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In this paper, we review and construct fifth- and ninth-order central weighted
essentially nonoscillatory (WENO) schemes based on a finite volume formulation,
staggered mesh, and continuous extension of Runge–Kutta methods for solving non-
linear hyperbolic conservation law systems. Negative linear weights appear in such a
formulation and they are treated using the technique recently introduced by Shi et al.
(J. Comput. Phys. 175, 108 (2002)). We then perform numerical computations and
comparisons with the finite difference WENO schemes of Jiang and Shu (J. Comput.
Phys. 150, 97 (1999)) and Balsara and Shu (J. Comput. Phys. 160, 405 (2000)). The
emphasis is on the performance with or without a local characteristic decomposition.
While this decomposition increases the computational cost, we demonstrate by our
numerical experiments that it is still necessary to use it to control spurious oscillations
when the order of accuracy is high, both for the central staggered grid and for the
upwind nonstaggered grid WENO schemes. We use the shock entropy wave inter-
action problem to demonstrate the advantage of using higher order WENO schemes
when both shocks and complex solution features coexist. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In this paper, we review and construct fifth- and ninth-order central weighted essen-
tially nonoscillatory (WENO) schemes based on a finite volume formulation, staggered
mesh, and continuous extension of Runge–Kutta methods for solving nonlinear hyperbolic
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conservation law systems

ut + ∇ · f (u) = 0

u(x, 0) = u0(x).
(1.1)

Only the one-dimensional case is considered in this paper, although with some nontrivial
efforts the algorithm can be extended to multiple dimensions along the lines of [1, 2, 8,
9, 13, 16, 18]. Negative linear weights appear in such a formulation and they are treated
using the technique recently introduced by Shi et al. [25]. We then perform numerical
computations and comparisons with the finite difference WENO schemes of Jiang and Shu
[7] and Balsara and Shu [3]. The emphasis is on the performance with or without a local
characteristic decomposition. While this decomposition increases the computational cost,
we demonstrate by our numerical experiments that it is still necessary to use it to control
spurious oscillations when the order of accuracy is high, both for the central staggered grid
or upwind nonstaggered grid WENO schemes. We use the shock entropy wave interaction
problem to demonstrate the advantage of using higher order WENO schemes when both
shocks and complex solution features coexist.

The central schemes are extensions of the Lax–Friedrichs (LxF) scheme. The LxF scheme
is very simple and robust, but it is only first-order accurate and excessively diffusive. In
1990, Nessyahu and Tadmor [23] developed a class of nonoscillatory second-order central
difference approximations to hyperbolic conservation laws in one spatial dimension (the NT
schemes). These approximations can be viewed as a natural extension of the LxF scheme
and are total variation diminishing in the scalar one-dimensional case. For the system case,
these second-order central schemes require no Riemann solvers, no local characteristic de-
compositions, and no flux splitting. Therefore, all that one has to do in order to solve (1.1)
is to supply the flux function f (u). Thus the NT central schemes are simpler than most
upwind schemes (they are comparable in simplicity and cost with upwind schemes using
a Lax–Friedrichs building block and componentwise limiting or ENO/WENO reconstruc-
tion), especially for cases where the complete set of eigenvectors of the Jacobian f ′(u) is
difficult to obtain or it does not exist (such as for the weakly hyperbolic systems). For these
reasons the NT schemes and their extensions have become quite popular in applications.
After the pioneer work of Nessyahu and Tadmor in [23], many different central schemes
have been developed [4, 8–18, 21, 24]. A major difference among different central schemes
is in the reconstruction step, where one computes a piecewise polynomial interpolation from
the cell averages. The second-order NT scheme [23] and its extension to two dimensions
[1, 2, 8, 9] are based on a MUSCL-like piecewise linear interpolant and nonlinear limiters
to prevent spurious oscillations; the third-order scheme by Liu and Tadmor [21] is based
on a quadratic interpolant developed by Liu and Osher [20]; the third-order and fourth-
order schemes by Bianco et al. [4] are based on a modified ENO reconstruction of point
values from cell averages, and on numerical fluxes on cell boundaries. The reconstruction
of the x-derivatives of f (u) is performed from interpolation of grid values of f (u), and
the evaluation of the fluxes is obtained through a Runge–Kutta method with the aid of
the so-called natural continuous extension (NCE) [30]. The use of this NCE Runge–Kutta
technique lowers the computational cost. In the spirit of Godunov-type schemes, Levy et al.
[16, 18] presented a third-order central scheme for approximating solutions of systems of
conservation laws in one and two space dimensions. The method is based on reconstructing
a piecewise-polynomial interpolant from cell averages, which is then advanced in time. In
the reconstruction step, a third-order, compact, central weighted essentially nonoscillatory
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(CWENO) reconstruction is introduced, which is written as a convex combination of in-
terpolants based on different stencils. In the one-dimensional case, the third-order recon-
struction is based on an extremely compact three-point stencil. Analogous compactness is
retained in more space dimensions. Higher order CWENO schemes are developed in [15].
In contrast to the NT scheme that is based on cell averages, schemes by Liu and Osher [19]
are based on point values and the general ENO philosophy, removing the need for staggered
grids thus getting rid of the associated difficulties at the boundary.

The first WENO scheme is constructed in [22] for a third-order finite volume version
in one space dimension. In [7], third- and fifth-order finite difference WENO schemes
in multiple space dimensions are constructed, with a general framework for the design
of the smoothness indicators and nonlinear weights. WENO schemes are designed based
on the successful ENO schemes in [5, 28, 29]. Both ENO and WENO schemes use the
idea of adaptive stencils in the reconstruction procedure based on the local smoothness of
the numerical solution to automatically achieve high-order accuracy and a nonoscillatory
property near discontinuities. ENO uses just one (optimal in some sense) out of many
candidate stencils when doing the reconstruction; while WENO uses a convex combination
of all the candidate stencils, each being assigned a nonlinear weight which depends on the
local smoothness of the numerical solution based on that stencil. WENO improves upon
ENO in robustness, better smoothness of fluxes, better steady-state convergence, better
provable convergence properties, and more efficiency. Third- and fourth-order triangle-
based finite volume WENO schemes can be found in [6]. For a detailed review of ENO and
WENO schemes, we refer to [27].

