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This is the fifth paper in a series in which we construct and study the so-called
Runge–Kutta discontinuous Galerkin method for numerically solving hyperbolic
conservation laws. In this paper, we extend the method to multidimensional non-
linear systems of conservation laws. The algorithms are described and discussed,
including algorithm formulation and practical implementation issues such as the nu-
merical fluxes, quadrature rules, degrees of freedom, and the slope limiters, both in
the triangular and the rectangular element cases. Numerical experiments for two-
dimensional Euler equations of compressible gas dynamics are presented that show
the effect of the (formal) order of accuracy and the use of triangles or rectangles on
the quality of the approximation. c© 1998 Academic Press
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1. INTRODUCTION

This is the fifth article of a series [13–16] devoted to the construction and study of the
so-called Runge–Kutta discontinuous Galerkin (RKDG) method. The RKDG method is a
method devised to numerically solve the initial boundary value problem associated with the
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conservation law

∂t u+ div f(u) = 0 in Ä× (0, T), (1.1)

whereÄ⊂ Rd andu= (u1, . . . ,um)
t , which is assumed to be hyperbolic; that is,f(u) is

assumed to be such that any real combination of the Jacobians
∑d

i=1 ξi (∂ fi /∂u) hasm
real eigenvalues and a complete set of eigenvectors. In this paper, we continue our work
in [13–16] and extend (and improve) the RKDG method to the case of multidimensional
systems. To place this paper under a proper perspective, we first discuss the work done in
this series of papers and papers by other authors which has been prompted by the remarkable
compactness and parallelizability of the RKDG method and by its ability to easily handle
boundary conditions and complicated geometry.

The original discontinuous Galerkin method was introduced by Reed and Hill [31],
and analyzed by LeSaint and Raviart [26], Johnson and Pitkar¨anta [25], Richter [32], and
by Peterson [29]. All these were for the linear equations. Our work was concentrated on
treating nonlinear equations, which call for different techniques. The first (one-dimensional)
RKDG method was introduced in [13] by combining the piecewise-linear discontinuous
finite elements used for the space discretization of one-dimensional conservation laws by
Chavent and Cockburn [11] with one of the explicit, TVD time discretizations developed
by Shu [34], and Shu and Osher [35, 36]. The resulting scheme was shown to be formally
uniformly second-order accurate (a fact confirmed by numerical experiments) and was
proven to be total variation diminishing in the means (TVDM). Later, in [14], the RKDG
schemes were defined using a general framework that allowed piecewise polynomials of
degreek∈ N approximate solutions. These fully explicit schemes were proven to be TVBM
(total variation bounded in the means) and were shown to be formally uniformly (k+ 1)th
order accurate, facts that were both verified numerically. The extension of the RKDG
schemes to one-dimensional systems was carried out in [15] and the multidimensional case
for the scalar conservation law was treated in [16], where it was proven that for some
fairly general triangulations, the approximate solution given by the RKDG method satisfies
a local maximum principle independently of the degreek. A projection, or generalized
“slope limiting,” was constructed which enforced the above maximum principle without
destroying the formal accuracy of the method. Theoretical indications that the method is
uniformly (k+ 1)th order-accurate when polynomials of degreek are used were given and
numerical validation of this claim was presented for piecewise-linear approximationsk= 1
in uniform grids made of triangles. The casek= 2 was worked out by Hou [23].

To define the RKDG method for multidimensional systems, only the generalized “slope
limiter” of the method requires a nontrivial extension from the scalar case treated in [16];
everything else remains the same or can be trivially extended. The extension of the RKDG
method to the two-dimensional Euler equations of gas dynamics was carried out in[17],
where piecewise-linear approximations were used. In this paper, we complete and improve
the work started in [17]. The main contribution of this paper is thus the devising of apractical
generalized “slope limiting” procedure for multidimensional systems. The construction of
this procedure, which is essential for nonsteady-state problems, is inspired by the theor-
etically proven, “slope limiting” devised in [16], but is remarkably simpler and gives better
numerical results.

In related work, Atkins and Shu [1] studied an alternative quadrature-free implemen-
tation of the RKDG method. Bey and Oden [8] used the RKDG method with arbitrary
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quadrilaterals and piecewise-linear approximate solutions, to solve 2D Euler equations.
Jiang and Shu [24] proved a cell entropy inequality for the square entropy for arbitrary
order of accuracy and arbitrary triangulations, without using the nonlinear limiters for the
semidiscrete (continuous in time) case. This also implied theL2 stability of the method for
nonlinear shocked cases. Lowrie, Roe, and van Leer [27] studied the discontinuous Galerkin
method in space and time; see also the related studies previously made by Bar-Yoseph [2]
and Bar-Yoseph and Elata [3].

The important issue of the parallelizability of the RKDG method has been explored by
several authors. Biswas, Devine, and Flaherty [9] have shown that the RKDG method (with
a new, interesting limiting) has a “solution parallel efficiency” of 99% in the NCUBE/2—
a reflection of the fact that the RKDG method uses only the information of immediate
neighbors to march in time. These authors have also constructedh- andp-adaptive versions
of the RKDG method with remarkable results; see also the application to the Euler equation
of gas dynamics by deCougnyet al.[19]. The important issue of “dynamic load balancing,”
essential for adaptive methods, has been addressed by Devineet al. [21], by Özturanet al.
[28], and by Devineet al. [20].

