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This is the third paper in a series in which we construct and analyze a class of TVB (total 
variation bounded) discontinuous Galerkin finite element methods for solving conservation 
laws II, + zy= ,(f,(u)), = 0. In this paper we present the method in a system of equations, 
stressing the point of how to use the weak form in the component spaces, but to use the local 
projection limiting in the characteristic fields, and how to implement boundary conditions. A 
l-dimensional system is thus chosen as a model. Different implementation techniques are 
discussed, theories analogous to scalar cases are proven for linear systems, and numerical 
results are given illustrating the method on nonlinear systems. Discussions of handling 
complicated geometries via adaptive triangle elements will appear in future papers. 0 1989 

Academic Press. Inc. 

1. IN~oDUCTI~N 

In [3,4] we constructed and analyzed a new class of finite element methods-we 
call them RK/117P“, or (k + 1)th order TVB Runge-Kutta local projection discon- 
tinuous Galerkin finite element method-for solving the hyperbolic conservation 
law 

Uz+ jJ (fi(u))x,=oT (1.1) 

i= 1 

with suitable initial or initial-boundary conditions. In (1.1) u = (u,, . . . . u,)~, x = 
(X 1, ---, x,), and Cy= i <i(afi/iYu) always has m real eigenvalues and a complete set 
of eigenvectors, with real ti. In [4] we presented the general framework in the case 
d= m = 1, keeping in mind about the possibility of natural extensions to d> 1 
and/or m> 1. For details, history and related work, see [l-4, 8, 10, 11, 13-153. As 

90 
0021~9991/89 $3.00 
Copyright 0 1989 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



TVB DISCONTINUOUS GALERKIN METHOD III 91 

indicated in [4], the main advantages of these methods over most other finite 
element methods are their time explicitness, hence they can be equipped with high 
order TVD Runge-Kutta type time discretizations in [ 151, and their TVB 
provableness in lD, scalar nonlinear case; the main advantage over finite difference 
methods is the flexibility in handling complicated geometries and boundary condi- 
tions. In this paper we carry out the generalization to one dimensional system 
m > 1, d = 1. The multidimensional case d > 1 needs adaptive triangle elements to 
handle complicated geometries, and will be discussed in future papers. 

Theories about (1.1) as well as about numerical methods solving (1.1) are far less 
advanced for the system case m > 1 than for the scalar case m = 1. A numerical 
method will be considered acceptable for practical purposes if it verifies a con- 
vergence theory for the linear system case f(u) = Au (the scheme in this case is 
usually still nonlinear) as well as for the scalar nonlinear case, if it is easily 
implementable to nonlinear systems and if it gives good results for solving non- 
linear systems with discontinuities. We will follow this conventional approach in 
this paper. In Section 2 we will consider initial value problems. We present the 
weak form and the general framework of the scheme and consider different possible 
avenues to apply monotone fluxes at the interfaces and the local projection limiters. 
A total variation bounded estimate, similar to the scalar case m = 1, is proven for 
linear systems. In Section 3 boundary condition implementation is considered. A 
similar total variation bounded estimate is proven, again for linear systems. Sec- 
tion 4 includes some numerical results, mainly for the (nonlinear) Euler’s equation 
in gas dynamics, to illustrate the behavior of our schemes for nonlinear systems. 
The test problems chosen are standard. For comparison with non-oscillatory finite 
difference schemes and other finite element methods, we refer the readers to [S, 7, 
141. Concluding remarks are contained in Section 5. 

2. INITIAL VALUE PROBLEMS 

We consider in this section Eq. (1.1) with m > 1, d= 1 and with a pure initial 
condition (periodic or compactly supported): 

u(x, 0) = u”(x). (2.1) 

As in the scalar case m = 1, we shall lirst discretize (l.l)-(2.1) in the spatial 
variable x. Let Zj = (xi _ 1,2, xj+ &, Z= uj Zj be a partition of the real line. Denote 
AXj=Xj+1/2-Xj-1/2 and h = sup, Axj. The finite element method we are going to 
use is a Galerkin method for which the finite dimensional space V, to which the 
approximate solution uh( t) belongs for t E [0, T] is taken as 

V, = Vz = {p: each of its components pi E BV n L’: 

pi I,, is a polynomial of degree <k}, (2.2) 
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All the general framework developed in [4] for the scalar case, except for the 
choice of monotone flux and the local projection limiting, can be applied here, just 
componentwisely. We have 

