JOURNAL OF COMPUTATIONAL PHYSICS141,199-224 (1998)
ARTICLE NO. CP985892

The Runge—Kutta Discontinuous Galerkin
Method for Conservation Laws V

Multidimensional Systems

Bernardo Cockburh® and Chi-Wang Shy?

*School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455;
iDivision of Applied Mathematics, Brown University, Providence,
Rhode Island 02912
E-mail: cockburn@math.umn.edu, shu@cfm.brown.edu

Received May 30, 1997; revised December 9, 1997

This is the fifth paper in a series in which we construct and study the so-called
Runge—Kutta discontinuous Galerkin method for numerically solving hyperbolic
conservation laws. In this paper, we extend the method to multidimensional non-
linear systems of conservation laws. The algorithms are described and discussed,
including algorithm formulation and practical implementation issues such as the nu-
merical fluxes, quadrature rules, degrees of freedom, and the slope limiters, both in
the triangular and the rectangular element cases. Numerical experiments for two-
dimensional Euler equations of compressible gas dynamics are presented that show
the effect of the (formal) order of accuracy and the use of triangles or rectangles on
the quality of the approximation. @ 1998 Academic Press

Key Wordsdiscontinuous Galerkin; slope limiters; Euler equations.

1. INTRODUCTION

This is the fifth article of a series [13—16] devoted to the construction and study of
so-called Runge—Kutta discontinuous Galerkin (RKDG) method. The RKDG method i
method devised to numerically solve the initial boundary value problem associated with
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conservation law
gu—+divf(uy=0 in Qx(0,T), (1.2)

where©2 c RY andu = (uy, ..., uy)t, which is assumed to be hyperbolic; thatfig)) is
assumed to be such that any real combination of the Jaco@ﬁgg; (9f;j/ou) hasm
real eigenvalues and a complete set of eigenvectors. In this paper, we continue our \
in [13-16] and extend (and improve) the RKDG method to the case of multidimensiol
systems. To place this paper under a proper perspective, we first discuss the work do
this series of papers and papers by other authors which has been prompted by the remar
compactness and parallelizability of the RKDG method and by its ability to easily han
boundary conditions and complicated geometry.

The original discontinuous Galerkin method was introduced by Reed and Hill [3:
and analyzed by LeSaint and Raviart [26], Johnson and Ritka{25], Richter [32], and
by Peterson [29]. All these were for the linear equations. Our work was concentrated
treating nonlinear equations, which call for different techniques. The first (one-dimensior
RKDG method was introduced in [13] by combining the piecewise-linear discontinuo
finite elements used for the space discretization of one-dimensional conservation law
Chavent and Cockburn [11] with one of the explicit, TVD time discretizations develops
by Shu [34], and Shu and Osher [35, 36]. The resulting scheme was shown to be form
uniformly second-order accurate (a fact confirmed by numerical experiments) and \
proven to be total variation diminishing in the means (TVDM). Later, in [14], the RKDC
schemes were defined using a general framework that allowed piecewise polynomial
degreek € N approximate solutions. These fully explicit schemes were proven to be TVB
(total variation bounded in the means) and were shown to be formally unifokmiyl(th
order accurate, facts that were both verified numerically. The extension of the RKI
schemes to one-dimensional systems was carried out in [15] and the multidimensional
for the scalar conservation law was treated in [16], where it was proven that for so
fairly general triangulations, the approximate solution given by the RKDG method satisf
a local maximum principle independently of the degkeé\ projection, or generalized
“slope limiting,” was constructed which enforced the above maximum principle witho
destroying the formal accuracy of the method. Theoretical indications that the metho
uniformly (k + 1)th order-accurate when polynomials of degkee used were given and
numerical validation of this claim was presented for piecewise-linear approximétios
in uniform grids made of triangles. The case 2 was worked out by Hou [23].

To define the RKDG method for multidimensional systems, only the generalized “slo
limiter” of the method requires a nontrivial extension from the scalar case treated in [1
everything else remains the same or can be trivially extended. The extension of the RK
method to the two-dimensional Euler equations of gas dynamics was carried out in[:
where piecewise-linear approximations were used. In this paper, we complete and imp
the work started in [17]. The main contribution of this paper is thus the devisingrattical
generalized “slope limiting” procedure for multidimensional systems. The construction
this procedure, which is essential for nonsteady-state problems, is inspired by the th
etically proven, “slope limiting” devised in [16], but is remarkably simpler and gives bett
numerical results.

In related work, Atkins and Shu [1] studied an alternative quadrature-free impleme
tation of the RKDG method. Bey and Oden [8] used the RKDG method with arbitra
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guadrilaterals and piecewise-linear approximate solutions, to solve 2D Euler equatit
Jiang and Shu [24] proved a cell entropy inequality for the square entropy for arbitr:
order of accuracy and arbitrary triangulations, without using the nonlinear limiters for t
semidiscrete (continuous in time) case. This also implied_thstability of the method for
nonlinear shocked cases. Lowrie, Roe, and van Leer [27] studied the discontinuous Gale
method in space and time; see also the related studies previously made by Bar-Yosep
and Bar-Yoseph and Elata [3].

The important issue of the parallelizability of the RKDG method has been explored
several authors. Biswas, Devine, and Flaherty [9] have shown that the RKDG method (v
a new, interesting limiting) has a “solution parallel efficiency” of 99% in the NCUBE/2—
a reflection of the fact that the RKDG method uses only the information of immedic
neighbors to march in time. These authors have also constructed p-adaptive versions
of the RKDG method with remarkable results; see also the application to the Euler equa
of gas dynamics by deCougeyal.[19]. The important issue of “dynamic load balancing,”
essential for adaptive methods, has been addressed by Bwh§21], by Ozturanet al.
[28], and by Devineet al.[20].