The effect of the quality of the approximation of curved boundaries on the quality of the
approximate solution has been explored in a recent paper by Bassi and Rebay [4]; in this
paper, we only consider computational domains with Lipschitz boundaries.

Extensions of the method to the compressible Navier Stokes equations and general
convection diffusion equations can be found in Bassi and Rebay [5] and Cockburn and
Shu [18], respectively.

We are now ready to give a detailed description of the contents of this paper. In Section 2,
we give a general formulation of the RKDG method for multidimensional systems, including
the discussion on slope limiters. Section 3 contains the algorithm and implementation details,
including the numerical fluxes, quadrature rules, degrees of freedom, and slope limiters of
the RKDG method for both piecewise-linear and piecewise-quadratic approximations in
both triangular and rectangular elements. In Section 4, we present several test problems for
the two-dimensional Euler equations of gas dynamics intended to illustrate the effect of the
degreek and the effect of the use of triangles or rectangles on the accuracy of the method.
Concluding remarks are given in Section 5.

2. ALGORITHM FORMULATION

To define the RKDG method, we proceed as in [16].

2.1. Space Discretization

First, we discretize (1.1) in space using the discontinuous Galerkin method. For each
time t ∈ [0, T ], the approximate solutionuh(t) is sought in the finite element space of
discontinuousfunctions

Vh = {vh ∈ L∞(Ä) : vh|K ∈V(K ), ∀K ∈ Th}, (2.1)

whereTh is a triangulation of the domainÄ andV(K ) is the so-called local space. In this
paper,V(K ) is taken to bePk, the collection of polynomials of degreek, for k= 1 and 2.
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To determine the approximate solutionuh(t), we need the weak formulation of (1.1):

d

dt

∫
K

u(x, t) v(x) dx+
∑
e∈∂K

∫
e
f(u(x, t)) ·ne,Kv(x) d0−

∫
K

f(u(x, t)) ·gradv(x) dx = 0,

for any smooth functionv(x). Herene,K denotes the outward unit normal to the edgee.
We replace the integrals by quadrature rules as∫

e
f(u(x, t)) · ne,Kvh(x) d0 ≈

L∑
l=1

ωl f(u(xel, t)) · ne,Kv(xel)|e|, (2.2)

∫
K

f(u(x, t)) · gradv(x) dx ≈
M∑

j=1

ω j f(u(xK j , t)) · gradv(xK j )|K |. (2.3)

Then, the fluxf(u(x, t))·ne,K is replaced by thenumericalflux he,K (x, t), the exact solution
u is replaced by the approximate solutionuh, and the test functionv byvh ∈ V(K ), resulting
in the scheme:

uh(t = 0) = PVh(u0),

d

dt

∫
K

uh(x, t)vh(x) dx+
∑
e∈∂K

L∑
l=1

ωl he,K (xel, t)v(xel)|e|

−
M∑

j=1

ω j f(uh(xK j , t)) · gradvh(xK j )|K | = 0 ∀vh ∈V(K ) ∀K ∈ Th. (2.4)

The operatorPVh is, for example, the standard L2-projection into the finite element space
Vh.

The value of the numerical flux at the point(x, t), he,K (x, t), wherex belongs to the
edgee of the boundary of the elementK , depends on the two values of the approximate
solution at (x, t). One is the value obtained from theinterior of the elementK, namely,

uh
(
xint(K ), t

) = lim
y→x,y∈K

uh(y, t),

and the other is the value obtained from theexteriorof the elementK , namely,

uh
(
xext(K ), t

) = {γh(x, t), if x ∈ ∂Ä,
limy→x,y/∈K uh(y, t), otherwise.

The discrete boundary values,γh, are theL2-projection of the exact boundary dataγ into
the finite element space obtained by taking the traces of the elements ofVh into ∂Ä.

The numerical flux is defined ashe,K (x, t) = he,K (uh(xint(K ), t), uh(xext(K ), t)), where
he,K is any two-point Lipschitz flux which is monotone in the scalar case and is an exact or
approximate Riemann solver in the system case. It is also consistent withf(u) · ne,K , that
is,

he,K (u, u) = f(u) · ne,K ,

and conservative, that is,

he,K
(
uh
(
xint(K )

)
, uh
(
xext(K )

))+ he,K ′
(
uh
(
xint(K ′)), uh

(
xext(K ′))) = 0, K ′ ∩ K = e.
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An example is the following (local) Lax–Friedrichs flux

he,K (a, b) = 1

2
[f(a) · ne,K + f(b) · ne,K − αe,K (b− a)], (2.5)

whereαe,K is an estimate of the biggest eigenvalue of the Jacobian(∂/∂u)f(uh(x, t)) ·ne,K

for (x, t) in a neighborhood of the edgee.
It is convenient to take the local spacesV(K ) to be the space of polynomials of total

degree smaller or equal tok, Pk(K ); in this case, we denoteVh by Vk
h . (Note that this

choice is possible regardless of the shape of the elementsK since the functions inVh

are discontinuous.) There are two reasons for this choice. First, if the local spaceV(K )
includesPk(K ), it is possible to find (k + 1)th order accurate approximations inV(K ) to
any function inW1,k+1(K ). Second, ifV(K ) consists of polynomials only and does not
includePk+1(K ), it is not possible to find (k+2)th order accurate approximations inV(K )
to functions inW1,k+2(K ); see [12].