Uh(X, t) = i u,uj’)(t) uj”(x) for xeZj, (2.3) 
I=0 

where uj”(x) form a local orthogonal basis over Zj: 

ub”(x) = 1, q)(x) =x-xi, uy’(x)=(x-x.)2-~Ax? J J ,  .  .  .  .  (2.4) 

the coefficients a, are 

180 
a2 = d*?’ . . . . (2.5) 

and the degrees of freedom, u;“(t), are defined by 

1 
lly = l+‘(t) = dx!+’ j u(x, 2) uy~(x) dx, 1= 0, 1, . . . . k. (2.6) 

J 4 

In order to determine the degrees of freedom of uh we proceed as in [4]. We mul- 
tiply (1.1) by v~EV:, integrate over Zj, and integrate by parts formally to obtain 

d 

2i I, s U(X, f)Vh(X)dx+ CA+(Vh(Xj-1/2)f(U(Xj-1/2, t))l 

- 
s 4 

f(u(x, t)) f vh(x) dx = 0, VVh E v;4, (2.7) 

where A + are the usual difference operators A f uj = f(uj, i - a,). As indicated in 
[4], we choose the basis functions (2.4) and the corresponding degrees of freedom 
(2.6) only for easy presentation. The essential ingredients are the weak formulation 
(2.7) and the choice of space (2.2). Other basis functions can of course be used as 
well. 

Next, we replace the exact solution u by its approximation uh, and f(u(xj_ 1,2, t)) 
by some monotone flux (whose choice in the current system case will be determined 
later) hi- 1,2 = h(u,: 1,2, u,: 1,2), where uJC 1,2 = uh(xJ5 1,2, t) are defined by (2.3), 
subject to some local projection limiting to be discussed later. We obtain, after 
some simple algebraic manipulations, 

d 
- u!‘) + - ’ CA+(uj”(x,-,,2)hj-1/21 dt J Ax;+’ 

1 d -- 
Ax!+ ’ f f(uh(x, t)) - up’(x) dx = 0, 

dx 
l=O, 1, . . . . k. (2.8) 

J 4 

The integration in (2.8) can be approximated by a suitable quadrature whose 
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error is at most O(/Z~+~+~), and (2.8) is solved in time by a TVD Runge-Kutta type 
method [4, 151: 

i-l 

(d)(j) = c [a,(d)(‘) + pi, At Lh((uh)“‘, t” + dl At)], 
I=0 

(d)(O) = (d)“, (Up(‘) = (uh)n+ 1. 

For example, 

i = 1, . . . . r, (2.9a) 

(2.9b) 

second order (r = 2): alo = PI0 = 1, a 20 = a21 = 821 = $9 

/120=O;do=0,d,=1;CFL=1, (2.10a) 

third order (r = 3): a,0=Plo=1,~20=~,P20=0, 

azl = 821 = t, a3o = 4, 830 = a31 = 831 = 0, 

a32=b32=$, do=O, d, = 1, d2= 5; 

CFL = 1, (2.10b) 

etc. The starting point of (2.9)-(2.10) is (2.8) written in a concise ODE form: 

d 
& Uh = L,(d, t), (2.11) 

where we include the time variable t in case there are time dependent forcing terms 
or boundary conditions. 

We now turn to the problem of choosing hi+ 1,2 in (2.8) and applying the local 
projection limiting. For this purpose we write (see (2.3)) 

- 
'j+ 112 J =u!O)+~. 

I’ ui”- 1,2 = uy - iij, (2.12) 

and apply the local projection limiting on fij, Gj, as in the scalar case [4]. 
One simple way is to do everything just componentwisely. We define 

ti!mod) = m(Gj, A + uy), A _ uy)), 
J h!mod) =m(bj, A+ II?‘, A- II?‘), 

J 
(2.13) 

where m is a vector minmod function with TVB correction: 

( d(6),> 672hY -..3 (a,),) 

m(al, a2, . . . . a,) = 

~((~,)?m (~2L?z, . . .T  (%J,) 1; 

(2.14) 

where ai= ((a,),, (u,)~, . . . . (u~)~)~ and 

b 13 if lb,1 < Mh2, 

m(br,...,b,)= S.minrGiG. lbil, if (b,l>Mh’,andsign(b,)= . . . =sign(b,)=.s, 

0, otherwise, 
(2.15a) 
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with 

M= gf2, (2.15b) 

or 

h2 
M=M,,=~(3+10~2)M2h2+l(A+ujO’)ll+l(d-(u~’)),l’ (2.15~) 

and M, is some estimate of the absolute value of the second derivatives of the 
solution near smooth critical points. 