The effect of the quality of the approximation of curved boundaries on the quality of t
approximate solution has been explored in a recent paper by Bassi and Rebay [4]; in
paper, we only consider computational domains with Lipschitz boundaries.

Extensions of the method to the compressible Navier Stokes equations and ger
convection diffusion equations can be found in Bassi and Rebay [5] and Cockburn
Shu [18], respectively.

We are now ready to give a detailed description of the contents of this paper. In Sectio
we give a general formulation of the RKDG method for multidimensional systems, includi
the discussion on slope limiters. Section 3 contains the algorithm and implementation det
including the numerical fluxes, quadrature rules, degrees of freedom, and slope limitel
the RKDG method for both piecewise-linear and piecewise-quadratic approximations
both triangular and rectangular elements. In Section 4, we present several test problen
the two-dimensional Euler equations of gas dynamics intended to illustrate the effect of
degreek and the effect of the use of triangles or rectangles on the accuracy of the mett
Concluding remarks are given in Section 5.

2. ALGORITHM FORMULATION

To define the RKDG method, we proceed as in [16].

2.1. Space Discretization

First, we discretize (1.1) in space using the discontinuous Galerkin method. For e
time t € [0, T], the approximate solutiony(t) is sought in the finite element space of
discontinuousfunctions

Vh = {vnh € L¥(Q) : vn|k € V(K), VK € T}, 2.1)

where7y, is a triangulation of the domaift andV (K) is the so-called local space. In this
paper,V (K) is taken to beP¥, the collection of polynomials of degréefor k=1 and 2.
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To determine the approximate solutiog(t), we need the weak formulation of (1.1):

3 / u(x, t)v(x)dx+z /f(u(x t))-nexv(x)dl — /f(u(x t))-gradv(x) dx = 0,

t ecoK

for any smooth functiom(x). Hereng x denotes the outward unit normal to the edge
We replace the integrals by quadrature rules as

L
/f(U(x, ) - Nek vn(X) dI" ~ Zanf(U(xeu, ) - Nekv(Xel) €l (2.2)

/f(u(x t)) - gradv(x) dx = Za) f(u(xkj, t)) - gradv(xx;)|K|. (2.3)

j=1

Then, the fluX(u(x, t))-ne  is replaced by thaumericalfflux he k (X, t), the exact solution
uisreplaced by the approximate solutian and the test functionby v, € V (K), resulting
in the scheme:

Un(t = 0) = Py, (Uo),

d
dt/ Un(X, DR dX+ > Zwl he k (Xel, Yv(Xer) €]
ecdK I=1
M
= w;f(un(xkj. 1) - gradva (x¢)) K| =0 VoneV(K) VK eTp.  (2.4)
j=1

The operatoPy, is, for example, the standard4projection into the finite element space
Vh.

The value of the numerical flux at the poifX, t), he k (X, t), wherex belongs to the
edgee of the boundary of the elememht, depends on the two values of the approximate
solution at k&, t). One is the value obtained from threrior of the elemenk, namely,

int(K) = i
Up (XM t) yim  Un(y- ).
and the other is the value obtained from &xteriorof the elemenK, namely,

u (Xex(K) t) _ X, t), if xedQ,
h ’ limy_x yex Un(y, 1), otherwise

The discrete boundary values,, are thel ?-projection of the exact boundary datanto
the finite element space obtained by taking the traces of the elemevisrab 0 2.

The numerical flux is defined d® k (X, t) = hg k (Uy(XMKO 1), up (x| 1)), where
he k is any two-point Lipschitz flux which is monotone in the scalar case and is an exact
approximate Riemann solver in the system case. It is also consisterftwithng i , that
is,

hek (U, u) = f(u) - Nek,
and conservative, that is,

he i (Un (X™), up (xO)) + he i (up (XME), up (x™)) =0, K'NK =e.
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An example is the following (local) Lax—Friedrichs flux

1
he,K(aa b) = é[f(a) ‘Nek + f(b) ‘Negk — O5e,K(b - a)]’ (2-5)

whereae ¢ iS an estimate of the biggest eigenvalue of the Jacaligiu)f(un(x, t)) - Ne k
for (x, t) in a neighborhood of the edge

It is convenient to take the local spacésK) to be the space of polynomials of total
degree smaller or equal ta PX(K); in this case, we denote, by th. (Note that this
choice is possible regardless of the shape of the elentergsice the functions i,
are discontinuous.) There are two reasons for this choice. First, if the local Sg&ce
includesPX(K), it is possible to findK + 1)th order accurate approximations\i(K ) to
any function inWk*1(K). Second, ifV (K) consists of polynomials only and does not
include P¥*1(K), itis not possible to find(+ 2)th order accurate approximationsvigK )
to functions inW*k+2(K); see [12].

Moreover, ifVi, includesV)¥, the approximation to dif(u) provided by the above space
discretization isK + 1)th accurate for sufficiently smooth provided that the quadrature
rules for the edges of the elements, (2.2), are exact for polynomials of dégfele and the
guadrature rules for the interior of the elements, (2.3), are exact for polynomials of dec
2k (see [16, Proposition 2.1]). Itis thus reasonable to expect that the resulting scheme ¢
an k + 1)th order accurate approximation when the exact solution is smooth enough.

For the choicevh, = V{? and quadrature rules over the edges exact for constants, 1
resulting scheme is nothing but a finite volume, monotone scheme in the scalar case. T
the discretization by the discontinuous Galerkin method can be considered as a high-c
accurate extension of finite volume, monotone schemes.