Moreover, ifVh includesVk
h , the approximation to divf(u) provided by the above space

discretization is (k + 1)th accurate for sufficiently smoothu, provided that the quadrature
rules for the edges of the elements, (2.2), are exact for polynomials of degree 2k+1, and the
quadrature rules for the interior of the elements, (2.3), are exact for polynomials of degree
2k (see [16, Proposition 2.1]). It is thus reasonable to expect that the resulting scheme gives
an (k+ 1)th order accurate approximation when the exact solution is smooth enough.

For the choiceVh=V0
h and quadrature rules over the edges exact for constants, the

resulting scheme is nothing but a finite volume, monotone scheme in the scalar case. Thus,
the discretization by the discontinuous Galerkin method can be considered as a high-order
accurate extension of finite volume, monotone schemes.

2.2. Time Discretization

The equations defining the approximate solution can be rewritten in ODE form as
(d/dt)uh= Lh(uh, γh) after inverting the “mass” matrix. Since the functions ofVh are
discontinuous, the “mass” matrix is block-diagonal and the blocks, whose orders are equal
to the dimensions of the local spacesV(K ), can be easily inverted by hand. If a locally
orthogonal basis is chosen, the mass matrix is diagonal.

If we are using a finite element spaceVh included inVk
h , we would like to discretize in

time the above system of ODEs with a method that is at least (k+ 1)th-order accurate. To
do that, we use the TVD Runge–Kutta time discretization introduced in [34, 35]. Thus, if
{tn}Nn=0 is a partition of [0, T ] and1tn = tn+1− tn, n = 0, . . . , N−1, our time-marching
algorithm reads as follows:

• Setu0
h = PVh(u0);

• Forn = 0, . . . , N − 1 computeun+1
h as follows:

1. setu(0)h = un
h;

2. for i = 1, . . . , k+ 1 compute the intermediate functions:

u(i )h =
{

i−1∑
l=0

αi l u
(l )
h + βi l1tnLh

(
u(l )h , γh(t

n + dl1tn)
)};

3. setun+1
h = u(k+1)

h .
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TABLE 1

Parameters of Some Practical Runge–Kutta

Time Discretizations

Order αi l βi l dl max{βi l /αi l }

2 1 1 0 1

1
2

1
2

0 1
2

1

3 1 1 0

3
4

1
4

0 1
4

1 1

1
3

0 2
3

0 0 2
3

1

2

Note that this method is very easy to code since only a subroutine definingLh(uh, γh(t))
is needed. In this paper, we use the second-order and third-order accurate Runge–Kutta time
discretizations listed below in Table 1 for piecewise linearP1 and piecewise quadraticP2

finite element approximations, respectively.

2.3. The Local Slope Limiting

In the case in which piecewise-constant approximations are considered, that is, when
Vh=V0

h , the artificial viscosity that the numerical flux introduces in the scheme, due to
upwinding, is enough to render the scheme stable. However, when the local spaces are richer,
the stabilizing influence of the numerical fluxes is not enough to guarantee the absence of
spurious oscillations. To enhance the stability of the method and eliminate possible spurious
oscillations in the approximate solution, a local slope limiting operator35h is introduced
in the time-marching algorithm as follows:

• Setu0
h = 35h PVh(u0);

• Forn = 0, . . . , N − 1 computeun+1
h as follows:

1. setu(0)h = un
h;

2. for i = 1, . . . , k+ 1 compute the intermediate functions:

u(i )h =35h

{
i−1∑
l=0

αi l u
(l )
h + βi l1tnLh

(
u(l )h , γh(t

n + dl1tn)
)};

3. setun+1
h = u(k+1)

h .

Theoretical studies of the operator35h can be found in [14] for the one-dimensional
case and in [16] for the multidimensional case. Guided by these results, we use in this paper
very simple, practical, and effective slope limiting operators35h. To compute35huh, we
rely on theassumptionthat spurious oscillations are present inuh only if they are present
in its P1 partu1

h, which is itsL2-projection into the space of piecewise linear functionsV1
h ;

a theoretical justification of this assumption is still an open problem. Thus, if they are not
present inu1

h, i.e., if

u1
h = 35hu1

h,
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then we assume that they are not present inuh and, hence, do not do any limiting:

35huh = uh.

On the other hand, if spurious oscillations are present in theP1 part of the solutionu1
h, i.e.,

if

u1
h 6= 35hu1

h,

then we chop off the higher order part of the numerical solution and limit the remainingP1

part:

35huh = 35hu1
h.

In this way, in order to define35h for arbitrary spaceVh, we need to actually define it for
piecewise linear functionsV1

h . The exact way to do that, both for the triangular elements
and for the rectangular elements, will be discussed in the next section.

