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In this paper we construct high-order weighted essentially non-oscillatory schemes
on two-dimensional unstructured meshes (triangles) in the finite volume formulation.
We present third-order schemes using a combination of linear polynomials and fourth-
order schemes using a combination of quadratic polynomials. Numerical examples
are shown to demonstrate the accuracies and robustness of the methods for shock
calculations. c© 1999 Academic Press
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1. INTRODUCTION

ENO (essentially non-oscillatory) schemes (Hartenet al. [16], Shu and Osher [28, 29])
have been successfully applied to solve hyperbolic conservation laws and other convection
dominated problems, for example in simulating shock turbulence interactions (Shu and
Osher [29], Shuet al. [30], and Adams and Shariff [2]), in the direct simulation of com-
pressible turbulence (Shuet al.[30], Walsteijn [35], and Ladeindeet al.[20]), in solving the
relativistic hydrodynamics equations (Dolezal and Wong [8]), in shock vortex interactions
and other gas dynamics problems (Casper and Atkins [6] and Erlebacheret al. [10]), in
incompressible flow calculations (E and Shu [9] and Harabetianet al. [13]), in solving the
viscoelasticity equations with fading memory (Shu and Zeng [31]), in semiconductor device
simulation (Fatemiet al. [11] and Jerome and Shu [17, 18]), and in image processing and
level set methods (Osher and Sethian [24], Sethian [26], and Siddiqiet al.[32]). The original
ENO paper by Hartenet al.[16] was for a one-dimensional finite volume formulation. Later,
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this finite volume formulation of ENO schemes was extended to two-dimensional structured
meshes by Harten [14] and by Casper [5], and to unstructured triangular meshes by Abgrall
[1], Harten and Chakravarthy [15], and Sonar [34]. Finite volume ENO schemes based on
a staggered grid and Lax–Friedrichs formulation were given in Biancoet al. [4]. Although
finite difference versions of ENO schemes [28, 29] are more efficient for multidimensional
calculations, finite volume schemes have the advantage of easy handling of complicated
geometry by arbitrary triangulations.

Weighted ENO (WENO) schemes were developed later to improve upon ENO schemes,
in Liu et al.[23] and Jiang and Shu [19]. Advantages of WENO schemes over ENO include
the smoothness of numerical fluxes, better steady-state convergence, and better accuracy
using the same stencils. Levyet al. [22] designed one-dimensional finite volume WENO
schemes based on a staggered grid and Lax–Friedrichs formulation.

For a review of ENO and WENO schemes, see [27].
Recently, Friedrich [12] constructed WENO schemes on unstructured meshes using a

covolume formulation as in Abgrall [1]. The WENO schemes in [12] only achieve the
same order of accuracy as the corresponding ENO schemes when the same set of stencils is
considered. This is not optimal, as was known in Jiang and Shu [19] for structured meshes.

In this paper, we present higher order WENO schemes on triangular meshes when using
the same set of ENO stencils. We will construct third-order schemes using a combination
of two-dimensional linear polynomials and fourth-order schemes using a combination of
two-dimensional quadratic polynomials.

We will first sketch the procedure to construct the high-order linear schemes. The formu-
lation at this stage is important to accommodate nonlinear WENO weights later. We then
describe the third- and fourth-order WENO schemes. Numerical examples will be given, to
demonstrate the accuracy and resolution of the constructed schemes. Concluding remarks
are included at the end.

2. FINITE VOLUME FORMULATION

In this paper we solve the two-dimensional conservation law

∂u

∂t
+ ∂ f (u)

∂x
+ ∂g(u)

∂y
= 0 (2.1)

using the finite volume formulation. Computational control volumes are simply triangles.
Taking the triangle4i as our control volume, we formulate the semi-discrete finite volume

scheme of Eq. (2.1) as

d

dt
ūi (t)+ 1

|4i |
∫
∂4i

F · n ds= 0, (2.2)

whereūi (t) is the cell average ofu on the cell4i , F = ( f, g)T , andn is the outward unit
normal of the triangle boundary∂4i .

The line integral in (2.2) is discretized by aq-point Gaussian integration formula,

∫
∂4i

F · n ds≈ |∂4i |
q∑

j=1

ω j F(u(G j , t)) · n, (2.3)
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andF(u(G j , t)) ·n is replaced by a numerical flux. The simple Lax–Friedrichs flux is used
in all our numerical experiments, which is given by

F(u(G j , t)) · n ≈ 1

2
[(F(u−(G j , t))+ F(u+(G j , t))) · n− α(u+(G j , t)− u−(G j , t))],

(2.4)

whereα is taken as an upper bound for the eigenvalues of the Jacobian in then direction,
andu− andu+ are the values ofu inside the triangle and outside the triangle (inside the
neighboring triangle) at the Gaussian point.