Levy et al. [15] designed central WENO schemes up to fourth order. A key idea in
WENO schemes is a linear combination of lower order fluxes or reconstruction to obtain
a higher order approximation. The combination coefficients, also called linear weights, are
determined by local geometry of the mesh and order of accuracy and may become negative.
WENO procedures cannot be applied directly to obtain a stable scheme if negative linear
weights are present. A previous strategy for handling this difficulty was by either regrouping
stencils or reducing the order of accuracy to get rid of the negative linear weights. In [25],
Shi et al. presented a simple and effective technique for handling negative linear weights
without a need to get rid of them. This technique is used in our work for designing fifth-
and ninth-order central WENO schemes.

The organization of this paper is as follows. In Section 2 we review and construct fifth-
and ninth-order CWENO schemes based on a finite volume formulation, staggered mesh,
and continuous extension of Runge–Kutta methods for solving one-dimensional nonlin-
ear hyperbolic conservation laws. In Section 3 we perform numerical computations and
comparisons with the finite difference WENO schemes of Jiang and Shu [7] and Balsara
and Shu [3]. The emphasis is on the performance with or without a local characteristic
decomposition. We also use the shock entropy wave interaction problem to demonstrate the
advantage of using higher order WENO schemes when both shocks and complex solution
features coexist. Concluding remarks are given in Section 4.

2. FIFTH- AND NINTH-ORDER CENTRAL WENO SCHEMES

In this section we consider one-dimensional conservation laws

ut + f (u)x = 0. (2.1)
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For simplicity, we assume that the grid points {xi } are uniform with xi+1 − xi = h, and xi+ 1
2
=

1
2 (xi + xi+1). We also denote the cells Ii = [xi− 1

2
, xi+ 1

2
], Ii+ 1

2
= [xi , xi+1]. Let k be the

time step, tn+1 = tn + k; un
i = u(xi , tn) denotes the point values, and ūn

i = 1
h

∫
Ii

u(x, tn) dx ,
ūn

i+ 1
2
= 1

h

∫
I
i+ 1

2

u(x, tn) dx represent the cell averages at time tn on the cells Ii and Ii+ 1
2
,

respectively. The CWENO scheme approximates the cell averages at time tn+1 based on
their values at time tn with staggered space grids. Following [15, 23], we integrate (2.1)
over the region Ii+ 1

2
× [tn, tn+1] to get an equivalent formulation of the conservation laws

(2.1):

ūn+1
i+ 1

2
= ūn

i+ 1
2
− 1

h

[ ∫ tn+1

tn

f (u(xi+1, t)) dt −
∫ tn+1

tn

f (u(xi , t)) dt

]
. (2.2)

This finite volume formulation expresses the precise relation between the sliding averages
and the underlying point values. We will use this formulation (2.2) as the starting point for
the construction of high-order CWENO schemes. We want to find approximations of the
cell averages ūn

i+ 1
2

and the two integrals in (2.2). Thus the algorithm consists of two major

steps to evolve from {ūn
i } to {ūn+1

i+ 1
2
}:

Step 1: The approximation of ūn
i+ 1

2
from {ūn

i } by a WENO reconstruction. Notice that

ūn
i+ 1

2
= 1

h

∫ xi+1

xi

u(x, tn) dx = 1

h


∫ x

i+ 1
2

xi

u(x, tn) dx +
∫ xi+1

x
i+ 1

2

u(x, tn) dx


;

hence we only need to reconstruct 1
h

∫ xi

x
i− 1

2

u(x, tn) dx for all i because

1

h

∫ x
i+ 1

2

xi

u(x, tn) dx = ūn
i − 1

h

∫ xi

x
i− 1

2

u(x, tn) dx (2.3)

by conservation. This step is achieved in the following steps:

1. We identify r small stencils Sj , j = 0, . . . , r − 1, such that Ii belongs to each of
them. Here we set Sj = ∪r−1

l=0 Ii+ j−l . We denote by T = ∪r−1
j=0 Sj the larger stencil which

contains all the cells from the r smaller stencils.
2. We have a (r − 1)th degree polynomial reconstruction denoted by p j (x), associated

with each of the stencils Sj , j = 0, . . . , r − 1, such that the cell average of p j (x) in each of
the cells in the stencil Sj agrees with the given cell average of u; i.e., 1

h

∫
Ii+ j−l

p j (x) dx =
ūi+ j−l , l = 0, . . . , r − 1. We also have a higher order (2r − 2)th degree polynomial recon-
struction denoted by Q(x), associated with the larger stencil T , such that 1

h

∫
Ii+l

Q(x) dx =
ūi+l , l = −r + 1, . . . , r − 1. The detail of the construction of p j (x) and Q(x) can be found
in [27].

3. We find the combination coefficients, also called linear weights, denoted by γ0, . . . ,

γr−1, such that

∫ b

a
Q(x) dx =

r−1∑
j=0

γ j

∫ b

a
p j (x) dx (2.4)

for all possible given cell averages of u in the stencils. These linear weights depend on the
mesh geometry and integral interval [a, b], but not on the given solution u in the stencils.
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Here in order to compute the approximation of 1
h

