is fulfilled.

We remark that

e Theorem 3.1 can be straightforwardly generalized to the complex
matrix case.
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e Assumption (a) in Theorem 3.1 is a standard condition imposed to
guarantee the convergence of the iterative methods for the system of
linear equations, and assumption (b) in Theorem 3.1 can be satisfied
by various choices of the weighting matrices E, (kK =1,2,--- ,K,p €
No).

e One of the possibilities is given by the choices of E, = ap 1 (k =
1,2,--- ,K,p € Ng), where ap(k = 1,2,--- ,K,p € Ny) are non-

K
negative real numbers satisfying ) a, = 1(p € No).
k=1

e In this case, condition (b) is automatically satisfied if either of the
following three classes of restrictions are further imposed:

1) for a positive integer sequence {k,} € {1,2,--- , K},
D

—{1’ fork=hy o _19... K peN
Qp,k = O, fork;ékp, — L4 y Iy P 0y

where the indices k,(p € Ny) are chosen either randomly at every
iteration, or in a certain predetermined order such as the cyclic rule,
or based on the function values f(zP*)(k = 1,2,---, K) such that,
for p € No, f(zP*?) = mini << f(2PF);

(2) apr(k=1,2,--- ,K,p € Ny) are the minimizers of the func-

: K

tions g(ap1,p2, s ap k) = fF(O1_i @przPF), p € Np; and

(3) A € L(R™) is a positive semidefinite matrix.

e Moreover, In Theorem 3.1 we does not make the hypothesis that
the weighting matrices E, x(k = 1,2,--- , K,p € Ny) are nonnega-
tive, which used to be an elementary hypothesis for establishing the
convergence theories of the parallel multisplitting iteration meth-
ods. That is to say, even if some diagonal elements of the matrices
Epr(k = 1,2,--- ,K,p € Ny) are negative, Method 2.1 still con-
verges provided the conditions of Theorem 3.1 are satisfied.
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The following example further gives concrete illustration about
Theorem 3.1.

Example: A = I, b = 0. Evidently, ¥ = 0 is the unique
solution of the system of linear equations. For simplicity, we take
K = 2 and By = diag(= L), k= 1,2, where o, € R\ {1},

l—og? 1=6;
k = 1,2. Then we get two splittings A = By — Cy, k = 1,2, where

Cr = diag(lf’;k, lf’jsk ), k = 1,2. By direct computations, we have

Hk = Bk_lck = diag(o—k:75k‘)7

o 140, 146k k=1,2
@ = By + Oy = diag(y— " 75 );
and
S Hll:p,kxp _ (OZ”"“[xp]1,5;:p’k[$p}2)T, k=12, pe€ Ny,

where zP = ([zP]1, [zP]2)T. Therefore,

p+1ky _ Lo ptl kT, pt1,k
f@PTHr) = )z

2

1

= L oure ()2 + e (o)), B
k = 1, 2, p € No.

Now, consider the following parallel non-stationary multisplitting
methods corresponding to different cases of the weighting matrices:

i) E,1 = diag(1,0), E, 2 = diag(0,1), p € Ny. Evidently, we
P, P,
have

= (01" [aP], 057 [2P]2)",  p e No,
16
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and hence,

f(a?p"'l) — l(xp+1)Txp+1
2

1
= §(|(71|2””’1([33p]1)2 + |82 |2 ([2P]2)?), p € No.

If we let o, 0k (k = 1,2) be such that |o1| > |o2| and |d2| > |d1], and
tpr(k =1,2,p € Ny) be such that p,1 = pp2 = pp(p € Nop), then
it holds that

£ = Sl e ([@1)? + [0 ([o71)?)
< 3 (o1 (2?1)? + 1624 ([27))?) = £,
F@2) = S (loa o ([o)0)? + 162l (127]2)?)
< 5 (on P ([o710)? + 16 (2712)?) = F(&7*)
provided [zP], 7f (; and [zP]; # 0. This implies that f(zPT!) >

maxi<k<2 f(2PT and hence, assumption (b) of Theorem 3.1 is

not satisfied.

However, if we let oy, dr(k = 1,2) be such that |o1| < |o2] or
65/ < [81], and pip(k = 1,2,p € No) be such that i, = pz =
tp(p € Np), then it holds that f(zP*!) < maxj<k<a2 f(zPT1F), and
hence, assumption (b) of Theorem 3.1 is satisfied.