We then use the (local) Lax-Friedrichs flux 

hj+ 112 = b(u~< l/23 uT+ 112 I= iCf(U,Q 1,~) + f(UT+ 112) - aj+ y2(Ui++ 1/2 - U,& 1,211, 

(2.16a) 

with 

aj+ 112 = max Cl$!5,,l, l$f!1/2l 1 (local Lax-Friedrichs), (2.16b) 
l=GpCm 

or 

a,-+ 1,2 = a = max IAjp?:,,l 
is P 

(Lax-Friedrichs ), (2.16~) 

where A$,2, p = 1, . . . . m, are the m real eigenvalues of the Jacobian 
wwI”=“/k+,,,. 

Notice that we do not need to evaluate the Jacobian or its eigenvectors, just 
its eigenvalues. Thus computationally it is very simple. Unfortunately this simple 
version does not have a TVB theory, even for linear systems. Computationally we 
do observe wriggles (see Section 4), although these wriggles are usually rather small 
for second-order schemes. 

To achieve better qualities at the price of more complicated computations, we use 
characteristic held decompositions. In terms of formal accuracy any average can be 
used. For first order schemes Roe average gives better shock transitions. Our 
experience is that for higher order methods the difference between the Roe average 
and the simple arithmetic mean diminishes. We denote by Aj+ 1,2 = (af/au),=Uj+,,, 
some “average” Jacobian, e.g., uj+ 1,2 = (u/(o) + UT! I )/2 (simple arithmetic mean) or 
(for Euler equations of gas dynamics) uj+ 1,2 = R(uy), uzr), where R is the Roe 
average [ 121. We denote the eigenvalues and left and right eigenvectors of Aj+ 1,2 
by I!p’ 

J+ 1/23 
l(P) 

j-t 1/2¶ r$,2p P = 
1 , . . . . m, normalized so that I$p?ri2 . rp+’ 1,2 = 6,,. Then, in 

computing hi + 1,2, we project everything to the eigenspace of Aj+ 1,2, 

a(P) = l(P) 
j+ 1/2 . a9 (2.17) 

where we take a = iij, iij + 1, II?), II,!“+‘, , A - uy), A + uy’, A + uy+‘, . We then apply the 
local projection limiting in each characteristic field: 
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(g)(p)(mod) = wq(fij)‘P’, (A + ujyp), (A _ q))(p)), 
J 

(2.18a) 

(~j+l)(P)(mod)=m((~j+l) (P), (A + u/jo))(P), (A + u:.“,‘,)‘“‘). (2.18b) 

(We will drop the superscript “mod” in the following.) We form 

(UJ+- 1,2)(p) = (UP))(P) + (,.)(P) 
J J ’ 

(ui’+ l,2)(p) = (u,!o,‘,)‘P’- (ij, p 3 (2.19) 

return to the component space 
m 

a = 1 &)r!p) 
J+ 112, (2.20) 

p=l 

by taking a = uJ: ,,2, compute fJ?+ 1,2 = f(ui’+ 1,2), compute (fJ?+ ,,2)(p) by (2.17), then 
use any scalar monotone flux or E-flux [ 111 in the pth characteristic field, 
p = 1, . . . . m. For example, we may use the local Lax-Friedrichs flux 

$p?li2 = iC(fj’, 1i2)‘p) + (fJ< 1j2)(p) - 4p+)112(($+ 1,2)(p)- (uJ7+ 1,2)‘p91, Wla) 

with 
~$$)~,~=rnax(l1j~)I, IAj$)rI), (2.21b) 

(for convex case only, otherwise the maximum should be taken in the whole 
interval) or the Roe flux with entropy correction 

1 

(f,'+ l,2)(p)? no sonic point and 3”1(:‘1,2 < 0, 

l&P’ J + 112 = (fJT 1,2)(p’, no sonic point and A!p) J+1,2>‘, 

same as in (2.2 1 ), otherwise. 