∫ x
i+ 1

2
xi u(x, tn) dx or 1

h

∫ xi

x
i− 1

2

u(x, tn) dx ,
we can just set [a, b] = [xi , xi+ 1

2
] or [a, b] = [xi− 1

2
, xi ]. For example, when r = 3 and r = 5,

we have
∫ xi

xi − 1
2

p j (x) dx =
r−1∑
l=0

a jl ūi+ j+l−r+1, j = 0, . . . , r − 1 (2.5)

with

A = (a jl)3×3 =




− 1
16

1
4

5
16

1
16

1
2 − 1

16

11
16 − 1

4
1

16




γ0 = 3

16
, γ1 = 5

8
, γ2 = 3

16

for r = 3 (see [15]), and

A = (a jl)5×5 =




7
256 − 19

128
11
32 − 61

128
193
256

− 3
256

9
128 − 13

64
79
128

7
256

3
256 − 11

128
1
2

11
128 − 3

256

− 7
256

49
128

13
64 − 9

128
3

256

63
256

61
128 − 11

32
19
128 − 7

256




γ0 = 5

256
, γ1 = 15

64
, γ2 = 63

128
, γ3 = 15

64
, γ4 = 5

256

for r = 5.
Similarly,

∫ x
i+ 1

2

xi

p j (x) dx =
r−1∑
l=0

b jl ūi+ j+l−r+1, j = 0, . . . , r − 1 (2.6)

with

B = (b jl)3×3 =




1
16 − 1

4
11
16

− 1
16

1
2

1
16

5
16

1
4 − 1

16




γ0 = 3

16
, γ1 = 5

8
, γ2 = 3

16

for r = 3, and

B = (b jl)5×5 =




− 7
256

19
128 − 11

32
61
128

63
256

3
256 − 9

128
13
64

49
128 − 7

256

− 3
256

11
128

1
2 − 11

128
3

256

7
256

79
128 − 13

64
9

128 − 3
256

193
256 − 61

128
11
32 − 19

128
7

256
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γ0 = 5

256
, γ1 = 15

64
, γ2 = 63

128
, γ3 = 15

64
, γ4 = 5

256

for r = 5.
Notice that the linear weights γ j are the same for the subintervals [xi , xi+ 1

2
] and [xi− 1

2
, xi ].

Hence if we use WENO reconstruction to compute one of them and then use the conservation
(2.3) to get the other, the result does not depend on which one we choose to compute by
WENO.

4. We compute the smoothness indicator, denoted by β j , for each stencil Sj , which
measures how smooth the function p j (x) is in the target cell Ii . The smaller this smoothness
indicator β j , the smoother the function p j (x) is in the target cell. In all of the current WENO
schemes we use the following smoothness indicator:

β j =
r−1∑
l=1

∫
Ii

h2l−1

(
dl

dxl
p j (x)

)2

dx . (2.7)

Notice that in the actual numerical implementation the smoothness indicators β j are
written out explicitly as quadratic forms of the cell averages of u in the stencil; see [3, 7,
27] for details.

5. We compute the nonlinear weights based on the smoothness indicators

ω j = ω̄ j∑r−1
l=0 ω̄l

, ω̄ j = γ j

(ε + β j )2
, (2.8)

where γ j are the linear weights determined in step 3 above, and ε is a small number to avoid
the denominator to become 0. We use ε = 10−8 in all the computations in this paper. The
final WENO approximation is then given by

1

h

∫ x
i+ 1

2

xi

u(x, tn) dx ≈
r−1∑
j=0

ω j

∫ x
i+ 1

2

xi

p j (x) dx

or

1

h

∫ xi

x
i− 1

2

u(x, tn) dx ≈
r−1∑
j=0

ω j

∫ xi

x
i− 1

2

p j (x) dx .

Again, only one of them must be computed because of the conservation property (2.3). The
result does not depend on which one we choose to compute by WENO.

This step produces a reconstruction of ūn
i+ 1

2
, which is (2r − 1)th order accurate. We use

r = 3 and r = 5 in this paper to obtain fifth- and ninth-order WENO reconstructions in this
step, respectively. Notice that the WENO stencil in this reconstruction is central. No upwind
mechanism is involved.

Step 2: The approximation of
∫ tn+1

tn f (u(xi , t)) dt . If the time step k is subject to a
restrictive CFL condition k ≤ h

2 max | f ′(u)|, we can assume that u(xi , t) is smooth, since the
discontinuities starting at tn from the staggered grid points xi− 1

2
and xi+ 1

2
have not reached

the cell boundary xi yet. Hence no Riemann solvers are needed and the time integrals can
be evaluated with a quadrature formula to high-order accuracy. Notice that this is equivalent
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to a Lax–Friedrichs scheme and the same effect can also be achieved without a staggered
mesh by just using a Lax–Friedrichs building block, such as those WENO finite difference
schemes in [3, 7], where the Lax–Friedrichs building blocks are used and no Riemann
solvers are needed. In this paper we use a three-point Gauss quadrature formula. That is,

∫ tn+1

tn

f (u(xi , t)) dt ≈ k
3∑

l=1

αl f (u(xi , tn + kτl)),

where α1 = α3 = 5
18 , α2 = 4

9 , and τ1 = 1
2 −

√
15

10 , τ2 = 1
2 , τ3 = 1

2 +
√

15
10 are the weights and

knots of the Gauss quadrature formula.
Now we want to find the approximation of the point values u(xi , tn + kτl) from the cell

averages {ūn
i }. We consider the conservation laws at the grid points x = xi . At each of these

points, the PDE (2.1) reduces to an autonomous ODE in the time variable t .

du(xi , t)

dt
= −( f (u))x |xi

(2.9)
u(xi , tn) ≈ un

i .

Here un
i will be computed by reconstruction from the cell averages {ūn

i }, and the ODE (2.9)
will be solved by the classical fourth-order Runge–Kutta method to obtain the approximation
of u(xi , tn + kτl).

This step thus consists of the following steps:

1. WENO reconstruction of un
i ≈ u(xi , tn) is described. The process of the WENO

reconstruction of un
i basically follows the steps 1 to 5 in Step 1 above, with a change in

step 3 to the following:
We find the linear weights, denoted by γ0, . . . , γr−1, such that

Q(xi ) =
r−1∑
j=0

γ j p j (xi ) (2.10)

for all possible given data in the stencils. These linear weights depend on the mesh geometry
and the point xi , but not on the given solution data in the stencils. Notice that, as before,
this step produces a reconstruction of un

i , which is (2r − 1)th-order accurate. We use r = 3
and r = 5 again to obtain fifth- and ninth-order WENO reconstructions in this step, respec-
tively. The WENO stencil in this reconstruction is again central. No upwind mechanism is
involved. The polynomials p j (x) involved here are the same as those in the first step above
to reconstruct ūn

i+ 1
2
; hence the smoothness indicators (2.7) do not need to be recomputed.