3. ALGORITHM AND IMPLEMENTATION DETAILS

In this section we give the algorithm and implementation details, including numerical
fluxes, quadrature rules, degrees of freedom, fluxes, and limiters of the RKDG method
for both piecewise-linear and piecewise-quadratic approximations in both triangular and
rectangular elements.

3.1. Fluxes

For the numerical flux needed in (2.4), we use the simple Lax–Friedrichs flux (2.5):

he,K (a, b) = 1
2[f(a) · ne,K + f(b) · ne,K − αe,K (b− a)].

The numerical viscosity constantαe,K should be an estimate of the biggest eigenvalue of
the Jacobian(∂/∂u)f(uh(x, t)) · ne,K for (x, t) in a neighborhood of the edgee. For the
triangular elements, we have used the local Lax–Friedrichs recipe:

• Takeαe,K to be the larger one of the largest eigenvalue (in absolute value) of(∂/∂u)f(ūK )

× ne,K and that of(∂/∂u)f(ūK ′)× ne,K , whereūK andūK ′ are the means of the numerical
solution in the elementsK andK ′ sharing the edgee.

For the rectangular elements, we have used both the local Lax–Friedrichs recipe (in
Examples 4.1 and 4.2) and the global Lax–Friedrichs recipe (in Example 4.3):

• Takeαe,K to be the largest of the largest eigenvalue (in absolute value) of(∂/∂u)f(ūK ′′)

× ne,K , whereūK ′′ is the mean of the numerical solution in the elementK ′′, which runs
over all elements on the same line (horizontally or vertically, depending on the direction of
ne,K ) with K andK ′ sharing the edgee.

Usually, the global Lax–Friedrichs recipe is more dissipative, but it is more robust than
the local Lax–Friedrichs recipe, especially for problems involving low velocities and low
density/pressure near wall boundaries. There are recipes in between the two, such as taking
the maximum over several neighboring elements in obtainingαe,K , but we have not used
them in this paper.
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3.2. Quadrature Rules

According to the analysis, the quadrature rules for the edges of the elements, (2.2), must
be exact for polynomials of degree 2k + 1, and the quadrature rules for the interior of
the elements, (2.3), must be exact for polynomials of degree 2k, if Pk methods are used.
Here we discuss the quadrature points used forP1 andP2 in the triangular and rectangular
element cases.

3.2.1.The rectangular elements.For the edge integral, we use the following two point
Gaussian rule ∫ 1

−1
g(x) dx ≈ g

(
− 1√

3

)
+ g

(
1√
3

)
(3.1)

for the P1 case and the following three point Gaussian rule∫ 1

−1
g(x) dx ≈ 5

9

[
g

(
−
√

3√
5

)
+ g

(√
3√
5

)]
+ 8

9
g(0) (3.2)

for the P2 case, suitably scaled to the relevant intervals.
For the interior of the elements, we could use a tensor product of (3.1), with four quadra-

ture points, for theP1 case. But to save cost, we “recycle” the values of the fluxes at the
element boundaries and only add one new quadrature point in the middle of the element.
The quadrature rule is, thus,∫ 1

−1

∫ 1

−1
g(x, y) dx dy ≈ 1

4

[
g

(
−1,

1√
3

)
+ g

(
−1,− 1√

3

)
+ g

(
− 1√

3
,−1

)
+ g

(
1√
3
,−1

)
+ g

(
1,− 1√

3

)
+ g

(
1,

1√
3

)
+ g

(
1√
3
, 1

)
+ g

(
− 1√

3
, 1

)]
+ 2g(0, 0).

For theP2 case, we use a tensor product of (3.2), with nine quadrature points.

3.2.2.The triangular elements.For the edge integral, we use the same two point or
three point Gaussian quadratures as in the rectangular case, (3.1) and (3.2), for theP1 and
P2 cases, respectively.

For the interior integrals (2.3), we use the three mid-point rule∫
K

g(x, y) dx dy≈ |K |
3

3∑
i=1

g(mi ),

wheremi are the mid-points of the edges, for theP1 case. For theP2 case, we use a seven-
point quadrature rule which is exact for polynomials of degree 5 over triangles, given in
Table A.4, on page 343 of [10].

3.3. Basis and Degrees of Freedom

We emphasize that the choice of basis and degrees of freedom does not affect the
algorithm, as it is completely determined by the choice of function spaceVh in (2.1),
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the numerical fluxes in (2.4), the quadrature rules, the slope limiting, and the time dis-
cretization. However, a suitable choice of basis and degrees of freedom may simplify the
implementation and calculation.

3.3.1. The rectangular elements.For the P1 case, we use the following expression
for the approximate solutionuh(x, y, t) inside the rectangular element [xi−1/2, xi+1/2] ×
[yj−1/2, yj+1/2],

uh(x, y, t) = ū(t)+ ux(t)φi (x)+ uy(t)ψ j (y), (3.3)

where

φi (x) = x − xi

1xi /2
, ψ j (y) = y− yj

1yj /2
, (3.4)

and

1xi = xi+1/2− xi−1/2, 1yj = yj+1/2− yj−1/2.