Since we are constructing schemes up to fourth-order accuracy, two-point Gaussian
q= 2 is used, which hasG1= cP1+ (1− c)P2, G2= cP2+ (1− c)P1, c= 1

2 +
√

3
6 and

ω1=ω2= 1
2 for the line with endpointsP1 andP2.

3. RECONSTRUCTION AND LINEAR SCHEMES

Let Pk denote the set of two-dimensional polynomials of degree less than or equal to
k. The reconstruction problem, from cell averages to point values, is as follows: given a
smooth functionu, and a triangulation with triangles{40,41, . . . ,4N}, we would like to
construct, for each triangle4i , a polynomialp(x, y) in Pk that has the same mean value
asu on4i , and is a(k+ 1)th-order approximation tou on the cell4i . The mean value of
a functionu(x, y) on a cell4i is defined as

ūi ≡ 1

|4i |
∫
4i

u(x, y) dx dy. (3.1)

In order to determineK = (k+ 1)(k+ 2)
2 degrees of freedom in akth degree polynomialp,

we need to use the information of at leastK triangles. In addition to4i itself, we may take
its K − 1 neighboring cells, and we rename theseK triangles asSi ={Ä1, Ä2, . . . , ÄK },
Si is called a stencil for the triangle4i . If we require thatp has the mean valuēu j onÄ j

for all 1≤ j ≤ K , we will get a K × K linear system. If this linear system has a unique
solution,Si is called anadmissiblestencil. Of course, in practice, we also have to worry
about any ill-conditioned linear system even if it is invertible. For linear polynomialsk= 1,
a stencil formed by4i and two of its neighbors is admissible for most triangulations.

3.1. Third-Order Reconstruction

To construct a third-order linear scheme (a scheme is called linear if it is linear when
applied to a linear equation with constant coefficients) as a starting point for the WENO
procedure, we need a quadratic polynomial reconstruction. Notice that, as a linear scheme,
the stencil of this quadratic polynomial depends not on the solution, but only on the local
geometry of the mesh. It seems that one robust way is the least-square reconstruction
suggested by Barth and Frederickson [3]. For the control volume of triangle40 (see Fig. 3.1),
let4i ,4 j ,4k be its three neighbors, and4ia,4ib be the two neighbors (other than40) of
4i , and so on. We determine the quadratic polynomialp2 by requiring that it have the same
cell average asu on40, and also it matches the cell averages ofu on the triangles in the set

{4i ,4ia,4ib,4 j ,4 ja,4 jb,4k,4ka,4kb},
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FIG. 3.1. A typical stencil.

in a least-squaresense (as this is an overdetermined system). Notice that some of the
neighbors’ neighbors (4ia,4ib,4 ja, . . .) may coincide. For example,4ib might be the
same as4 ja . This, however, does not affect the least-square procedure to determinep2.

A key step in building a high-order WENO scheme based on lower order polynomials is
carried out in the following. We want to construct several linear polynomials whose weighted
average will give the same result as the quadratic reconstructionp2 at each quadrature point
(the weights are different for different quadrature points).

We first build the following nine linear polynomials by agreeing with the cell averages ofu
on the following stencils:p1 (on triangles: 0, j, k), p2 (on triangles: 0, k, i ), p3 (on triangles:
0, i, j ), p4 (on triangles: 0, i, ia), p5 (on triangles: 0, i, ib), p6 (on triangles: 0, j, ja), p7

(on triangles: 0, j, jb), p8 (on triangles: 0, k, ka), andp9 (on triangles: 0, k, kb).
For each quadrature point(xG, yG), we want to find the linear weightsγs, which are

constants depending only on the local geometry of the mesh, such that the linear polynomial
obtained from a linear combination of theseps,

R(x, y) =
9∑

s=1

γs ps(x, y), (3.2)

satisfies

R(xG, yG) = p2(xG, yG), (3.3)

where p2 is defined before using the least-square procedure, for arbitrary choices of cell
averages

{ū0, ūi , ū j , ūk, ūia, ūib, ū ja, ū jb, ūka, ūkb}. (3.4)

Since both the left side and the right side of the equality (3.3) are linear in the cell averages
(3.4), for the equality to hold for arbitrarȳu’s in (3.4) one must have all 10 coefficients of the
ū’s to be identically zero (when all terms are moved to one side of the equality), which leads
to 10 linear equations for the nine weightsγs. This looks like an overdetermined system,
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but is in fact underdetermined of rank 8, allowing for one degree of freedom in the choice
of the nineγs.