For example, when r = 3 and r = 5, we have

p j (xi ) =
r−1∑
l=0

c jl ūi+ j+l−r+1, j = 0, . . . , r − 1 (2.11)

with

C = (c jl)3×3 =




− 1
24

1
12

23
24

1
24

13
12 − 1

24

23
24

1
12 − 1

24
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γ0 = − 9

80
, γ1 = 49

40
, γ2 = − 9

80

for r = 3, and

C = (c jl)5×5 =




− 71
1920

91
480 − 373

960
57
160

563
640

3
640 − 3

160 − 13
960

511
480 − 71

1920

3
640 − 29

480
1067
960 − 29

480
3

640

− 71
1920

511
480 − 13

960 − 3
160

3
640

563
640

57
160 − 373

960
91
480 − 71

1920




γ0 = − 525

163584
, γ1 = − 63425

286272
, γ2 = 11689

8064
, γ3 = − 63425

286272
, γ4 = − 525

163584

for r = 5.
We remark that it is easy to verify that, when r is an even number (r = 2, 4, . . .), there are

no linear weights that satisfy condition (2.10). Hence there are no third-, seventh-, eleventh-,
etc., order central WENO reconstructions for the point values un

i with these choices of
stencils.

From (2.11) we notice that two of the linear weights are negative. When linear weights
become negative, the usual WENO approximation is unstable. Here we adopt the splitting
technique of treating negative weights in WENO schemes developed by Shi et al. [25]: We
first split the linear weights into two groups

γ̃ +
i = 1

2
(γi + 3|γi |), γ̃ −

i = γ̃ +
i − γi , i = 0, . . . , r − 1

and scale them by

σ± =
r−1∑
j=0

γ̃ ±
j ; γ ±

i = γ̃ ±
i /σ±, i = 1, . . . , r − 1.

For example, when r = 3, we obtain

γ̃ +
0 = 9

80
, γ̃ +

1 = 49

20
, γ̃ +

2 = 9

80
; γ̃ −

0 = 9

40
, γ̃ −

1 = 49

40
, γ̃ −

2 = 9

40
,

and

σ+ = 107

40
, σ− = 67

40
;

γ +
0 = 9

214
, γ +

1 = 98

107
, γ +

2 = 9

214
; γ −

0 = 9

67
, γ −

1 = 49

67
; γ −

2 = 9

67
.

The WENO reconstruction is now performed on each group separately, by computing the
nonlinear weights (2.8) separately for ω±

j with the same smoothness indicators β j as those
in (2.7). The final WENO reconstruction is then taken as σ+ times the reconstruction using
the group of positive weights minus σ− times the reconstruction using the group of negative
weights. The key idea of this decomposition is to ensure that every stencil has a significant
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representation in both the positive and the negative weight groups. Within each group, the
WENO idea of redistributing the weights subject to a fixed sum according to the smoothness
of the approximation is still followed as before. For more details, we refer to [25].

2. The Runge–Kutta method with the aid of natural continuous extension for (2.9) is
described. If the classical fourth-order Runge–Kutta method is used to compute each of the
u(xi , tn + kτl) to fourth-order accuracy, we would need to reconstruct fx four times for each
u(xi , tn + kτl). This would become extremely costly. Bianco et al. [4] initiated a strategy
to achieve a significant saving in computational cost by using the NCE of a Runge–Kutta
scheme developed by Zennaro [30]. This is the strategy we will also use in this paper.

For simplicity we shall only describe the fourth-order NCE Runge–Kutta method which
will be used in this paper. Further details about NCE can be found in [4, 30]. Consider the
Cauchy problem,

y′(t) = F(t, y(t))
(2.12)

y(t0) = y0,

the solution at the (n + 1)th time step obtained with the traditional fourth-order Runge–Kutta
scheme can be written as

yn+1 = yn + k
4∑

j=1

b j g
( j),

where b1 = b4 = 1
6 , b2 = b3 = 1

3 , and the g( j) are the approximate Runge–Kutta fluxes

g(1) = F(tn, yn)

g(2) = F

(
tn + c2k, yn + k

2
g(1)

)

g(3) = F

(
tn + c3k, yn + k

2
g(2)

)

g(4) = F
(
tn + c4k, yn + kg(3)

)

c2 = c3 = 1

2
, c4 = 1.

For this Runge–Kutta scheme there exist four third-order polynomials

b1(θ) = 2(1 − 4b1) θ3 + 3(3b1 − 1)θ2 + θ,

b j (θ) = 4(3c j − 2)b j θ3 + 3(3 − 4c j ) b jθ
2, j = 2, 3, 4

such that the natural continuous extension z of degree 3 satisfies

z(tn + θk) := yn + k
4∑

j=1

b j (θ)g( j), 0 ≤ θ ≤ 1;

z(tn) = yn and z(tn+1) = yn+1;
maxtn≤t≤tn+k

∣∣y(l)(t) − z(l)(t)
∣∣ = O(k4−l), 0 ≤ l ≤ 4,

where y(t) is the exact solution of (2.12) with y(tn) = yn .
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Thus at each time step, we apply the Runge–Kutta scheme only once and obtain all the
intermediate values u(xi , tn + kτl) to fourth-order accuracy through the evaluation of the
NCE.

3. The WENO approximation of f (u)x |x=xi from {ui = u(xi , t)} is described. We
denote fi = f (ui ). This step consists of the following steps:

(a) We identify several point sets Sj , j = 0, . . . , r − 1, such that xi belongs to each
of them. Here we set Sj = ∪r−1

l=0 xi+ j−l . We denote by T = ∪r−1
j=0 Sj the larger set which

contains all the points from the r smaller sets.
(b) We have a (r − 1)th degree interpolating polynomial function denoted by p j (x),

associated with each of the sets Sj , j = 0, . . . , r − 1, such that p j (xi+ j−1) = fi+ j−l , l =
0, . . . , r − 1. We also have a higher (2r − 2)th degree interpolating polynomial function
denoted by Q(x), associated with the larger set T , such that Q(xi+l) = fi+l l = −r +
1, . . . , r − 1.