The degrees of freedoms, to be evolved in time, are then

ū(t), ux(t), uy(t).

Here we have omitted the subscriptsi j these degrees of freedom should have, to indicate
that they belong to the elementi j which is [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2].

Notice that the basis functions

1, φi (x), ψ j (y),

are orthogonal; hence, the local mass matrix is diagonal:

M = 1xi1yj diag

(
1,

1

3
,

1

3

)
.

For theP2 case, the expression for the approximate solutionuh(x, y, t) inside the rect-
angular element [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2] is

uh(x, y, t) = ū(t)+ ux(t)φi (x)+ uy(t)ψ j (y)+ uxy(t)φi (x)ψ j (y)

+ uxx(t)

(
φ2

i (x)−
1

3

)
+ uyy(t)

(
ψ2

j (y)−
1

3

)
,

(3.5)

whereφi (x) andψ j (y) are defined by (3.4). The degrees of freedom, to be evolved in time,
are

ū(t), ux(t), uy(t), uxy(t), uxx(t), uyy(t).

Again the basis functions

1, φi (x), ψ j (y), φi (x)ψ j (y), φ2
i (x)−

1

3
, ψ2

j (y)−
1

3

are orthogonal; hence, the local mass matrix is diagonal:

M = 1xi1yj diag

(
1,

1

3
,

1

3
,

1

9
,

4

45
,

4

45

)
.
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3.3.2.The triangular elements.For theP1 case, we use the expression for the approx-
imate solutionuh(x, y, t) inside the triangleK ,

uh(x, y, t) =
3∑

i=1

ui (t)ϕi (x, y),

where the degrees of freedomui (t) are values of the numerical solution at the midpoints of
edges, and the basis functionϕi (x, y) is the linear function which takes the value 1 at the
mid-pointmi of thei th edge, and the value 0 at the mid-points of the two other edges. The
mass matrix is diagonal:

M = |K |diag

(
1

3
,

1

3
,

1

3

)
.

For theP2 case, we use the expression for the approximate solutionuh(x, y, t) inside
the triangleK ,

uh(x, y, t) =
6∑

i=1

ui (t)ξi (x, y),

where the degrees of freedom,ui (t), are values of the numerical solution at the three mid-
points of edges and the three vertices. The basis functionξi (x, y), is the quadratic function
which takes the value 1 at the pointi of the six points mentioned above (the three midpoints
of edges and the three vertices), and the value 0 at the remaining five points. The mass
matrix, S, this time is not diagonal (see page 11 in [23]):

S= |K |



1/30 −1/180 −1/180 −1/45 0 0
−1/180 1/30 −1/180 0 −1/45 0
−1/180 −1/180 1/30 0 0 −1/45
−1/45 0 0 8/45 4/45 4/45

0 −1/45 0 4/45 8/45 4/45
0 0 −1/45 4/45 4/45 8/45


.

3.4. Limiting

We construct slope-limiting operators35h on piecewise linear functionsuh in such a
way that the following properties are satisfied:

1. Accuracy: ifuh is linear then35huh = uh.
2. Conservation of mass: for every elementK of the triangulationTh, we have∫

K
35huh =

∫
K

uh.

3. Slope limiting: on each elementK of Th, the gradient of35huh is not bigger than
that ofuh.

The actual form of the slope limiting operators is closely related to that of the slope
limiting operators studied in [14, 16].
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3.4.1.The rectangular elements.The limiting is performed onux anduy in (3.3), using
the differences of the means. For a scalar equation,ux would be limited (replaced) by

m̄(ux, ūi+1, j − ūi j , ūi j − ūi−1, j ), (3.6)

where the function̄m is the TVB correctedminmodfunction [33, 14] defined by

m̄(a1, . . . ,am)=
{

a1, if |a1| ≤M1x2,

m(a1, . . . ,am), otherwise,
(3.7)

with theminmodfunctionm defined by

m(a1, . . . ,am)=
{

s mini |ai |, if s= sign(a1)= · · · = sign(am),

0, otherwise.

The TVB correction is needed to avoid unnecessary limiting near smooth extrema, where the
quantityux oruy is on the order ofO(1x2) or O(1y2). For an estimate of the TVB constant
M in terms of the second derivatives of the function, see [14]. Usually, the numerical results
are not sensitive to the choice ofM in a large range. In all the calculations in this paper we
takeM to be 50.

Similarly, uy is limited (replaced) by

m̄(uy, ūi, j+1− ūi j , ūi j − ūi, j−1)

with a change of1x to1y in (3.7).
For systems, we perform the limiting in the local characteristic variables. To limit the

vectorux in the elementi j , we proceed as follows:

• Find the matrixR and its inverseR−1 which diagonalize the Jacobian evaluated at the
mean in the elementi j in thex-direction,

R−1∂ f1(ūi j )

∂u
R= 3,

where3 is a diagonal matrix containing the eigenvalues of the Jacobian. Notice that the
columns ofR are the right eigenvectors of∂ f1(ūi j )/∂u and the rows ofR−1 are the left
eigenvectors.
• Transform all quantities needed for limiting, i.e., the three vectorsuxi j , ūi+1, j − ūi j ,

andūi j − ūi−1, j , to the characteristic fields. This is achieved by left-multiplying these three
vectors byR−1.
• Apply the scalar limiter (3.6) to each of the components of the transformed vectors.
• The result is transformed back to the original space by left multiplyingR on the left.