2.2. Time Discretization

The equations defining the approximate solution can be rewritten in ODE form
(d/dt)un = L (up, vn) after inverting the “mass” matrix. Since the functions\gf are
discontinuous, the “mass” matrix is block-diagonal and the blocks, whose orders are e
to the dimensions of the local spacésK), can be easily inverted by hand. If a locally
orthogonal basis is chosen, the mass matrix is diagonal.

If we are using a finite element spadg included inV/, we would like to discretize in
time the above system of ODEs with a method that is at léastX)th-order accurate. To
do that, we use the TVD Runge—Kutta time discretization introduced in [34, 35]. Thus
{t"}N_, is a partition of [Q T]and At" = t™! —t" n=0, ..., N — 1, our time-marching
algorithm reads as follows:

o Setu = Py, (Up);

e Forn=0,..., N — 1 computeu]™ as follows:
1. setu? = up;
2. fori =1, ..., k+ 1 compute the intermediate functions:

i—1
ud = {Za” Ul + Bit AL (U, (" + di AL™)) };

1=0

3. setutt =y,
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TABLE 1
Parameters of Some Practical Runge—Kutta
Time Discretizations

Order i) Bi d max{Bii /e }
2 1 1 0 1
1 3 0 3 1
3 1 1 0
: 1 0 1 1 1
1
10 2 0 0 2 >

Note that this method is very easy to code since only a subroutine defipiog, yn (1))
is needed. In this paper, we use the second-order and third-order accurate Runge—Kutte
discretizations listed below in Table 1 for piecewise linBarand piecewise quadratie?
finite element approximations, respectively.

2.3. The Local Slope Limiting

In the case in which piecewise-constant approximations are considered, that is, w
Vi = V2, the artificial viscosity that the numerical flux introduces in the scheme, due
upwinding, is enough to render the scheme stable. However, when the local spaces arer
the stabilizing influence of the numerical fluxes is not enough to guarantee the absenc
spurious oscillations. To enhance the stability of the method and eliminate possible spur
oscillations in the approximate solution, a local slope limiting operatty, is introduced
in the time-marching algorithm as follows:

e Setu = ATl Py, (Up);
e Forn=0, ..., N — 1 computeu}™ as follows:

1. setu? = up;

2. fori =1, ..., k+ 1 compute the intermediate functions:

i1
ul =A1'Ih{zan ul + Bt At"La (uf), yn(t" + d AtT)) }9
=0

3. setul*! =y,

Theoretical studies of the operatafl;, can be found in [14] for the one-dimensional
case and in [16] for the multidimensional case. Guided by these results, we use in this p
very simple, practical, and effective slope limiting operatvis;,. To computeA ITyuy, we
rely on theassumptiorthat spurious oscillations are presenuinonly if they are present
in its P partut, which is itsL 2-projection into the space of piecewise linear functivf}s
a theoretical justification of this assumption is still an open problem. Thus, if they are
presentirui, i.e., if

1_ 1
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then we assume that they are not presentiand, hence, do not do any limiting:
ATIpup = Up.

On the other hand, if spurious oscillations are present irPthgart of the solutioni?, i.e.,
if

ul # ATIhud,

then we chop off the higher order part of the numerical solution and limit the reméting
part:

ATInup = ATIhU.

In this way, in order to defin@ I}, for arbitrary spacé/,, we need to actually define it for
piecewise linear functions|!. The exact way to do that, both for the triangular element
and for the rectangular elements, will be discussed in the next section.

3. ALGORITHM AND IMPLEMENTATION DETAILS

In this section we give the algorithm and implementation details, including numeric
fluxes, quadrature rules, degrees of freedom, fluxes, and limiters of the RKDG met
for both piecewise-linear and piecewise-quadratic approximations in both triangular
rectangular elements.

3.1. Fluxes

For the numerical flux needed in (2.4), we use the simple Lax—Friedrichs flux (2.5):
hek (8, b) = %[f(a) ‘Nek +f(b) - Nek — aek (b —a)].

The numerical viscosity constaat x should be an estimate of the biggest eigenvalue c
the Jacobiand/du)f(un(x, t)) - nex for (x,t) in a neighborhood of the edge For the
triangular elements, we have used the local Lax—Friedrichs recipe:

o Takeu ¢ tobethelarger one of the largest eigenvalue (in absolute valg@)ad)f (uk )
x Ne k and that of(d/du)f(ux.) x nek, whereux andug: are the means of the numerical
solution in the element& andK’ sharing the edge.

For the rectangular elements, we have used both the local Lax—Friedrichs recipe
Examples 4.1 and 4.2) and the global Lax—Friedrichs recipe (in Example 4.3):

o Takeae ¢ to be the largest of the largest eigenvalue (in absolute valug) dé)f (uk )
x Nek, Whereuy is the mean of the numerical solution in the elemkrit which runs
over all elements on the same line (horizontally or vertically, depending on the directior
Ne k) with K andK’ sharing the edge.

Usually, the global Lax—Friedrichs recipe is more dissipative, but it is more robust th
the local Lax—Friedrichs recipe, especially for problems involving low velocities and Ic
density/pressure near wall boundaries. There are recipes in between the two, such as't
the maximum over several neighboring elements in obtaiaing, but we have not used
them in this paper.
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3.2. Quadrature Rules

According to the analysis, the quadrature rules for the edges of the elements, (2.2), r
be exact for polynomials of degre& 2- 1, and the quadrature rules for the interior of
the elements, (2.3), must be exact for polynomials of degkeé P methods are used.
Here we discuss the quadrature points usedPfoand P2 in the triangular and rectangular
element cases.