We finally get hj+ I,2 by (2.20) with a = hi+ 1,2: 

hj+ 112 = f hjp?1,2rJ(p?1,2. 
p=l 

(2.22) 

(2.23) 

Computationally this approach needs much more work. However, it works better 
both theoretically and numerically. Theoretically we have the following proposition, 
similar to the results for scalar case [4], for linear systems. 

PROPOSITION 2.1. Scheme (2.8 k(2.9)-(2.23) is TVBM (total variation bounded in 
the means II(‘) and TVB, under the total variation definition (see (2.17) for notations) 

TV(u”‘) = c ‘f I(u::~,‘~)(~)- (u~))(~)I, T&)=c 5 I(u~+~)‘“‘-(u~)‘“‘~, 
j  p=l j  p=l 

(2.24) 

for linear system f(u) = Au, where A is a constant matrix, hence has a convergent 
subsequence in this case. 
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Proof: Since Ajp+‘1,2, fjp?1,2, rj$),,, do not vary with j, in each characteristic field, 
(U(O))(~) will satisfy a scalar TVB scheme in [4]. The same argument as in the scalar 
case [4] now leads to TVBM and TVB. 1 

Notice that the scheme in this case is still nonlinear. The result can be generalized 
to A = A(x). For numerical results see Section 4. 

3. INITIAL BOUNDARY VALUE PROBLEMS 

We now turn our attention to the initial boundary value problems. For simplicity 
we take the interval (0, + co) and consider one boundary at x = 0 only. The general 
case of two boundaries can be handled similarly. If at the boundary x = 0 

A”‘< . . . </I’“’ < 0 < 2’s+ l) < . . . < I’“‘, (3.1) 

where A@) are the eigenvalues of af/a u I* = o, then a well-posed boundary condition 
takes the form (see (2.17) for notations): 

(@l(--;;;;l’) = B(t) (;;@;;: 1;) + g(t), (3.2) 

where B(t) is a (m-s) x s matrix with Lipschitz continuous components, g(t) is a 
(m -3) x 1 vector with bounded variation. 

We put the boundary at x- ,,2 = 0 and implement the boundary condition (3.2) 
as 

(u~,,p= (u+ )(P) 
-l/2 7 

(fjO)‘P)@Od) = m((fi,)‘P), (A + UgJ’p’), 

(Jo)(P)(mod) = m((z50)‘p), (A + 24gyq 

(3.3a) 

for p = 1, . . . . s; 

(fio)(P)‘mod) = )?z (;o)(p), (A + q)(P), 2 @‘) (3.3b) 

- i Bp-ss,Mc1,2)(1)+ MN,-s ( 3 
I= 1 >>> 

(Q(PKmod) = m((ii,)(P), (A + tf~“‘)‘“‘,, 

for p = s + 1, . . . . m. 
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Notice that, as in the scalar case [4], accuracy is not affected by the limiters. We 
then have the following proposition. 

PROPOSITION 3.1. Scheme (2.8b(2.9b(2.23)--(3.3) is TVBM, under the total 
variation definition for the mean u(O), 

TV(U’O’) = 1 (Q i + i ) I(ujyJP’- (ujyq, (3.4) 
j ,  -1 p=l p=s+l 

with Q=max(L2 IIBIII)=max(l,2maxo.,..,.,.,C~=-,” IBc(t)l), and 

p = 1, . ..) S 

(u’o\)‘P’ E (3.5) 

i Bp-s,~(t)(ubo9(‘) + k(t)),-,, P = s + 1, . . . . m, 
I= 1 

and TVB under the total variation definition (2.24), f or 1 inear constant coefficiented 
system f(u) = Au. 

Proof: We only need to prove the result for the Euler forward version of (2.8). 
Following the lines of proofs in [4, Proposition 3.11 we have 

((q’)‘P’)“+ I= ((24:‘“‘py + q&A +((ujO’)‘P’)” - Djp)1,2A -((u~‘)‘p’)n, 

for j 2 1, p = 1, . . . . mandj=O,p=s+l,..., m,and 

((~~~‘)(f”)~+’ = ((u?‘)(p))” + +;A +((~~~‘)‘p’)“, 

for p = 1, ,.,, s, where all the C’s and D’s are non-negative, module O(h’). 
Following the lines of proof in [ 14, Theorem 3.11, we then have, for 

p = s + 1, . . . . m, 

A+((u’0’,)‘“‘)“+‘= (1 - D(pii2) A+((u’o’,)‘P’)” 