(¢1) If we further let oy, 0 € (—1,1), k = 1,2, then Qx(k = 1,2)
are symmetric positive definite matrices. Therefore, assumption (a)
of Theorem 3.1 is satisfied. Moreover, from (3.8) we know that
{zP}pen, is convergent. This shows that if assumption (a) is sat-
isfied, then Method 2.1 is convergent whether assumption (b) is sat-
isfied or not.
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(i2) If we further let |o1| > 1, then @ is not a positive definite
matrix. Therefore, assumption (a) of Theorem 3.1 is not satisfied.
Moreover, from (3.8) we know that {zP},cn, is divergent. This shows
that if assumption (a) is not satisfied, then Method 2.1 is divergent
whether assumption (b) is satisfied or not.

(i3) If we further let |oa| > 1, then Q)2 is not a positive definite
matrix. Therefore, assumption (a) of Theorem 3.1 is not satisfied.
Moreover, from (3.8) we know that {zP},cn, is convergent provided
lo1] < 1 < |o2| and |d2| < 1, and divergent provided |o1| > 1. This
shows that if assumption (a) is not satisfied but assumption (b) is
satisfied, then Method 2.1 is either convergent or divergent.

From (i1)-(i3) we easily know that assumptions (a) and (b) of
Theorem 3.1 are only sufficient conditions for guaranteeing the con-
vergence of Method 2.1, but not necessary ones.

(ii) Ep1 = diag(—32,2), Epo = diag(%, 1), p € No. Evidently, we
have
p+1 1 Kp,1 Hp,2 p 1 Hp,1 Hp,2 p1 \T
Z = (Z[_3‘71 +705"° [z }171[351 +0577][2P]2)", p € No,

and hence,

]_ 1 2 »,1 p,2
F@ ) = o (=30t T8 P (@) +B 487 P (7]2)%),  p € No.

; 51 = 52 = % and Hpk = 1(k = 1,2,]7 € NO)a

If we let g1 = %, g9 — %

then it holds that

([2712)%), k=1,
([z712)%), k=2,

—

Flar )

N[—= N[

—

Ol Ol
—~
Lo |
8
)
[y
N
[}



and

11 9
p+1Y — — (Z([P].\2 1 Z([P],)2
FEPH) = o (5 (7 + 5 ([071)).
It follows that f(zP™1) < maxi<k<2 f(zPT1F), ie., assumption (b)
of Theorem 3.1 is satisfied. Clearly, Qr(k = 1,2) are symmetric
positive definite matrices, and therefore, assumption (a) of Theorem

3.1 is also satisfied. Moreover, by direct computations we have

1 1
mp+1 = (E[mp]ly E[xp}Z)T7 pE N07

and hence, {P},en, is convergent. This shows that even if some
entries on the diagonal of the weighting matrices are negative, as-
sumptions (a) and (b) of Theorem 3.1 still hold and Method 2.1
converges.
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§4. The monotone convergence theory

In the previous discussions, we have permitted the multiple split-
tings and the composition numbers to depend not only on the pro-
cessor, but also on the index of the present global step of iteration,
to allow for more generality.

In practice we may expect the multiple splittings and the local it-
eration numbers which each processor performs between two major
steps of the method to be fixed and to depend only upon A € L(R™)
and the relative amount of workloads which are involved in comput-
ing the vectors P for k=1,2,--- , K.

Hence, it is reasonable for us to consider only a special case of
Method 2.1, for which By, = By, Cp = Ck, Ep = E, and pp p =
pk, k=1,2,--- K. Analogous to (2.1), the method just mentioned
can be expressed as

K
Pt =Y B F(aP), k=12, K, (4.1)
k=1

where Fy(z) = By 'Crz + By 'b(k = 1,2,--- | K).

In the following, we will discuss the monotone convergence prop-
erties of the parallel non-stationary multisplitting iteration method
(4.1) and investigate the influence of the multiple splittings and
the composition numbers upon the convergence behaviour of this
method.

For this purpose, we introduce matrices
20



pr—1

R — ZEk Z —1Ck)ﬂk Bk_17

pn=0
H= Z Ey, (B 1Cr)"
Evidently, it holds that

H=1-RA

and (4.1) can be equivalently written as

zPtt = HzP + Rb, p=0,1,2,---

21
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Based upon (4.2) and (4.4), we can straightforwardly obtain the

following two-sided monotone approximation properties of the iter-
ation (4.1).