3.2.1.The rectangular elementsFor the edge integral, we use the following two point

Gaussian rule
1
fowen~o(-75) +o( ) ey

for the P! case and the following three point Gaussian rule

foma- S oDt

for the P? case, suitably scaled to the relevant intervals.

For the interior of the elements, we could use a tensor product of (3.1), with four quac
ture points, for theP case. But to save cost, we “recycle” the values of the fluxes at tt
element boundaries and only add one new quadrature point in the middle of the elen
The quadrature rule is, thus,

[ [ sowaxdy= 3o(-1 ) +o(-1-F ) +o(~ 75 1)
1 1 1 1
+9<ﬁ"1) +9<1"ﬁ> “"(1’ ﬁ) +9<—3’1>
+g<—j§,1)] +29(0,0).

For theP? case, we use a tensor product of (3.2), with nine quadrature points.

3.2.2.The triangular elements.For the edge integral, we use the same two point 0
three point Gaussian quadratures as in the rectangular case, (3.1) and (3.2) Poatite
P2 cases, respectively.

For the interior integrals (2.3), we use the three mid-point rule

K 3
/K g(x, y) dx dy~ % > gm),
i=1

wherem; are the mid-points of the edges, for tRé case. For thé®? case, we use a seven-
point quadrature rule which is exact for polynomials of degree 5 over triangles, given
Table A.4, on page 343 of [10].

3.3. Basis and Degrees of Freedom

We emphasize that the choice of basis and degrees of freedom does not affect
algorithm, as it is completely determined by the choice of function spaci (2.1),
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the numerical fluxes in (2.4), the quadrature rules, the slope limiting, and the time c
cretization. However, a suitable choice of basis and degrees of freedom may simplify
implementation and calculation.

3.3.1.The rectangular elementsFor the P! case, we use the following expression
for the approximate solutionn (X, y, t) inside the rectangular elemeng 1,2, Xi+1/2] x
[Yi-1/2. Yj+1/2],

Un(X, Y, t) = U(t) + ux()ei (X) + uy () ¥ (y), (3.3)
where
' X=X . Yy
¢ (X) = Y Yi(y) = Ay /2 (3.4)
and

AXi = Xit12 — Xi—1/2,  AYj = Yjt+12 — Yj-1/2-
The degrees of freedoms, to be evolved in time, are then
J(t)v uX(t)v Uy(t).

Here we have omitted the subscripisthese degrees of freedom should have, to indicat
that they belong to the elemeijtwhich is [xi_1/2, Xi+1/2] X [Yj-1/2, Yj+1/2]-
Notice that the basis functions

L ¢, vy,

are orthogonal; hence, the local mass matrix is diagonal:
. 11
M = Ax; Ay; diag <1, 3 3> .

For theP? case, the expression for the approximate solutigix, y, t) inside the rect-
angular element{_1/2, Xi+1/2] x [Yj-1/2, ¥j+1/2] IS

Un(X, Y, 1) = U(t) + ux(O)¢i (X) + Uy (D) (Y) + Uxy (DB )Y (Y)

) 1 5 1 (3.5)
=+ Uxx(t) <¢. x) — é) + Uyy(D) <‘/fj y) — 5)’

whereg; (x) andy; (y) are defined by (3.4). The degrees of freedom, to be evolved in tim
are

lT(t)’ uX(t)9 uy(t)a qu(t)s uXX(t)’ Uyy(t)

Again the basis functions

2 1 2 1
L ¢, vi(y). ¢iX)yjy). &; ) -3 ¥iW -3

are orthogonal; hence, the local mass matrix is diagonal:

. 111 4 4
M:Axiijdlag<1———— )
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3.3.2.The triangular elements.For theP?! case, we use the expression for the approx
imate solutiorun (X, Yy, t) inside the triangle<,

3
Un(X, Y, 1) = > Ui (X, y),

i=1

where the degrees of freedant) are values of the numerical solution at the midpoints o
edges, and the basis functipn(x, y) is the linear function which takes the value 1 at the
mid-pointm; of theith edge, and the value 0 at the mid-points of the two other edges. T
mass matrix is diagonal:

. 111

For the P2 case, we use the expression for the approximate solutjon y, t) inside
the triangleK,

6
Un(X, Y, 1) = > Ui (D& (X, Y),

i=1

where the degrees of freedom(t), are values of the numerical solution at the three mid
points of edges and the three vertices. The basis fungti@ny), is the quadratic function
which takes the value 1 at the pointf the six points mentioned above (the three midpoint:
of edges and the three vertices), and the value 0 at the remaining five points. The r
matrix, S, this time is not diagonal (see page 11 in [23]):

1/30 —-1/180 -1/180 -—1/45 0 0
-1/180 1/30 —1/180 0 —1/45 0
S= (K| —-1/180 -1/180 1/30 0 0 —1/45
—1/45 0 0 45 445  4/45
0 —1/45 0 445  8/45  4/45
0 0 —1/45 4/45  4/45  8/45
3.4. Limiting

We construct slope-limiting operatorsIl,, on piecewise linear functions, in such a
way that the following properties are satisfied:

1. Accuracy: ifuy, is linear thenATIpun = up,.
2. Conservation of mass: for every elem&hof the triangulatioriZy, we have

/AHhUhZ/Uh.
K K

3. Slope limiting: on each elemeit of 7y, the gradient ofATT,up is not bigger than
that ofup,.

The actual form of the slope limiting operators is closely related to that of the slo
limiting operators studied in [14, 16].
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3.4.1.The rectangular elementsThe limiting is performed omi, anduy in (3.3), using
the differences of the means. For a scalar equatigmould be limited (replaced) by