+ C$‘;~+((U~‘)‘~‘)“- (g(t”+‘)- g(P)),-, 
s 

- c (BP-,,,(tn+ ‘)((u~~‘)“‘)“+’ - B,_,,,(t”)((ubo’)“‘)“). 
I= 1 

Hence, after some technical manipulations similar to [ 14, Theorem 3.11, we arrive 
at 

TV((U(“))~+‘)= c (Q i + f ) Id+((~~))(~))~+‘l 
j2 -1 p=l p=s+l 

< TV((uco’)“)- f: Q-zmfs IB;+‘I C$ IA+(u~))(~)~ 
p=l I=1 > 

m  - s 

+LA~TV((U’~‘)“)+ I- I(g(t”+L)-g(tn))pl +HAt, 
p=l 
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where the L dt TV(u”‘) term is related to the Lipschitz condition of B(t), it does 
not appear if B(t) is a constant matrix. The H At term is related to the TVB correc- 
tion constant M in (2.15); it does not appear if M = 0. 

The remainder of the proof is straightforward. 1 

Remark 3.2. As in [ 141, the total variation definition in (3.4) has different 
weights for incoming and outgoing components. This is motivated by the differen- 
tial equation theory and guarantees total variation diminishing of the boundary 
treatment (3.3) under this definition of total variation; i.e., if B(t) is a constant 
matrix, g=O, M=O in (2.15), then TV((U’~‘)“+‘)<TV((U’~‘)“). 

4. NUMERICAL RESULTS 

For simplicity we use equally spaced cells, although the methods can be easily 
implemented for non-uniform cells. For time-dependent problems with the location 
of discontinuities moving in time, the cells should also move accordingly. We shall 
not discuss this further here. 

EXAMPLE 1. We consider the Riemann problems of the Euler equation of gas 
dynamics for a polytropic gas, 

u, + f(u), = 0, u(x, 0) = uO(x) = uLy 
x < 0, 

uR, x > 0, 
(4.la) 

u = (P, m, O*, f(u) = qu + (0, P, qP)=, (4.lb) 
with 

P = (Y - 1 )(E - 1pq2), m=pq; (4.lc) 

y = 1.4 is used in the following computation. For details of the Jacobian, its eigen- 
values, eigenvectors, etc., see [S, 12-J. 

Two sets of initial conditions are considered. One is proposed by Sod [ 171: 

(PLY 4L.9 PL) = (1, 071); 

The other is used by Lax [9]: 

(PRY qR, PRk (o.i25y O, O.l”). (4.2a) 

(pL, qL, pL) = (0.445, 0.698, 3.528); (pR, qR, PR) = (0.5, 0,0.571). (4.2b) 

We test our second-order and third-order schemes, i.e., k = 2 and 3 in (2.8), r = 2 
and 3 in (2.10). Both componentwise limiters (2.13~(2.16a), (2.16b) and charac- 
teristicwise limiters (2.18 k(2.22) are tested. Local Lax-Friedrichs flux (2.16a), 
(2.16b), and (2.21) are used. The results of componentwise limiters for (4.2a) are in 
Figs. l-6.’ We have not included the figures for (4.2b) because they are 

’ In all figures, solid lines are for the exact solutions or converged solutions, and “+” or “0” are for 
the numerical solutions (just one point per cell is printed). In Figs. l-20, we solve (4.1 t(4.2a) to t = 2.0, 
and (4.1)-(4.2b) to f  = 1.3, using 100 cells. Density, velocity, and pressure are pictured for each case. 
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o~ot,,,,l,,,,l,,,,l,~,,l,,,,l,,,,l 
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FIG. 1. Second-order, componentwise limiter (4.2a), density. 

FIG. 2. Second-order, componentwise limiter (4.2a), velocity. 
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FIG. 3. Second-order, componentwise limiter (4.2a), pressure. 
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1.0 t 

0.8 c 

0.6 t 

0.4 
1 

0.2 c 

+ 7 
L ++ L 

L 
0.0 J’J”‘, 0 “1”““““’ I”““] 

-4 -2 0 2 4 

FIG. 4. Third-order, componentwise limiter (4.2a), density. 

-4 -2 n 2 4 
FIG. 5. Third-order, componentwise limiter (4.2a), velocity. 

0.6 
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FIG. 6. Third-order, componentwise limiter (4.2a), pressure. 
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FIG. 