(c) We find the linear weights, denoted by γ0, . . . , γr−1, such that

Q′(xi ) =
r−1∑
j=0

γ j p′
j (xi ) (2.13)

for all possible given data in the set. These linear weights depend on the mesh geometry
and the point xi , but not on the given solution data in the set.

In this paper we set r = 3 and r = 5 for the fourth- and eighth-order accurate approxima-
tion to the derivative f (u)x |x=xi , yielding fifth- and ninth-order schemes. We again notice
that this approximation to f (u)x |x=xi is purely central. No upwind mechanism is present.
If we would like to introduce some upwinding mechanism (artificial viscosity at the level
of truncation error), we could perform a Lax–Friedrich flux splitting

f ±(u) = 1

2
( f (u) ± αu), α = max

u
| f ′(u)|,

where the maximum is taken over un
i for all i . We could then use one more grid point, added

either to the left for f +(u) or to the right for f −(u), in the approximation to the derivatives
f ±(u)x |x=xi .

For example, when r = 3 and r = 5, we have

p′
j (xi ) =

r−1∑
l=0

d jl fi+ j+l−r+1, j = 0, . . . , r − 1 (2.14)

with

D = (d jl)3×3 =




1
2 −2 3

2

− 1
2 0 1

2

− 3
2 2 − 1

2




γ0 = 1

6
, γ1 = 2

3
, γ2 = 1

6



HIGH-ORDER CENTRAL WENO SCHEMES 197

for r = 3 (see [15]), and

D = (d jl)5×5 =




1
4 − 4

3 3 −4 25
12

− 1
12

1
2 − 3

2
5
6

1
4

1
12 − 2

3 0 2
3 − 1

12

− 1
4

5
6

3
2 − 1

2
1

12

− 25
12 4 −3 4

3
1
4




γ0 = 1

70
, γ1 = 8

35
, γ2 = 18

35
, γ3 = 8

35
, γ4 = 1

70

for r = 5.
If flux splitting is used and one more grid point is added, then we have

p′
j (xi ) =

r∑
l=0

d−
jl f −

i+ j+l−r+1, j = 0, . . . , r − 1 (2.15)

for f −(u), with

D− = (d−
jl )3×4 =




1
6 −1 1

2
1
3

− 1
3 − 1

2 1 − 1
6

− 11
6 3 − 3

2
1
3




γ0 = 3

10
, γ1 = 3

5
, γ2 = 1

10

for r = 3, and

D− = (d−
jl )5×6 =




1
20 − 1

3 1 −2 13
12

1
5

− 1
30

1
4 −1 1

3
1
2 − 1

20

1
20 − 1

2 − 1
3 1 − 1

4
1
30

− 1
5 − 13

12 2 −1 1
3 − 1

20

− 137
60 5 −5 10

3 − 5
4

1
5




γ0 = 1

126
, γ1 = 10

63
, γ2 = 10

21
, γ3 = 20

63
, γ4 = 5

126

for r = 5. The approximation for f +(u) is mirror symmetric with respect to xi .
(d) Compute the smoothness indicators, denoted by β j . We still use the same

smoothness indicators as before:

β j =
r−1∑
l=1

∫
Ii

h2l−1

(
dl

dxl
p j (x)

)2

dx . (2.16)

We can write out these smoothness indicators β j explicitly as quadratic forms of fi in the
stencil.
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(e) As before, we compute the nonlinear weights based on the smoothness indicators

ω j = ω̄ j∑r−1
l=0 ω̄l

, ω̄ j = γ j

(ε + β j )2
, (2.17)

where γ j are the linear weights determined in step (c) above, and ε is a small number to
avoid the denominator becoming 0. As before, we use ε = 10−8 here in all the computations.
The final WENO approximation is then given by

f (u)x |x=xi ≈
r−1∑
j=0

ω j p′
j (xi ). (2.18)

Following the above steps we can evolve the numerical solution from a time step to the
next time step on a staggered mesh, and in the following time step we repeat the solution
process and come back to the original mesh.

We remark that there are three WENO reconstruction or approximation steps at time level
tn , namely the WENO reconstruction from {ūn

i } to {un
i+ 1

2
}, the WENO reconstruction from

{ūn
i } to {un

i }, and the WENO approximation from {un
i } to { f (u)x |x=xi }. However, the first two

reconstructions share the same smoothness indicators, which is one of the most costly parts
of the procedure. For each additional Runge–Kutta inner stage (there are three additional
inner stages for the fourth-order Runge–Kutta method), only one WENO approximation
from {ui } to { f (u)x |x=xi } is needed. This should be compared with a nonstaggered finite
difference WENO scheme in [3, 7] where only one WENO reconstruction is needed per
Runge–Kutta inner stage, including the first reconstruction at time level tn .

For systems of conservation laws, such as the Euler equations of gas dynamics, all three
WENO reconstructions and approximations (from {ūn

i } to {ūn
i+ 1

2
}, from {ūn

i } to {un
i }, and

from {un
i } to { f (u)x |x=xi }) could either be performed in each component or in local charac-

teristic directions. The local characteristic decomposition certainly increases the computa-
tional cost. It is usually noted in the literature that such local characteristic decomposition is
unnecessary for central schemes. In fact this is also true for some noncentral schemes, e.g.,
[19]. However, most of such schemes are second-order, or at most third-order, accurate.
In the following section of numerical experiments we will explore when and where it is
necessary to perform such local characteristic decompositions when the order of accuracy
is higher.

3. NUMERICAL RESULTS

In this section we present the results of our numerical experiments for the fifth- and
ninth-order CWENO schemes with the fourth-order NCE Runge–Kutta method reviewed
and developed in the previous section and compare them with the finite difference WENO
schemes in [3, 7]. A uniform mesh with N cells is used for all the test cases, and the CFL
number is taken as 0.4, except for the accuracy tests where a suitably reduced time step is
used to guarantee that spatial error dominates.