M(Uy, Ui+1,j — Uij, Uij — Ui—1j), (3.6)
where the functiom is the TVB correcteaninmodfunction [33, 14] defined by

a, if Jaz] < MAX2,

m(y, ..., an), Otherwise (3.7)

m(al,...,am):{

with the minmodfunctionm defined by

smin;lg|, if s=sign(a;) = --- =sign(am),

m@@y, ..., an) = {O, otherwise

The TVB correction is needed to avoid unnecessary limiting near smooth extrema, where
quantityuy oruy is on the order 00(Ax?) or O(Ay?). For an estimate of the TVB constant
M in terms of the second derivatives of the function, see [14]. Usually, the numerical res
are not sensitive to the choice bf in a large range. In all the calculations in this paper we
takeM to be 50.

Similarly, uy is limited (replaced) by

M(Uy, Ui j+1 — Ujj, Ujj — Uj j—1)

with a change ofAx to Ay in (3.7).
For systems, we perform the limiting in the local characteristic variables. To limit tf
vectoruy in the elementj, we proceed as follows:

¢ Find the matrixR and its inverseR—* which diagonalize the Jacobian evaluated at th
mean in the elemenmt in the x-direction,
1 8fl(aij )
au

R R=A,

whereA is a diagonal matrix containing the eigenvalues of the Jacobian. Notice that
columns ofR are the right eigenvectors aff1(Uij)/du and the rows oR* are the left
eigenvectors.

e Transform all quantities needed for limiting, i.e., the three vealQfis U1 j — Uij,
andujj — uj_1 j, to the characteristic fields. This is achieved by left-multiplying these thre
vectors byR.

o Apply the scalar limiter (3.6) to each of the components of the transformed vector

e The result is transformed back to the original space by left multipiRran the left.

3.4.2.The triangular elements.To construct the slope-limiting operators for triangular
elements, we proceed as follows. We start by making a simple observation. Considel
triangles in Fig. 3.1, wherm;, is the mid-point of the edge on the boundarykaf andb;
denotes the barycenter of the trian$lefori =0, 1, 2, 3.

Since we have that

my — bp = a1(by — bp) + a2(b2 — bo)
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FIG. 3.1. lllustration of limiting.

for some nonnegative coefficients, «, which depend only om; and the geometry, we
can write for any linear functiony,

Un(My) — Un(bg) = a1 (Un(by) — Un(bo)) + ar2(Un(b2) — U (b)),

and since

_ 1

Uk, = — up=un(y), i=0123,
K |Ki| K h h(Mi

we have that
G (Mg, Ko) = Up(My) — Uk, = a1 (Uk, — Uk,) + o2(Uk, — Uk,) = Al(My, Ko).

Now, we are ready to describe the slope limiting. Let us consider a piecewise linear func
un, and letm;, i =1, 2, 3 be the three mid-points of the edges of the triari{de We then
can write for(x, y) € Kg

3 3
Un(X, )= Un(Mi)gi (X, y) =Uk, + Y _ Un(mi, Ko)gi (X, Y).
i=1 i=1

To computeATITyup, we first compute the quantities
Ai = m(lin(m;, Ko), vAu(m;, Ko)),

wherem s the TVB modifiedninmodfunction defined in (3.7), amd > 1. We takev = 1.5
in our numerical runs. Then, Ele A = 0, we simply set

3
ATIUn(x, y) = Uk, + ) Aigi (X, ).

i=1
If S22, Ai # 0, we compute

3 3
pos= Zmax(o, Ai), neg= Zmax(o, —A)

i=1 i=1
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Rectangles P1,Ax=Ay=1/60

Rectangles P1,Ax=Ay=1/480

o5 [ 15 20

FIG. 4.1. Double Mach reflection problem. Second-ord®rresults. Density; 30 equally spaced contour

lines fromp = 1.3965 top = 22.682. Mesh refinement study. From top to bottotx = Ay = &, L. L
and &..
480

and set
6% = min (1, @) , 67 =min (1, p_os) .
pos neg

3

ATInun(x, y) = Uk, + ) Aigi(x, y),
i-1

Then, we define

where
Aj =67 max0, Aj) — 6~ max0, —A)).

It is very easy to see that this slope-limiting operator satisfies the three properties li
above.
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Rectangles P2, Ax=Ay=1/60

FIG.4.2. Double Mach reflection problem. Third-ordef results. Density; 30 equally spaced contour lines
from p = 1.3965 top = 22.682. Mesh refinement study. From top to bottax = Ay = 2, L L ‘andL

60’ 120° 240’ 480"

For systems, we perform the limiting in the local characteristic variables. ToAmive
proceed as in the rectangular case, the only difference being that we work with the Jaco

0 — m; —bo
ﬁf(UKO) CImi —bo|’

4. NUMERICAL RESULTS

In this section we present several numerical results obtained wifd'taed P? (second-
and third-order accurate) RKDG methods with either rectangular or triangular elements.
consider several standard test problems for Euler equations of compressible gas dynar

For all the runs, we tak€FL = 0.3 for P* andCFL = 0.18 for P?; recall that the von
Neumann analysis for the one-dimensional case gives the stability con@fibrc 1/3
for P andCFL < 1/5 for P? (see [14]). For the rectangles, we taREL equal to the
maximum over the rectangles @fvx| + ¢)/AX + (Juy| + C)/Ay) At, wherec is the speed
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Rectangles P2, Ax=Ay = 1/240

0.0

2.0 22 24 26 28

FIG. 4.3. Double Mach reflection problem. Blown-up region around the double Mach stems. Density

Third-orderP? with Ax = Ay = - (top); second-ordeP* with Ax = Ay =z (middle); and third-ordeP?

with Ax = Ay = L (bottom).

of sound anduy, vy) is the velocity both evaluated at the local average. For the triangle
we takeCFL to be a more conservative quantity, namely, the maximum over the triang
of (|| (vx, vy) || + c)perimete(K)At/|K].