THEOREM 4.1. Let A € L(R™) be a monotone matrix,
(Bg,Ck, Ex)(k = 1,2,--- | K) be its multisplitting with A = By —
Cr(k=1,2,--- | K) being weak regular splittings,
Ey>0(k=1,2,- K).
Assume that z° and y° are initial vectors obeying z° < y° and
Azl < b < AyY,
{xP}pen, and {yP}pen, are sequences starting from x° and y°, re-
spectively, and generated by (4.4). Then

(1) zP < 2T <gyPHh <yP, p e No;

(2) lim zP = z* = lim yP, where z* € R" is the unique solution
p—ro0 p—00
of the system of linear equations (1.1); and
(3) for any 2° € R™ obeying z° < 2° < 0, the sequence {zP},en,
starting from 2° and generated by (4.4) satisfies zP < 2P < yP (Vp €

Ny). Hence, lim zP = z*.
p—r0o0
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THEOREM 4.2. Let the conditions of Theorem 4.1 be satisfied.
If we additionally suppose that R~*H > 0, then it holds that

AxP < b < AyP, p € Ny, (4.5)
where {zP} and {yP} are sequences generated by (4.4) starting from

2% and y°, respectively.

With Theorem 4.1 and Theorem 4.2, we can further compare the
convergence rates of the parallel non-stationary multisplitting itera-
tion methods, resulted from different multiple splittings

A=B™ _c™ = k=12, K, m=12,

and different composition numbers ,ué )(k =12,---,K,m =1,2),

for solving the system of linear equations (1.1) in the sense of mono-
tonicity. To this end, corresponding to (4.2) we construct matrices

(m

:uk)l

K
R(m) _ ZEk Z (Blgm)—lclgm)>“Bl(€m)_1’

4 = p=0 m=1,2.

H<m>_z B (B0 <m>)“fcm)’

Analogous to (4.3), we have

(4.6)

H™ =1 -RM™A  m=12. (4.7)

Now, we consider the comparison of the monotone convergence

rates between the sequences {zP} and {yP}, defined by
Pt = FWgp 4 My,
yp+1 _ H(z)yp n R(2)b’ b= 07 17 27 e (48)

according to (4.4).
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THEOREM 4.3. Let A € L(R™) be a monotone matrix
(B{™, ™ Bk = 1,2,---,K), m = 1,2, be its two multisplit-

tings with A = B,(cm) — C’,gm)(k =1,2,--- ,K,m = 1,2) being weak
regular splittings,

Er>0(k=12---,K).

Assume that z° = 3" is an initial vector, and {zP} and {yP} are
sequences defined by (4.8).

If either R~ H1) >0 or R g® > 0 holds, then we have
(a) zP > yP(p = 0,1,2,---), as Az < b;
(b) 2P < yP(p=0,1,2,---), as Az® > b,

provided ,ug) > ,ugf)(k =1,2,---,K) and

(4.9)
lu:()9172a"'7ul(<:2); k:1927"'7K-

In particular, from

Zhong-Zhi Bai and De-Ren Wang, The monotone convergence of the
two-stage iterative method for solving large sparse systems of linear
equations, Appl. Math. Lett. 10:1(1997), 113-117

we see that (4.9) holds in either of the following two cases:

(i) B,gl)_l > B,(cz)_1 and Cél)B,(cl)_l >0,k=1,2---,K;
(ii) Bz(cl)_l > B,(f)_1 and 0,52)3,22)_1 >0,k=12--,K.
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Theorem 4.3 immediately leads to the following comparison the-
orem between the multi-splitting method and the single-splitting
method.

THEOREM 4.4. Let A € L(R™) be a monotone matrix,

(Bg,Ck, Ex)(k = 1,2,--- | K) be its multisplitting with A = By —
Cr(k=1,2,--- | K) being weak regular splittings,

By >0k=1,2,-,K),

(B C) and (B, C) be its single splittings with A= B — C and A =

— C being regular splittings, respectively.

Assume that z° = z° = z° is an initial vector, {zP},en, is the

sequence defined by (4.1), and {zP },en, and {Z?}pen, are sequences
defined by

( Mmin—
£p+1 ( 10 Hmin p+ Z _1b,
< M
— —1—\ Mmin min =
fp+1:<B 10) e+ Yy (B C) B ',
\ p=0

respectively, where pmin is a positive integer satisfying

len min {Nk }

1<k<K
Then we have
(a) 2P < zP <ZP(p=0,1 --), as Az® < b;
(b) zP > 2P > 7P (p=0,1,2,---), as Az" > b,

providled B ' > By ' >B™', k=1,2,-- K.
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