Before explaining this, we first look at a simpler but illustrative one-dimensional example.
Let us denoteI j , j = 0, 1, 2, as three equal-sized consecutive intervals. The two linear
polynomialsps, wherep1 agrees withu on cell averages in the intervalsI0 and I1, andp2

agrees withu on cell averages in the intervalsI1 andI2, give the following two second-order
approximations to the value ofu at the pointx3/2 (the boundary ofI1 and I2):

−1

2
ū0+ 3

2
ū1,

1

2
ū1+ 1

2
ū2. (3.5)

The quadratic polynomialp2, which agrees withu on cell averages in the intervalsI0, I1,
and I2, gives the following third-order approximation to the value ofu at the pointx3/2:

−1

6
ū0+ 5

6
ū1+ 1

3
ū1. (3.6)

We would like to findγs such that

γ1

(
−1

2
ū0+ 3

2
ū1

)
+ γ2

(
1

2
ū1+ 1

2
ū2

)
= −1

6
ū0+ 5

6
ū1+ 1

3
ū1 (3.7)

for arbitraryū’s. This leads to the three equations

−1

2
γ1 = −1

6
,

3

2
γ1+ 1

2
γ2 = 5

6
,

1

2
γ2 = 1

3
,

for the two unknownsγ1 andγ2. It looks like an overdetermined system but is in fact rank
2 and has a unique solution

γ1 = 1

3
, γ2 = 2

3
.

The reason can be understood if we ask for the validity of the equality (3.7) in the cases of
u= 1,u= x, andu= x2. Clearly if (3.7) holds in these three cases then it holds for arbitrary
choices ofū’s. The crucial observation is that (3.7) holds for bothu= 1 andu= x as long
asγ1+ γ2= 1, as all three expressions in (3.5) and (3.6) reproduce linear functions exactly.
Hence the equality (3.7) is valid for all the three casesu= 1, u= x, andu= x2 with only
two conditions:γ1+ γ2= 1 and another one obtained whenu= x2, resulting in a solvable
2× 2 system forγs.

The same argument can be applied in the current two-dimensional case. Although there
are 10 linear equations for the nine weightsγs resulting from equality (3.3), we should
notice that equality (3.3) is valid for all three casesu= 1, u= x, andu= y under only one
constraint onγs, namely

∑9
s=1 γs= 1, again becauseps(x) and p2(x) all reproduce linear

functions exactly. Thus we can eliminate 2 equations from the 10, resulting in a rank 8
system with one degree of freedom in the solution forγs. In practice, we obtain the solution
γs for s ≥ 2 with γ1 as the degree of freedom.

The first effort we would like to make is to use this degree of freedom to obtain a set of non-
negativeγs, which is important for the WENO procedure to be developed later for shock
calculations. Unfortunately, it turns out that, for many triangulations, this is impossible.
Some grouping is needed and will be discussed later.
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3.2. Fourth-Order Reconstruction

To construct a fourth-order linear scheme as a starting point for the WENO procedure,
we need a cubic polynomial reconstruction, which has 10 degrees of freedom. We thus
only consider the case whereia, ib, ja, jb, ka, kb are distinct in the stencil (see Fig. 3.1).
We construct the cubic polynomialp3 by requiring that its cell average agree with that
of u on each triangle in the 10-triangle stencil shown in Fig. 3.1. It seems that for most
triangulations this reconstruction is possible.

Again, the key step in building a high-order WENO scheme based on lower order poly-
nomials is carried out in the following. We would like to construct several quadratic poly-
nomials whose weighted average will give the same result as the cubic reconstructionp3

at each quadrature point (the weights are different for different quadrature points). The
following six quadratic polynomials are constructed by having the same cell averages asu
on the corresponding triangles:

q1 (on triangles: 0, i, ia, ib, k, kb), q2 (on triangles: 0, i, ia, ib, j, ja),

q3 (on triangles: 0, j, ja, jb, i, ib), q4 (on triangles: 0, j, ja, jb, k, ka),

q5 (on triangles: 0, k, ka, kb, j, jb), q6 (on triangles: 0, k, ka, kb, i, ia).

For each quadrature point(xG, yG), we would like to find the linear weights such that
the linear combination of theseqs,

Q(x, y) =
6∑

s=1

γsqs(x, y), (3.8)

satisfies

Q(xG, yG) = p3(xG, yG) (3.9)

for all ū’s.
As before, (3.9) results in 10 linear equations for the six unknownsγs, which are the

coefficients of the 10 cell averages̄u’s in (3.4). This looks like a grossly overdetermined
system, but it is in fact underdetermined with rank 5, thus allowing a solution forγs with
one degree of freedom. A crucial observation is again that (3.9) is valid for all the six cases
u= 1, x, y, x2, xy, y2 under just one constraint on theγs, namely

∑9
s=1 γs= 1, because

qs(x)andp3(x)all reproduce quadratic functions exactly. We can thus eliminate 5 equations
from the 10, resulting in a rank 5 system with one degree of freedom in the solution forγs.
In practice, we obtain the solutionγs for s ≥ 2 with γ1 as the degree of freedom.