3.1. Accuracy Tests

We first test the accuracy of the schemes on linear scalar problems, nonlinear scalar
problems, and nonlinear systems.
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TABLE I

ut + ux = 0; u(x, 0) = sin(πx); CWENO-5 with Periodic Boundary

Conditions; t = 10; L1 and L∞ Errors

N L1 error L1 order L∞ error L∞ order

10 4.31E-01 3.27E-01
20 2.59E-02 4.06 1.80E-02 4.19
40 9.24E-04 4.81 7.21E-04 4.64
80 2.86E-05 5.01 2.50E-05 4.85

160 8.94E-07 5.00 7.97E-07 4.97
320 2.79E-08 5.00 2.54E-08 4.97
640 8.65E-10 5.01 7.52E-10 5.08

1280 2.63E-11 5.04 2.27E-11 5.05

EXAMPLE 3.1. We solve the following linear scalar problem

ut + ux = 0 (3.1)

with two different initial conditions, u(x, 0) = sin(πx) and u(x, 0) = sin4(πx), with 2-
periodic boundary conditions. The second initial condition is typically more difficult to
ENO type schemes to achieve a full order of accuracy [26]. We compute the solution up
to t = 10, i.e., after five time periods. The results are shown in Tables I–IV. We can see
that both the fifth-order central WENO (CWENO-5) and the ninth-order central WENO
(CWENO-9) schemes achieve their designed order of accuracy for both initial conditions.

EXAMPLE 3.2. We solve the following nonlinear scalar Burgers equation

ut +
(

u2

2

)
x

= 0 (3.2)

with the initial condition u(x, 0) = 0.5 + sin(πx), with 2-periodic boundary conditions.
When t = 0.5/π the solution is still smooth, and the errors and numerical orders of accu-
racy are shown in Tables V and VI. We can see that both the fifth-order central WENO
(CWENO-5) and the ninth-order central WENO (CWENO-9) schemes achieve their de-
signed order of accuracy.

TABLE II

ut + ux = 0; u(x, 0) = sin4(πx); CWENO-5 with Periodic Boundary

Conditions; t = 10; L1 and L∞ Errors

N L1 error L1 order L∞ error L∞ order

10 6.77E-01 4.54E-01
20 2.10E-01 1.69 2.43E-01 0.90
40 3.81E-02 2.46 4.00E-02 2.60
80 4.04E-03 3.24 8.56E-03 2.22

160 2.71E-04 3.90 1.33E-03 2.69
320 6.90E-06 5.30 4.20E-05 4.98
640 1.40E-07 5.62 7.72E-07 5.77

1280 3.46E-09 5.34 1.32E-08 5.87
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TABLE III

ut + ux = 0; u(x,0) = sin(πx); CWENO-9 with Periodic Boundary

Conditions; t = 10; L1 and L∞ Errors

N L1 error L1 order L∞ error L∞ order

10 1.48E-02 — 1.09E-02 —
20 6.68E-05 7.79 6.26E-05 7.44
40 1.15E-07 9.18 1.26E-07 8.95
80 2.20E-10 9.03 2.63E-10 8.91

TABLE IV

ut + ux = 0; u(x, 0) = sin4(πx); CWENO-9 with Periodic Boundary

Conditions; t = 10; L1 and L∞ Errors

N L1 error L1 order L∞ error L∞ order

10 6.52E-01 — 4.08E-01 —
20 1.51E-01 2.11 1.52E-01 1.42
40 6.86E-03 4.46 1.05E-02 3.86
80 1.37E-05 8.97 2.86E-05 8.51

160 5.72E-08 7.90 1.26E-07 7.82
320 1.07E-10 9.06 2.83E-10 8.80

TABLE V

ut + ( u2

2 )x = 0; u(x, 0) = 0.5 + sin(πx); CWENO-5 with Periodic

Boundary Conditions; t = 0.5/π; L1 and L∞ Errors

N L1 error L1 order L∞ error L∞ order

10 2.18E-02 — 4.02E-02 —
20 4.10E-03 2.41 1.10E-02 1.87
40 1.31E-04 4.97 6.70E-04 4.04
80 3.86E-06 5.08 2.56E-05 4.71

160 1.12E-07 5.11 7.76E-07 5.04
320 3.19E-09 5.14 2.21E-08 5.13
640 9.45E-11 5.08 6.48E-10 5.09

1280 2.77E-12 5.09 1.82E-11 5.15

TABLE VI

ut + ( u2

2 )x = 0; u(x,0) = 0.5 + sin(πx); CWENO-9 with Periodic

Boundary Conditions; t = 0.5/π; L1 and L∞ Errors

N L1 error L1 order L∞ error L∞ order

10 5.29E-02 — 9.81E-02 —
20 4.00E-03 3.72 1.22E-02 3.01
40 1.06E-04 5.24 4.68E-04 4.70
80 7.02E-07 7.23 5.78E-06 6.34

160 1.91E-09 8.52 1.87E-08 8.28
320 3.32E-12 9.17 3.39E-11 9.11
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TABLE VII

Euler Equations; ρ(x, 0) = 1 + 0.2 sin(πx), v(x, 0) = 1, p(x, 0) = 1;

CWENO-5 with Periodic Boundary Conditions; t = 2; L1 and L∞ Errors

of Density ρ

N L1 error L1 order L∞ error L∞ order

20 1.79E-03 1.49E-03
40 1.03E-04 4.11 1.13E-04 3.72
80 6.46E-06 4.00 1.05E-05 3.43

160 1.00E-07 6.01 1.63E-07 6.01
320 1.19E-09 6.40 1.29E-09 6.97
640 3.82E-11 4.96 3.64E-11 5.15

1280 1.18E-12 5.01 1.07E-12 5.09

EXAMPLE 3.3. We solve the following nonlinear system of Euler equations

ut + f (u)x = 0 (3.3)

with

u = (ρ, ρv, E)T , f (u) = (ρv, ρv2 + p, v(E + p))T .

