
Brief of finite volume WENO method

The first WENO scheme is constructed by Liu, Chan and Osher in 1994 for a third order

finite volume version in one space dimension. In 1995, third and fifth order finite difference

WENO schemes in multi space dimensions are constructed by Jiang and Shu, with a gen-

eral framework for the design of the smoothness indicators and nonlinear weights.

WENO schemes are designed based on the successful ENO schemes by Harten et. al. in

1987. Both ENO and WENO schemes use the idea of adaptive stencils in the reconstruction

procedure based on the local smoothness of the numerical solution to automatically achieve

high order accuracy and non-oscillatory property near discontinuities.

We consider the initial problems of nonlinear hyperbolic conservation laws:

{

ut + ∇ · f(u) = 0
u(x, 0) = u0(x)

(1)

Let

ui(t) =
1

∆xi

∫

Ii

u(x, t)dx

Integrating (1) on the cell Ii:

d

dt
ui(t) +

1

∆xi

(f(u(xi+1/2, t)) − f(u(xi−1/2, t))) = 0 (2)

Replace the flux f(u(xi+1/2, t)) with a monotone numerical flux f̂(u−

i+1/2, u
+
i+1/2), and get

semi-discretization scheme:

d

dt
ui(t) +

1

∆xi
(f̂(u−

i+1/2, u
+
i+1/2) − f̂(u−

i−1/2, u
−

i+1/2)) = 0 (3)

When u−

i+1/2, u+
i+1/2 were reconstructed by WENO method, we can use Runge-Kutta method

to solve the ODE (3).

The WENO reconstruction of u−

i+1/2, u+
i+1/2 from {ui}:

• Reconstruct k-th degree polynomial pj(x), associated with each of the stencils Sj , j =

0, · · · , k, and (2k)-th degree polynomial Q(x), associated with the larger stencil T ,



IiIi-2
Ii-1 Ii+1 Ii+2 Ii+3

xi+1/2

S0
S2

S1

such that:

ui+l =
1

∆xi+l

∫

Ii+l

pj(x)dx, l = −k + j, · · · , j

ui+l =
1

∆xi+l

∫

Ii+l

Q(x)dx, l = −k, · · · , k

• Find linear weight γ0, · · · , γk:

Q(xi+1/2) =
k

∑

j=0

γjpj(xi+1/2)

For k = 2, the fifth order reconstruction, we have:

p0(xi+ 1

2

) =
1

3
ui−2 −

7

6
ui−1 +

11

6
ui

p1(xi+ 1

2

) = −
1

6
ui−1 +

5

6
ui +

1

3
ui+1

p2(xi+ 1

2

) =
1

3
ui +

5

6
ui+1 −

1

6
ui+2

Q(xi+ 1

2

) =
1

30
ui−2 −

13

60
ui−1 +

47

60
ui +

9

20
ui+1 −

1

20
ui+2

and we obtain the linear weights:

γ0 =
1

10
, γ1 =

6

10
, γ2 =

3

10
.

• We compute the smoothness indicator, denoted by βj , for each stencil Sj , which mea-

sures how smooth the function pj(x) is in the target cell Ii. The smaller this smoothness

indicator βj, the smoother the function pj(x) is in the target cell.

βj =

k
∑

l=1

∫

Ii

∆x2l−1
i

(

∂l

∂xl
pj(x)

)2

dx (4)



In the actual numerical implementation the smoothness indicators βj are written out

explicitly as quadratic forms of the cell averages of u in the stencil, for example when

k = 2, we obtain:

β0 =
13

12
(ui−2 − 2ui−1 + ui)

2 +
1

4
(3ui−2 − 4ui−1 + ui)

2

β1 =
13

12
(ui−1 − 2ui + ui+1)

2 +
1

4
(3ui−1 − ui+1)

2

β2 =
13

12
(ui − 2ui+1 + ui+2)

2 +
1

4
(ui − 4ui+1 + ui+2)

2

• Compute the nonlinear weights based on the smoothness indicators:

ωj =
ωj

∑

j ωj
, ωj =

γj
∑

j(ε + βj)2
(5)

The final WENO approximation is then given by:

u−

i+1/2 ≈
k

∑

j=0

ωjpj(xi+1/2) (6)

• The reconstruction to u+
i−1/2 is mirror symmetric with respect to xi of the above pro-

cedure.

• For systems of conservation laws, such as the Euler equations of gas dynamics, the

reconstructions from {ui} to {u±

i+1/2} are performed in the local characteristic directions

to avoid oscillation.

Time discretizations:

Using explicit, nonlinearly stable high order Runge-Kutta time discretizations .[Shu and

Osher,JCP,1988]

The semidiscrete scheme (3) is written as:

ut = L(u)



is discretized in time by a nonlinearly stable Runge-Kutta time discretization, e.g. the third

order version (7).

u(1) = un + ∆tL(un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1)) (7)

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2)).