3.4.2.The triangular elements.To construct the slope-limiting operators for triangular
elements, we proceed as follows. We start by making a simple observation. Consider the
triangles in Fig. 3.1, wherem1 is the mid-point of the edge on the boundary ofK0 andbi

denotes the barycenter of the triangleKi for i = 0, 1, 2, 3.
Since we have that

m1− b0 = α1(b1− b0)+ α2(b2− b0)
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FIG. 3.1. Illustration of limiting.

for some nonnegative coefficientsα1, α2 which depend only onm1 and the geometry, we
can write for any linear functionuh

uh(m1)− uh(b0) = α1(uh(b1)− uh(b0))+ α2(uh(b2)− uh(b0)),

and since

ūKi =
1

|Ki |
∫

Ki

uh= uh(bi ), i = 0, 1, 2, 3,

we have that

ũh(m1, K0) ≡ uh(m1)− ūK0 = α1
(
ūK1 − ūK0

)+ α2
(
ūK2 − ūK0

) ≡ 1ū(m1, K0).

Now, we are ready to describe the slope limiting. Let us consider a piecewise linear function
uh, and letmi , i = 1, 2, 3 be the three mid-points of the edges of the triangleK0. We then
can write for(x, y)∈ K0

uh(x, y)=
3∑

i=1

uh(mi )ϕi (x, y)= ūK0 +
3∑

i=1

ũh(mi , K0)ϕi (x, y).

To compute35huh, we first compute the quantities

1i = m̄(ũh(mi , K0), ν1ū(mi , K0)),

wherem̄ is the TVB modifiedminmodfunction defined in (3.7), andν > 1. We takeν= 1.5
in our numerical runs. Then, if

∑3
i=11i = 0, we simply set

35huh(x, y) = ūK0 +
3∑

i=1

1iϕi (x, y).

If
∑3

i=11i 6= 0, we compute

pos=
3∑

i=1

max(0,1i ), neg=
3∑

i=1

max(0,−1i )
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FIG. 4.1. Double Mach reflection problem. Second-orderP1 results. Densityρ; 30 equally spaced contour
lines fromρ = 1.3965 toρ = 22.682. Mesh refinement study. From top to bottom:1x = 1y = 1

60
, 1

120
, 1

240
,

and 1
480

.

and set

θ+ = min

(
1,

neg

pos

)
, θ− = min

(
1,

pos

neg

)
.

Then, we define

35huh(x, y) = ūK0 +
3∑

i=1

1̂iϕi (x, y),

where

1̂i = θ+max(0,1i )− θ−max(0,−1i ).

It is very easy to see that this slope-limiting operator satisfies the three properties listed
above.



                

212 COCKBURN AND SHU

FIG. 4.2. Double Mach reflection problem. Third-orderP2 results. Densityρ; 30 equally spaced contour lines
from ρ = 1.3965 toρ = 22.682. Mesh refinement study. From top to bottom:1x = 1y = 1

60
, 1

120
, 1

240
, and 1

480
.

For systems, we perform the limiting in the local characteristic variables. To limit1i , we
proceed as in the rectangular case, the only difference being that we work with the Jacobian

∂

∂u
f
(
ūK0

) · mi − b0

|mi − b0| .

4. NUMERICAL RESULTS

In this section we present several numerical results obtained with theP1 andP2 (second-
and third-order accurate) RKDG methods with either rectangular or triangular elements. We
consider several standard test problems for Euler equations of compressible gas dynamics.

For all the runs, we takeCFL= 0.3 for P1 andCFL= 0.18 for P2; recall that the von
Neumann analysis for the one-dimensional case gives the stability conditionCFL ≤ 1/3
for P1 andCFL ≤ 1/5 for P2 (see [14]). For the rectangles, we takeCFL equal to the
maximum over the rectangles of((|vx| + c)/1x+ (|vy| + c)/1y)1t , wherec is the speed
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FIG. 4.3. Double Mach reflection problem. Blown-up region around the double Mach stems. Densityρ.
Third-orderP2 with 1x=1y= 1

240
(top); second-orderP1 with 1x = 1y= 1

480
(middle); and third-orderP2

with 1x=1y= 1
480

(bottom).

of sound and(vx, vy) is the velocity both evaluated at the local average. For the triangles,
we takeCFL to be a more conservative quantity, namely, the maximum over the triangles
of (‖(vx, vy)‖ + c)perimeter(K )1t/|K |.

EXAMPLE 4.1. Double Mach reflection of a strong shock. This problem was studied
extensively in Woodward and Colella [37] and later by many others. We use exactly the
same setup as in [37], namely, a Mach 10 shock initially making a 60◦ angle with a reflecting
wall. The undisturbed air ahead of the shock has a density of 1.4 and a pressure of 1.
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FIG. 4.4. Forward-facing step problem. Second-orderP1 results. Densityρ; 30 equally spaced contour lines
fromρ = 0.090338 toρ = 6.2365. Mesh refinement study. From top to bottom:1x = 1y = 1

40
, 1

80
, 1

160
, and 1

320
.