Here ρ is the density, v is the velocity, E is the total energy, p is the pressure, related
to the total energy by E = p

γ−1 + 1
2ρv2 with γ = 1.4. The initial condition is set to be

ρ(x, 0) = 1 + 0.2 sin(πx), v(x, 0) = 1, p(x, 0) = 1, with 2-periodic boundary conditions.
The exact solution is ρ(x, t) = 1 + 0.2 sin(π(x − t)), v = 1, p = 1. We compute the so-
lution up to t = 2 using componentwise WENO reconstructions and various characteristic
and flux-splitting WENO reconstructions outlined at the end of the last section; i.e., we per-
form one, two, or three out of the three WENO reconstructions and approximations (from
{ūn

i } to {ūn
i+ 1

2
}, from {ūn

i } to {un
i }, and from {un

i } to { f (u)x |x=xi }) in local characteristic

directions and the remaining componentwise reconstructions. For this smooth test case,
all cases produce similar errors and orders of accuracy. The errors and numerical orders
of accuracy of the density ρ for the componentwise WENO reconstructions are shown in
Tables VII and VIII. We can see that both the fifth-order central WENO (CWENO-5) and the
ninth-order central WENO (CWENO-9) schemes achieve their designed order of accuracy.

TABLE VIII

Euler Equations; ρ(x, 0) = 1 + 0.2 sin(πx), v(x, 0) = 1, p(x, 0) = 1;

CWENO-9 with Periodic Boundary Conditions; t = 2; L1 and L∞ Errors

of Density ρ

N L1 error L1 order L∞ error L∞ order

10 2.92E-04 — 2.26E-04 —
20 6.40E-07 8.83 5.07E-07 8.80
40 1.29E-09 8.96 1.01E-09 8.97
80 2.53E-12 8.99 1.99E-12 8.99
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FIG. 1. Burgers equation. u(x, 0) = 0.5 + sin(πx). t = 1.5/π. N = 80 points. Left: CWENO-5; right:
CWENO-9. Solid line: exact solution; squares: computed solution.

3.2. Test Cases with Shocks

EXAMPLE 3.4. We solve the same nonlinear Burgers equation (3.2) as that in Example 3.2
with the same initial condition u(x, 0) = 0.5 + sin(πx), except that we now plot the results
at t = 1.5/π when a shock has already appeared in the solution. In Fig. 1, the solutions of
CWENO-5 (left) and CWENO-9 (right) with N = 80 grid points are shown. The solid line
is the exact solution. We can see that both schemes give nonoscillatory shock transitions
for this problem.

EXAMPLE 3.5. We solve the nonlinear nonconvex scalar Buckley–Leverett problem

ut +
(

4u2

4u2 + (1 − u)2

)
x

= 0 (3.4)

with the initial data u = 1 when − 1
2 ≤ x ≤ 0 and u = 0 elsewhere. The solution is computed

up to t = 0.4. The exact solution is a shock-rarefaction-contact discontinuity mixture. We
remark that some high-order schemes may fail to converge to the correct entropy solution
for this problem. In Fig. 2, the solutions of CWENO-5 (left) and CWENO-9 (right) with
N = 81 grid points are shown. The solid line is the exact solution. We can see that both
schemes give good resolutions to the correct entropy solution for this problem.

FIG. 2. The Buckley–Leverett problem. t = 0.4. N = 81 points. Left: CWENO-5; right: CWENO-9. Solid
line: exact solution; squares: computed solution.
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FIG. 3. The Lax problem. t = 0.16. CWENO-5 scheme with componentwise WENO reconstructions. Left:
N = 200 grid points; right: N = 400 grid points. Solid line: exact solution; squares: computed solution.

EXAMPLE 3.6. We solve the Euler equations (3.3) with a Riemann initial condition for
the Lax problem:

(ρ, v, p) = (0.445, 0.698, 3.528) for x ≤ 0; (ρ, v, p) = (0.5, 0, 0.571) for x > 0.

The computed density ρ is plotted at t = 0.16 against the exact solution. In Fig. 3 we plot
the solution with CWENO-5 using componentwise WENO reconstruction, with N = 200
grid points (left) and N = 400 grid points (right). We can see that the results are oscillatory
but the oscillations become less significant when the mesh is refined. For a comparison,
in Fig. 4 we plot the solution with the finite difference fifth-order WENO scheme on a
nonstaggered mesh in [7] using componentwise reconstructions, also with N = 200 grid
points (left) and N = 400 grid points (right). We can see that these are also oscillatory and
the oscillations are a bit more serious than that for the central CWENO-5 scheme.

We repeat the experiment for the CWENO-9 schemes using componentwise WENO
reconstructions in Fig. 5, and for the ninth-order finite difference WENO scheme on a
nonstaggered mesh in [3] in Fig. 6. We can see that the oscillations increase when the
order of accuracy is increased. Also, as before, the nonstaggered. WENO scheme has more
oscillations that the central CWENO-9 scheme.

FIG. 4. The Lax problem. t = 0.16. WENO-5 finite difference scheme [7] with componentwise recons-
truction. Left: N = 200 grid points; right: N = 400 grid points. Solid line: exact solution; squares: computed
solution.
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FIG. 5. The Lax problem. t = 0.16. CWENO-9 scheme with componentwise WENO reconstructions. Left:
N = 200 grid points; right: N = 400 grid points. Solid line: exact solution; squares: computed solution.

We have also experimented with using a single quantity (e.g., density ρ) for computing
the smoothness indicator for all components. The results are similarly oscillatory.

We conclude from this example that the componentwise WENO scheme will become
more oscillatory when the order of accuracy increases, both for the central WENO schemes
and for the usual finite difference WENO schemes on a nonstaggered mesh, although the
central WENO with a staggered mesh tends to give smaller oscillations.