ExampLE 4.1. Double Mach reflection of a strong shock. This problem was studi
extensively in Woodward and Colella [37] and later by many others. We use exactly
same setup as in [37], namely, a Mach 10 shock initially making a6@le with a reflecting
wall. The undisturbed air ahead of the shock has a density of 1.4 and a pressure of 1.
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Rectangles P1,Ax=Ay=1/40
J L

Rectangles P1,Ax=Ay=1/80
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FIG. 4.4. Forward-facing step problem. Second-or@mresults. Density; 30 equally spaced contour lines
from p = 0.090338 top = 6.2365. Mesh refinement study. From top to bottaxx. = Ay = X+, 1 L andl.

40’ 80’ 160’ 320

We use rectangular elements for this problem. The computational domain 43 [0
x [0, 1], as in [37]. The reflecting wall lies at the bottom of the computational doma
for % < X < 4. Initially a right-moving Mach 10 shock is positioned»at %, y=0and
makes a 60angle with thex-axis. For the bottom boundary, the exact postshock conditic
isimposed for the partfrom = Otox = % to mimic an angled wedge. Reflective boundary
condition is used for the rest. At the top boundary of our computational domain, the fl
values are set to describe the exact motion of the Mach 10 shock. Inflow/outflow bound
conditions are used for the left and right boundaries. The results-8t2 are shown. As
in [37], only the results in [03] x [0, 1] are displayed.

Four different uniform meshes are used: 2460 element§Ax = Ay = é)); 480x 120
element§AX = Ay = 1—20); 960x 240 elementaAx = Ay = Z—}w); and 1920« 480 elements
(AX=Ay= 4—§0). The density is plotted in Fig. 4.1 for the! case and in Fig. 4.2 for
the P2 case. In all the plots, we use 30 contours equally distributed fseat.3965 to
p=22.682.

Itis not easy to observe any significant difference betwee®thand P? results in these
pictures. However, if we show a “blown-up” portion around the double Mach region, as
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/////

Rectangles P2, Ax=Ay=1/80

FIG. 4.5. Forward-facing step problem. Third-ordef results. Density; 30 equally spaced contour lines
from p = 0.090338 top = 6.2365. Mesh refinement study. From top to bottaxx: = Ay = X, 1, L and.l.

40’ 80’ 160’ 320

Fig. 4.3, we can see th&? with AX = Ay = Z—}w has qualitatively the same resolution
asPlwith Ax = Ay = 4—§0 for the fine details of the complicated structure in this region
Notice that this detailed structure is of physical interest and was studied before with
adaptive grid calculation in [7]P2 with AXx = Ay = 4—g0 gives a much better resolution

for these structures tha! with the same number of elements.

The conclusion here is that, if one is interested in such fine structures, then one car
the third-order schem@? with only half of the mesh points in each direction asth This
translates to a reduction of a factor of 8 in space-time cells for 2D time dependent proble
and will more than offset the increase of cost per cell and the smaller CFL number by us
the higher ordeP? method (the cpu saving for this problem is around a factor of 2.1 in ol
implementation). This saving will be even more significant for 3D.

The optimal strategy, of course, is to use adaptivity and concentrate cells around
interesting region, and/or to change the degree of the polynomial in different regions.

ExampLE 4.2. Flow past a forward facing step. This problem was again studied exte
sively in Woodward and Colella [37] and later by many others. The setup of the probl
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FIG. 4.6. Forward-facing step problem. The triangulations used for results in Figs. 4.7 ardid Bie ratio
between the typical size of the triangles near the corner and that elsewhere.

is the following: a right-going Mach 3 uniform flow enters a wind tunnel of 1 unit wide
and 3 units long. The step is 0.2 units high and is located 0.6 units from the left-hand
of the tunnel. The problem is initialized by a uniform, right-going Mach 3 flow. Reflectiv
boundary conditions are applied along the walls of the tunnel and in-flow and out-fl
boundary conditions are applied at the entrance (left-hand end) and the exit (right-h
end), respectively. The resultstat 4 are shown.

The corner of the step is a singularity, which we study carefully in our numeric
experiments. Unlike in [37] and in many other papers, we do not modify our schel
near the corner in any way. It is well known that this leads to an erroneous entrc
layer at the downstream bottom wall, as well as a spurious Mach stem at the bot
wall. However, these artifacts decrease when the mesh is refined. In Fig. 4.4, sec
order P! results using rectangular elements are shown for a mesh refinement study u
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Triangles P1,c=1/1

Triangles P1,c=1/8

FIG. 4.7. Forward-facing step problem. Second-or&émesults. Density; 30 equally spaced contour lines
from p = 0.090338 tgp = 6.2365. Triangle code. Progressive refinement near the corner, using the triangulati
shown in Fig. 4.6.

AXx = Ay = &, &, &, and-; as element sizes. We can clearly see the improved resol
tion (especially at the upper slip line from the triple point) and decreased artifacts cau
by the corner, with decreased element sizes. In Fig. 4.5, third-&@leesults using the
same sequence of elements are shown. Comparing witlPtheesults in Fig. 4.4, we
can see that the resolution is improved, especially for the slip line issued from the tri
point.