We use rectangular elements for this problem. The computational domain is [0, 4]
× [0, 1], as in [37]. The reflecting wall lies at the bottom of the computational domain
for 1

6 ≤ x ≤ 4. Initially a right-moving Mach 10 shock is positioned atx= 1
6, y= 0 and

makes a 60◦ angle with thex-axis. For the bottom boundary, the exact postshock condition
is imposed for the part fromx = 0 tox = 1

6, to mimic an angled wedge. Reflective boundary
condition is used for the rest. At the top boundary of our computational domain, the flow
values are set to describe the exact motion of the Mach 10 shock. Inflow/outflow boundary
conditions are used for the left and right boundaries. The results att = 0.2 are shown. As
in [37], only the results in [0, 3]× [0, 1] are displayed.

Four different uniform meshes are used: 240× 60 elements(1x=1y= 1
60); 480× 120

elements(1x=1y= 1
120); 960×240 elements1x=1y= 1

240); and 1920×480 elements
(1x=1y= 1

480). The density is plotted in Fig. 4.1 for theP1 case and in Fig. 4.2 for
the P2 case. In all the plots, we use 30 contours equally distributed fromρ= 1.3965 to
ρ= 22.682.

It is not easy to observe any significant difference between theP1 andP2 results in these
pictures. However, if we show a “blown-up” portion around the double Mach region, as in
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FIG. 4.5. Forward-facing step problem. Third-orderP2 results. Densityρ; 30 equally spaced contour lines
fromρ = 0.090338 toρ = 6.2365. Mesh refinement study. From top to bottom:1x = 1y = 1
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80
, 1

160
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320
.

Fig. 4.3, we can see thatP2 with 1x = 1y = 1
240 has qualitatively the same resolution

asP1 with 1x = 1y = 1
480 for the fine details of the complicated structure in this region.

Notice that this detailed structure is of physical interest and was studied before with an
adaptive grid calculation in [7].P2 with 1x = 1y = 1

480 gives a much better resolution
for these structures thanP1 with the same number of elements.

The conclusion here is that, if one is interested in such fine structures, then one can use
the third-order schemeP2 with only half of the mesh points in each direction as inP1. This
translates to a reduction of a factor of 8 in space-time cells for 2D time dependent problems
and will more than offset the increase of cost per cell and the smaller CFL number by using
the higher orderP2 method (the cpu saving for this problem is around a factor of 2.1 in our
implementation). This saving will be even more significant for 3D.

The optimal strategy, of course, is to use adaptivity and concentrate cells around the
interesting region, and/or to change the degree of the polynomial in different regions.

EXAMPLE 4.2. Flow past a forward facing step. This problem was again studied exten-
sively in Woodward and Colella [37] and later by many others. The setup of the problem
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FIG. 4.6. Forward-facing step problem. The triangulations used for results in Figs. 4.7 and 4.8.σ is the ratio
between the typical size of the triangles near the corner and that elsewhere.

is the following: a right-going Mach 3 uniform flow enters a wind tunnel of 1 unit wide
and 3 units long. The step is 0.2 units high and is located 0.6 units from the left-hand end
of the tunnel. The problem is initialized by a uniform, right-going Mach 3 flow. Reflective
boundary conditions are applied along the walls of the tunnel and in-flow and out-flow
boundary conditions are applied at the entrance (left-hand end) and the exit (right-hand
end), respectively. The results att = 4 are shown.

The corner of the step is a singularity, which we study carefully in our numerical
experiments. Unlike in [37] and in many other papers, we do not modify our scheme
near the corner in any way. It is well known that this leads to an erroneous entropy
layer at the downstream bottom wall, as well as a spurious Mach stem at the bottom
wall. However, these artifacts decrease when the mesh is refined. In Fig. 4.4, second-
order P1 results using rectangular elements are shown for a mesh refinement study using
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FIG. 4.7. Forward-facing step problem. Second-orderP1 results. Densityρ; 30 equally spaced contour lines
fromρ = 0.090338 toρ = 6.2365. Triangle code. Progressive refinement near the corner, using the triangulations
shown in Fig. 4.6.

1x = 1y = 1
40,

1
80,

1
160, and 1

320 as element sizes. We can clearly see the improved resolu-
tion (especially at the upper slip line from the triple point) and decreased artifacts caused
by the corner, with decreased element sizes. In Fig. 4.5, third-orderP2 results using the
same sequence of elements are shown. Comparing with theP1 results in Fig. 4.4, we
can see that the resolution is improved, especially for the slip line issued from the triple
point.