We demonstrate that a local characteristic decomposition in the WENO reconstruction
procedure significantly reduces the oscillations. In fact, we found after extensive numer-
ical experiments that, as long as one does the local characteristic decomposition for the
reconstruction from {ūn

i } to {ūn
i+ 1

2
}, one can still use componentwise WENO reconstruction

from {ūn
i } to {un

i } and componentwise WENO approximation from {un
i } to { f (u)x |x=xi }

and significantly reduce the spurious oscillations. See Fig. 7 for the results of the CWENO-
5 scheme and Fig. 8 for the results of the CWENO-9 scheme. For comparison, we plot
the results of the fifth-order finite difference WENO scheme using local characteristic de-
compositions on a nonstaggered mesh [7] in Fig. 9. and the ninth-order finite difference
WENO scheme using local characteristic decompositions on a nonstaggered mesh [3] in
Fig. 10. We can see that when local characteristic decomposition is used, both the central

FIG. 6. The Lax problem. t = 0.16. WENO-9 finite difference scheme [3] with componentwise reconstruction.
Left: N = 200 grid points; right: N = 400 grid points. Solid line: exact solution; squares: computed solution.
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FIG. 7. The Lax problem. t = 0.16. CWENO-5 scheme with local characteristic decomposition for the WENO
reconstruction of ū j+ 1

2
. Left: N = 200 grid points; right: N = 400 grid points. Solid line: exact solution; squares:

computed solution.

FIG. 8. The Lax problem. t = 0.16. CWENO-9 scheme with local characteristic decomposition for the
WENO reconstruction of ū j+ 1

2
. Left: N = 200 grid points; right: N = 400 grid points. Solid line: exact solution;

squares: computed solution.

FIG. 9. The Lax problem. t = 0.16. WENO-5 finite difference scheme [7] with local characteristic decom-
position. Left: N = 200 grid points; right: N = 400 grid points. Solid line: exact solution; squares: computed
solution.
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FIG. 10. The Lax problem. t = 0.16. WENO-9 finite difference scheme [3] with local characteristic decom-
position. Left: N = 200 grid points; right: N = 400 grid points. Solid line: exact solution; squares: computed
solution.

WENO schemes based on staggered mesh and the finite difference WENO schemes based
on nonstaggered mesh give beautiful essentially nonoscillatory results.

EXAMPLE 3.7. The previous examples contain only shocks and simple smooth region
solutions (almost piecewise linear), for which shock resolution is the main concern and
usually a good second-order nonoscillatory scheme would give satisfactory results. There
is little advantage in using higher order schemes for such cases. We have been using them
in the numerical experiments mainly to demonstrate the nonoscillatory properties of the
high-order schemes. A higher order scheme would show its advantage when the solution
contains both shocks and complex smooth region structures. A typical example for this is
the problem of shock interaction with entropy waves [29]. We solve the Euler equations
(3.3) with a moving Mach = 3 shock interacting with sine waves in density; i.e., initially

(ρ, v, p) = (3.857143, 2.629369, 10.333333) for x < −4;
(ρ, v, p) = (1 + ε sin 5x, 0, 1) for x ≥ −4.

Here we take ε = 0.2. The computed density ρ is plotted at t = 1.8 against the reference

FIG. 11. The shock density wave interaction problem. t = 1.8. CWENO-5 scheme with local characteristic
decomposition for the WENO reconstruction of ū j+ 1

2
. Left: N = 200 grid points; right: N = 400 grid points.

Solid line: “exact solution”; squares: computed solution.
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FIG. 12. The shock density wave interaction problem. t = 1.8 CWENO-9 scheme with local characteristic
decomposition for the WENO reconstruction of ū j+ 1

2
. Left: N = 200 grid points; right: N = 400 grid points.

Solid line: “exact solution”; squares: computed solution.

solution, which is a converged solution computed by the fifth-order finite difference WENO
scheme [7] with 2000 grid points.

In Figs.11 and 12 we show the results of the CWENO-5 scheme and the CWENO-9
scheme, respectively, using the local characteristic decomposition for the reconstruction
from {ūn

i } to {ūn
i+ 1

2
} and componentwise WENO reconstruction from {ūn

i } to {un
i } and

componentwise WENO approximation from {un
i } to { f (u)x |x=xi }. For comparison, we plot

the results of the fifth-order finite difference WENO scheme using local characteristic
decompositions on a nonstaggered mesh [7] in Fig. 13 and the ninth-order finite difference
WENO scheme using local characteristic decompositions on a nonstaggered mesh [3] in
Fig. 14. We can see that higher order schemes give better resolutions to the complex wave
patterns after the shock entropy wave interaction, for the same number of grid points. For
this problem, the componentwise CWENO and WENO schemes also work very well. We
do not show the results to save space.

FIG. 13. The shock density wave interaction problem. t = 1.8, WENO-5 finite difference scheme [7] with local
characteristic decomposition. Left: N = 200 grid points; right: N = 400 grid points. Solid line: “exact solution”;
sqaures: computed solution.
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FIG. 14. The shock density wave interaction problem. t = 1.8. WENO-9 finite difference scheme [3] with
local characteristic decomposition. Left: N = 200 grid points; right: N = 400 grid points. Solid line: “exact
solution”; squares: computed solution.

4. CONCLUDING REMARKS

In this paper we reviewed and developed fifth- and ninth-order central WENO schemes
based on staggered meshes. Negative linear weights appeared and they were treated using the
recently developed splitting technique of Shi et al. [25]. Numerical examples were given to
verify the order of accuracy of these schemes. Simulations with discontinuous solutions for
the Euler equations demonstrated that componentwise WENO reconstruction would yield
oscillatory results and the oscillations increased with increased order of accuracy, both for
the central WENO schemes based on staggered meshes and for the finite difference WENO
schemes based on nonstaggered meshes [3, 7]. If a local characteristic decomposition was
used in the reconstruction, both for the central WENO schemes based on staggered meshes
and for the finite difference WENO schemes based on nonstaggered meshes, essentially
nonoscillatory solutions could be obtained. The local characteristic decomposition increased
the computational cost significantly, so it is problem dependent whether one should use it or
simply tolerate the spurious oscillations, if they do not lead to nonlinear instability such as
negative density or pressure for the Euler equations. These high-order schemes are useful
to simulate problems where shocks and complex smooth region structures coexist, such as
the problem of shock interaction with entropy waves.
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