In order to verify that the erroneous entropy layer at the downstream bottom wall and
spurious Mach stem at the bottom wall are both artifacts caused by the poor resolution o
corner singularity, we use our triangle code to locally refine near the corner progressiv
A sequence of such triangulation is shown in Fig. 4.6, wheie the ratio between the
typical size of the triangles near the corner and that elsewhere. The resolution of the me
away from the corner is roughly equal to a rectangular element case ef Ay = 4—10, ie.,
the top pictures in Figs. 4.4 and 4.5. The density results uBingnd these triangulations
are shown in Fig. 4.7, those usiRy are shown in Fig. 4.8. We can see that, with more
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Triangles P2, ¢ = 1/1

Triangles P2, ¢ = 1/2

FIG. 4.8. Forward-facing step problem. Third-ordB? results. Density; 30 equally spaced contour lines
from p = 0.090338 tgp = 6.2365. Triangle code. Progressive refinement near the corner, using the triangulatic
shown in Fig. 4.6.

triangles concentrated near the corner, the artifacts gradually decrease. Notice that the
a strong spurious entropy production near the corner, which pollutes the flow downstre
With progressive refinement near the corner, this spurious entropy production decree
see Figs. 4.9 and 4.10.

These are the only triangular element runs we present in this paper. We can see
the triangular elements can give results of the same resolution quality as the rectanc
case with roughly the same mesh density for bBthand P2. We do observe, however,
that a positivity correction procedure is needed for the triangular element runs for t
case. During the projection of the linear part, we check whether the density and the t
energy are negative at the three mid-points of the edgKs tfthey are, further limiting is
performed to bring them to 1@° in a conservative way.

ExampPLE 4.3. Shock passing a backward facing corner (diffraction). This example h
beenusedin[22, 30] (see also the experimental results in [6]). The setup of the problem i
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FIG.4.9. Forward-facing step problem. Second-orBéresults. Spurious entropy production near the corner.
Progressive refinement near the corner, using the triangulations shown in Fig. 4.6.

$ s 8 8 8 8 3 B

following: the computational domain is the union of [ x [6, 11] and [1 13] x [0, 11]; the
initial condition is a pure right-moving shock dfach = 5.09, initially located aix = 0.5
and 6 < y < 11, moving into undisturbed air ahead of the shock with a density of 1
and a pressure of 1. The boundary conditions are inflow=a0, 6 < y < 11, outflow at
x=130=<y <1l reflectveatdc x <1, y=6andax=1,0 <y < 6, and Neumann
atl<x <13 y=0andat0< x < 13 y = 11. No special treatment is done at the
corner which is a singularity of the solution. The density at 2.3 is presented in Fig. 4.11
for the P case and in Fig. 4.12 for the? case. Rectangular meshes are used with fol
different mesh sizeax = Ay = &, L L andX, respectively.

We remark that it is easy to get negative density and/or pressure for this problem. In &
our Pt and P? runs, we found it necessary to perform a positivity correction procedure.

For theP! case, we check for each element whether the density, as a linear functior
too close to zero in the element. Specifically, using the notation of (3.3), we check if

l
U_|Ux|_|uy| < 3u
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FIG.4.10. Forward-facing step problem. Third-ordef results. Spurious entropy production near the corner.
Progressive refinement near the corner, using the triangulations shown in Fig. 4.6.

and, if yes, the slopes, anduy are reduced by a factor:

1 u
factor= - ——.
2 [ux| + |uy]

The same correction procedure is performed on the total energy. We do not modify the
momenta.

For the P? case, a somewhat stronger positivity correction procedure is needed.
check for each element whether the density or the total energy is too close to zero. U
the notation of (3.5), we check if

s 2
U — |Ux| — [Uy| — [uxy| — §(JUxx| + [Uyy]) < 0

for either the density or the total energy, and, if yatthe degrees of freedom, except the
mean

Ux, Uy, Uxy, Uxx, Uyy,

of all the components (density, two momenta, and total energy), are reduced by a fa
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FIG. 4.11. Shock diffraction problem. Second-ordet results. Density; 20 equally spaced contour lines

from p = 0.066227 top = 7.0668. Mesh refinement study. From top to bottax = Ay = . %, &, and 5.

which is the smaller of the two quantities

a
x| + [uy] + Uxyl + Z(uxx] + Uy’

computed from the density and the total energy.
We remark that the positivity correction procedures described above are conservative
do not degrade the formal accuracy of the schemes.

5. CONCLUDING REMARKS

We have presented the algorithm formulation and practical implementation issues of
RKDG (Runge—Kutta discontinuous Galerkin) methods, for multidimensional systems ¢
in particular for the compressible Euler equations of gas dynamics. Numerical results
shown. We conclude in particular that for detailed features in the flow, such as the struc
near the triple Mach stem in the double Mach reflection problem, a higher order mett
gives better cpu performance than a lower order one, to obtain the same resolution. We
conclude that triangular elements and rectangular elements perform in a similar way.
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FIG. 4.12. Shock diffraction problem. Third-ordeP? results. Densityp; 20 equally spaced contour lines

from p = 0.066227 top = 7.0668. Mesh refinement study. From top to bottalx = Ay = 1, & L and.

ACKNOWLEDGMENTS

The paper was finished when both authors were visiting the Institute for Mathematics and Its Applicatic
University of Minnesota. We thank IMA for support and hospitality.

REFERENCES

1. H. L. Atkins and C.-W. ShuQuadrature-free Implementation of Discontinuous Galerkin Methods for
Hyperbolic EquationsICASE Report 96-51, 1996. [SubmittedAdAA J]

2. P. Bar-Yoseph, Space-time discontinuous finite element approximations for multi-dimensional nonlir
hyperbolic system&Zomput. Mech5, 145 (1989).