FIG. 
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7. Second-order, characteristicwise limiter (4.2a), density. 7. Second-order, characteristicwise limiter (4.2a), density. 
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Second-order, characteristicwise limiter (4.2a), velocity. 
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9. Second-order, characteristicwise limiter (4.2a), pressure. 
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0.2t”“‘““‘““‘“““““““i 
-4 -2 0 2 4 

FIG. 10. Second-order, characteristicwise limiter (4.2b). density. 

t I I 

FIG. 11. Second-order, characteristicwise limiter (4.2b), velocity. 

+ 

111111111,1 z I1 I/ s?+YYY++. 
-4 -2 0 2 4 

FIG. 12. Second-order, characteristicwise limiter (4.2b), pressure. 
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I”“l”“I’r” I ‘I ,‘I”“: 
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FIG. 13. Third-order, characteristicwise limiter (4.2a), density. 
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FIG. 14. Third-order, characteristicwise limiter (4.2a), velocity. 
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FIG. 15. Third-order, characteristicwise limiter (4.2a), pressure. 
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L L ++ ++ 
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FIG. 16. Third-order, characteristicwise limiter (4.2b), density. FIG. 16. Third-order, characteristicwise limiter (4.2b), density. 
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FIG. 17. Third-order, characteristicwise limiter (4.2b), velocity. 
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FIG. 18. Third-order, characteristicwise limiter (4.2b), pressure. 
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qualitatively similar. The results of characteristicwise limiters are in Figs. 7-18. As 
expected, we can see some wriggles in the componentwise version (and the wriggles 
become more severe with the third-order scheme) and good behaviors in the 
characteristicwise version. For Figs. 1-18 we use M2 = 0 in (2.15b). Because of the 
simple structure of the solutions, we do not see the advantage of the third-order 
scheme over the second-order one. In fact we observe more smearing in the third- 
order case, due to a stronger limiting. Relaxing the limiting by taking Mz= 50 
improves the smearing at the price of slight over- and under-shoots. Compare 
Figs. 19 and 20 with 13 and 16. 

We remark that the contact discontinuities and the corners of rarefaction waves 
are smeared more than the shocks. Some artificial compression or “sub-cell resolu- 
tion” [6, 161 should help. 

EXAMPLE 2. We consider the interaction of blast waves of the Euler equation 
(4.1) with 

UL9 Obx<O.l, 

4x, 0) = u.44, 0.1 Qx<0.9, (4.3) 

urn 0.9 <x < 1, 

where pL = p,,, = pR = 1, qL = qw = qR = 0, pL = 103, p,,, = lo-*, pR = lo*. A reflect- 
ing boundary condition is applied to both ends. See [ 18,5]. 

The results are in Figs. 21-24. The solid line is a converged solution taken from 
[16]. We see that the pictures are satisfactory, except for the above-mentioned 
smearing of contact discontinuities, which seems more serious for the third-order 
scheme. For this problem we have not noticed any significant difference for taking 
M2 in (2.15b) from 0 to 300. During the collision any finite M2 may underestimate 
the second derivative. 

EXAMPLE 3. To demonstrate the advantage of higher order methods, we use the 
Euler equation (4.1) with initial condition 

(pL, qL, pL) = (3.857143,2.629369, 10.333333), 

(PRY qR, PR) = t1 + o.2 sin(5x), 0, I), 

when x < -4, 

when x2 -4. 
(4.4) 

This example was used in [16]. It contains both shocks and line structures in 
smooth regions-a simple model for shock-turbulence interactions. Our results are 
shown in Figs. 25-30. The solid lines are taken from [ 163 and can be regarded as 
a converged solution. We can see that the third-order TVD schemes (Fig. 25) and 
the TVB (Fig. 26) scheme with M, = 30 in (2.15b) give poor results with 400 cells, 
while the third-order TVB scheme with M, = 300 gives good results even with only 
100 cells (Figs. 27-29), performing actually better than the third-order EN0 
schemes in [16]. Comparing Fig. 30 with Fig. 28, we can see that the third-order 
scheme performs much better in this case than the second-order one. 
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FIG. 19. Third-order, characteristicwise limiter (4.2a), density, M, = 50. 
1.4 I, /, I r I, I / I I, / 