In order to verify that the erroneous entropy layer at the downstream bottom wall and the
spurious Mach stem at the bottom wall are both artifacts caused by the poor resolution of the
corner singularity, we use our triangle code to locally refine near the corner progressively.
A sequence of such triangulation is shown in Fig. 4.6, whereσ is the ratio between the
typical size of the triangles near the corner and that elsewhere. The resolution of the meshes
away from the corner is roughly equal to a rectangular element case of1x = 1y = 1

40, i.e.,
the top pictures in Figs. 4.4 and 4.5. The density results usingP1 and these triangulations
are shown in Fig. 4.7, those usingP2 are shown in Fig. 4.8. We can see that, with more



             

218 COCKBURN AND SHU

FIG. 4.8. Forward-facing step problem. Third-orderP2 results. Densityρ; 30 equally spaced contour lines
fromρ = 0.090338 toρ = 6.2365. Triangle code. Progressive refinement near the corner, using the triangulations
shown in Fig. 4.6.

triangles concentrated near the corner, the artifacts gradually decrease. Notice that there is
a strong spurious entropy production near the corner, which pollutes the flow downstream.
With progressive refinement near the corner, this spurious entropy production decreases;
see Figs. 4.9 and 4.10.

These are the only triangular element runs we present in this paper. We can see that
the triangular elements can give results of the same resolution quality as the rectangular
case with roughly the same mesh density for bothP1 and P2. We do observe, however,
that a positivity correction procedure is needed for the triangular element runs for this
case. During the projection of the linear part, we check whether the density and the total
energy are negative at the three mid-points of the edges ofK . If they are, further limiting is
performed to bring them to 10−10 in a conservative way.

EXAMPLE 4.3. Shock passing a backward facing corner (diffraction). This example has
been used in [22, 30] (see also the experimental results in [6]). The setup of the problem is the
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FIG. 4.9. Forward-facing step problem. Second-orderP1 results. Spurious entropy production near the corner.
Progressive refinement near the corner, using the triangulations shown in Fig. 4.6.

following: the computational domain is the union of [0, 1]×[6, 11] and [1, 13]×[0, 11]; the
initial condition is a pure right-moving shock ofMach= 5.09, initially located atx = 0.5
and 6≤ y ≤ 11, moving into undisturbed air ahead of the shock with a density of 1.4
and a pressure of 1. The boundary conditions are inflow atx= 0, 6 ≤ y ≤ 11, outflow at
x= 13, 0≤ y ≤ 11, reflective at 0≤ x ≤ 1, y= 6 and atx= 1, 0≤ y ≤ 6, and Neumann
at 1≤ x ≤ 13, y = 0 and at 0≤ x ≤ 13, y = 11. No special treatment is done at the
corner which is a singularity of the solution. The density att = 2.3 is presented in Fig. 4.11
for the P1 case and in Fig. 4.12 for theP2 case. Rectangular meshes are used with four
different mesh sizes1x = 1y = 1

10,
1
20,

1
40, and 1

80, respectively.

We remark that it is easy to get negative density and/or pressure for this problem. In both
our P1 andP2 runs, we found it necessary to perform a positivity correction procedure.

For theP1 case, we check for each element whether the density, as a linear function, is
too close to zero in the element. Specifically, using the notation of (3.3), we check if

ū− |ux| − |uy| < 1
2ū,
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FIG. 4.10. Forward-facing step problem. Third-orderP2 results. Spurious entropy production near the corner.
Progressive refinement near the corner, using the triangulations shown in Fig. 4.6.

and, if yes, the slopesux anduy are reduced by a factor:

factor= 1

2

ū

|ux| + |uy| .

The same correction procedure is performed on the total energy. We do not modify the two
momenta.

For the P2 case, a somewhat stronger positivity correction procedure is needed. We
check for each element whether the density or the total energy is too close to zero. Using
the notation of (3.5), we check if

ū− |ux| − |uy| − |uxy| − 2
3(|uxx| + |uyy|) < 0

for either the density or the total energy, and, if yes,all the degrees of freedom, except the
mean

ux, uy, uxy, uxx, uyy,

of all the components (density, two momenta, and total energy), are reduced by a factor
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FIG. 4.11. Shock diffraction problem. Second-orderP1 results. Densityρ; 20 equally spaced contour lines
from ρ = 0.066227 toρ = 7.0668. Mesh refinement study. From top to bottom:1x = 1y = 1
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, 1

40
, and 1

80
.

which is the smaller of the two quantities

ū

|ux| + |uy| + |uxy| + 2
3(|uxx| + |uyy|)

,

computed from the density and the total energy.
We remark that the positivity correction procedures described above are conservative and

do not degrade the formal accuracy of the schemes.

5. CONCLUDING REMARKS

We have presented the algorithm formulation and practical implementation issues of the
RKDG (Runge–Kutta discontinuous Galerkin) methods, for multidimensional systems and
in particular for the compressible Euler equations of gas dynamics. Numerical results are
shown. We conclude in particular that for detailed features in the flow, such as the structure
near the triple Mach stem in the double Mach reflection problem, a higher order method
gives better cpu performance than a lower order one, to obtain the same resolution. We also
conclude that triangular elements and rectangular elements perform in a similar way.



           

222 COCKBURN AND SHU

FIG. 4.12. Shock diffraction problem. Third-orderP2 results. Densityρ; 20 equally spaced contour lines
from ρ = 0.066227 toρ = 7.0668. Mesh refinement study. From top to bottom:1x = 1y = 1
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