3. P. Bar-Yoseph and D. Elata, An efficidnt Galerkin finite element method for multi-dimensional nonlinear
hyperbolic systemdnt. J. Numer. Methods Eng9, 1229 (1990).

4. F. Bassi and S. Rebay, High-order accurate discontinuous finite element solution of the 2D Euler equat
J. Comput. Physto appear.

5. F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical sol
of the compressible Navier—Stokes equatidng&omput. Phys131, 267 (1997).

6. S. Bazhenova, L. Gvozdeva, and M. Nettleton, Unsteady interactions of shock Rengsh\erosp. Sc1,
249 (1984).



10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

MULTIDIMENSIONAL SYSTEMS 223

. M. Berger and A. Colella, Local adaptive mesh refinement for shock hydrodynam@smput. Phys32,
64 (1989).
. K. S.Bey and J. T. Oden, A Runge—Kutta discontinuous Galerkin finite element method for high speed flc
AIAA 10th Computational Fluid Dynamics Conference, Honolulu, Hawaii, June 24-27, 1991.
. R. Biswas, K. D. Devine, and J. Flaherty, Parallel, adaptive finite element methods for conservation I
Applied Numerical Mathematidst, 255 (1994).
G. F. Carey and J. T. Odéinite Elements: Computational Aspects, (Rrentice-Hall, Englewood Cliffs,
NJ, 1984).
G. Chavent and B. Cockburn, The local projectRfiP*-discontinuous Galerkin finite element method for
scalar conservation laws)? AN 23, 565 (1989).
P. CiarletThe Finite Element Method for Elliptic Problefrisorth-Holland, Amsterdam, 1975.
B. Cockburn and C. W. Shu, The Runge-Kutta local projedddmliscontinuous Galerkin method for scalar
conservation lawsy2AN 25, 337 (1991).
B. Cockburn and C. W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element mett
for scalar conservation laws II: General framewdvlgth. Comp52, 411 (1989).
B. Cockburn, S. Y. Lin, and C. W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin fini
element method for conservation laws IlI: One dimensional systén@ymput. Phys84, 90 (1989).
B. Cockburn, S. Hou, and C. W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite elem
method for conservation laws 1V: The multidimensional cadath. Comp54, 545 (1990).
B. Cockburn and C. W. Shlihe P-RKDG Method for Two-dimensional Euler Equations of Gas Dynamics
ICASE Report 91-32, 1991.
B. Cockburnand C. W. Shu, The local discontinuous Galerkin method for time-dependent convection diffu
systemsSIAM J. Numer. Analto appear.
H. L. deCougny, K. D. Devine, J. E. Flaherty, R. M. Loy, @zturan, and M. S. Shephard, High-order
accurate discontinuous discontinuous finite element solution of the 2D Euler equajmtied Numerical
Mathematicsl6, 157 (1994).
K. D. Devine, J. E. Flaherty, R. M. Loy, and S. R. Whé#rallel Partitioning Strategies for the Adaptive
Solution of Conservation LawRensselaer Polytechnic Institute Report No. 94-1, 1994.
K. D. Devine, J. E. Flaherty, S. R. Wheat, and A. B. Maccabdassively Parallel Adaptive Finite Element
Method with Dynamic Load Balancin§AND Report 93-0936C, 1993.
R. Hillier, Computation of shock wave diffraction at a ninety degrees convex 8dgek Waves, 89 (1991).
S. HouA Finite Element Method for Conservation Laws: Multidimensional G&seD. Thesis, School of
Mathematics, University of Minnesota, 1991).
G. Jiang and C.-W. Shu, On cell entropy inequality for discontinuous Galerkin metflatts, Comp 62,
531 (1994).
C. Johnson and J. Pitkénta, An analysis of the discontinuous Galerkin method for a scalar hyperbol
equationMath. Comp46, 1 (1986).

P. LeSaint and P. A. Raviafn a finite element method for solving the neutron transport equaliiath-
ematical aspects of finite elements in partial differential equations (C. de Boor, Ed.), Academic Press
(1974).

R.B.Lowrie, P.L. Roe and B. van Leer, Space-time discontinuous Galerkin: . Theory and properties, Prer

C.Ozturan, H. L. deCougny, M. S. Shephard, and J. E. Flaherty, Parallel adaptive mesh refinement
redistribution on distributed memory compute€emput. Methods Appl. Mech. Engfdl9, 123 (1994).

T. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equ:
SIAM J. Numer. AnaR8, 133 (1991).

J. Quirk, A construction to the great Riemann solver deltatte]. Numer. Meth. Fluid48, 555 (1994).

W. H. Reed and T. R. HillTriangular Mesh Methods for the Neutron Transport Equatibos Alamos
Scientific Laboratory Report LA-UR-73-479, 1973.

G. R. Richter, An optimal-order error estimate for the discontinuous Galerkin méftatd, Comp 50, 75
(1988).



224 COCKBURN AND SHU

33. C.-W. Shu, TVB uniformly high-order schemes for conservation Iafegh. Comp49, 105 (1987).

34. C.-W. Shu, Total-variation-diminishing time discretizatioBB\M J. Sci. Stat. Compif, 1073 (1988).

35. C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing scher
J. Comput. Physi7, 439 (1988).

36. C.-W. Shu and S. Osher, Efficientimplementation of essentially non-oscillatory shock capturing scheme
J. Comput. Phys33, 32 (1989).

37. P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocl
J. Comput. Phys54, 115 (1984).