1.2 - 

1.0 - 

0.8 - 1 

0.6 - 

0.4 - 

0.2 " / 'I" ' ' " " "'I 1 " " -6 -4 -2 0 2 4 6 
FIG. 20. Third-order, characteristicwise limiter (4.2b), density, M, = 50. 
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FIG. 21. Second-order, characteristicwise limiter, 200 points, density. 
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FIG. 22. Second-order, characteristicwise limiter, 400 points, density. 
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FIG. 23. Third-order, characteristicwise limiter, 200 points, density. 
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FIG. 24. Third-order, characteristicwise limiter, 400 points, density. 
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FIG. 25. Third-order TVD, (4.4), 400 points, density. 
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FIG. 26. Third-order TVB with M, = 30, (4.4), 400 points, density. 
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FIG. 27. Third-order TVB with M, = 300, (4.4), 400 points, density. 



TVB DISCONTINUOUS GALERKIN METHOD III 

1 

0 

FIG. 28. Third-order TVB with M2 = 300, (4.4), 200 points, density. 
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FIG. 29. Third-order TVB with M2 = 300, (4.4), 100 points, density, 
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FIG. 30. Second-order TVB with M2 = 300, (4.4), 200 points, density. 
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We point out here that unlike the scalar case [4] where M, can be estimated 
from the initial conditions, for nonlinear systems M, has to be ajusted according to 
the solutions. If M, is adjusted adequately, the higher order schemes can perform 
extremely well. 

EXAMPLE 4. We use our second-order and third-order methods (2.8 )-(2.10) 
with the boundary treatment (3.3), to solve the equation 

(:),=( -:, Y)(Z),~ 
with the initial boundary conditions 

and 

u(x, 0) = u(x, 0) = sin 271x, O<x<l, 

u(0, t) = -u(O, t), o(1, t)= -U(l, t), 

u(x, 0) = 0, x20, 
u(0, t) = o(0, t). 

(4.5) 

(4.6a) 

(4.6b) 

The numerical errors at t = 2 for (4.5~(4.6a) are listed in Table I. We can see that 
the boundary treatment works very well for smooth problems. 

The solutions of (4.5~(4.6b), at t = 0.5 and t = 1.0, are in Figs. 31-36. We can see 
that the boundary treatment is total variation stable. The smearing is again due 
to the fact that the equation is linear, and we expect improvements by artificial 
compressions or sub-cell corrections [6, 161. 

Finally, let us point out that we only considered time dependent problems in this 
paper. We have not included the very important class of steady state problems, 

TABLE I 

Second order Third order 

AX L, i- L, i- LC r L, r 

u +j 0.21 x 10-l 0.13 x 10-l 0.42 x 1O-3 0.17 x 1o-3 
f 0.49 x 1o-2 2.08 0.32x lo-’ 2.07 0.37 x 1om4 3.51 0.17x 1O-4 3.28 
z&j 0.12 x 1o-2 2.03 0.77 x 10m3 2.03 0.38 x lo-’ 3.31 0.20x 1o-5 3.15 

0 & 0.21 x 10-l 0.13 x 10-l 0.29 x 1O-3 0.13 x 10-j 
& 0.49 x lo-* 2.08 0.32x lo-’ 2.07 0.35 x 1om4 3.06 0.15 x 1o-4 3.14 
&j 0.12 x 1om2 2.03 0.77 x 10m3 2.03 0.42 x 1O-5 3.07 0.18 x 10m5 3.06 

Note. L,: L--error; L,: L,-error; r = numerical order of convergence. 
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FIG. 31. Second order, t = 0.5, u. 
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FIG. 32. Third order, t = 0.5, II. 
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FIG. 33. Second order, r = 0.5, V. 
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FIG. 34. Third order, f = 0.5, u. 
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FIG. 35. Second order, t= 1, u. 
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FIG. 36. Third order, I = 1, u. 
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mainly because we have used Runge-Kutta methods (2.9~(2.10) which, with high 
temporal orders and relatively small cfl numbers, are more suitable for time 
dependent calculations. 

5. CONCLUDING REMARKS 

The extension of our earlier work about a class of TVB explicit discontinuous 
Galerkin methods [3,4] to l-dimensional systems seems to work very well. 
Theoretically, we have proven TVB for linear systems with either initial or initial- 
boundary conditions. Numerically, for the nonlinear Euler’s equation of gas 
dynamics, we have obtained results which in most cases are comparable to the 
recent non-oscillatory finite difference methods [S, 161. Two-dimensional computa- 
tions using general triangulations constitute current research. 
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