Again, the first effort we would like to make is to use this degree of freedom to obtain a
set of non-negativeγs, which is important for the WENO procedure to be developed later
for shock calculations. This has been performed for the mostly near-uniform meshes used
in the numerical examples.

3.3. Accuracy Test for the Linear Schemes

From the third- and the fourth-order reconstructions, we can now obtain the third- and
the fourth-order linear schemes for (2.1) by replacingu−(G j , t) in (2.4) with the recon-
structed valuesR(xG, yG) in (3.2) orQ(xG, yG) in (3.8), respectively. Similarly,u+(G j , t)
is replaced with the reconstructed values in the neighboring cell4i .
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FIG. 3.2. Uniform mesh withh= 2
5

for accuracy test.

For the temporal discretization, the third-order TVD Runge–Kutta scheme of Shu and
Osher [28] is used. For the fourth-order scheme, we use4t = (4x)4/3 to achieve fourth-
order accuracy in time, but only for the examples of the accuracy test.

EXAMPLE 3.1. Two-dimensional linear equation

ut + ux + uy = 0, (3.10)

with the initial conditionu0(x, y)= sin( π2 (x+ y)),−2≤ x≤ 2,−2≤ y≤ 2, and periodic
boundary conditions.

We first use uniform triangular meshes which are obtained by adding one diagonal line
in each rectangle, shown in Fig. 3.2 for the coarsest caseh = 2

5. In Table 3.1, the accuracy
results are shown for both the third-order scheme (from the combination of linear poly-
nomials) and the fourth-order scheme (from the combination of quadratic polynomials),
whereh is the length of the rectangles, att = 2.0. The errors presented are those of the cell
averages ofu.

We then use non-uniform meshes, shown in Fig. 3.3 for the coarsest caseh= h0= 1,
whereh is just an average length. The refinement of the meshes is done in a uniform way,
namely by cutting each triangle into four smaller similar ones. The accuracy result is shown
in Table 3.2. We remark thath here is only a rough indicator of the mesh size. There are
more triangles here than in the uniform mesh cases with the sameh.

TABLE 3.1

Accuracy for 2D Linear Equation, Uniform Meshes, Linear Schemes

P1 (third order) P2 (fourth order)

h L1 error Order L∞ error Order L1 error Order L∞ error Order

2/5 1.80E-01 — 2.79E-01 — 1.40E-02 — 2.17E-02 —
1/5 2.81E-02 2.68 4.37E-02 2.68 9.11E-04 3.94 1.41E-03 3.94
1/10 3.65E-03 2.95 5.72E-03 2.93 5.57E-05 4.03 8.72E-05 4.02
1/20 4.60E-04 2.99 7.22E-04 2.99 3.43E-06 4.02 5.39E-06 4.02
1/40 5.76E-05 3.00 9.05E-05 3.00 2.12E-07 4.02 3.34E-07 4.01
1/80 7.21E-06 3.00 1.13E-05 3.00 1.32E-08 4.01 2.07E-08 4.01
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FIG. 3.3. Non-uniform mesh withh= 1 for accuracy test.

EXAMPLE 3.2. Two-dimensional Burgers’ equation

ut +
(

u2

2

)
x

+
(

u2

2

)
y

= 0, (3.11)

with the initial conditionu0(x, y)= 0.3+ 0.7 sin(π2 (x+ y)),−2≤ x≤ 2,−2≤ y≤ 2, and
periodic boundary conditions.

We first use the same uniform triangular meshes as in Example 3.1, shown in Fig. 3.2 for
the coarsest caseh = 2

5. In Table 3.3, the accuracy results are shown for both the third-order
scheme and the fourth-order scheme, att = 0.5/π2 when the solution is still smooth. The
errors presented are those of the point values at the six quadrature points of each triangle,
as in this nonlinear case it is easier to obtain the exact solution of the PDE in point values
than in cell averages.

We then use the same non-uniform meshes as in Example 3.1, shown in Fig. 3.3 for the
coarsest case. The accuracy result is shown in Table 3.4.

EXAMPLE 3.3. Two-dimensional vortex evolution problem for the Euler equations. See
[27] for a description of this problem. We consider the compressible Euler equations of gas
dynamics

ξt + f (ξ)x + g(ξ)y = 0, (3.12)

TABLE 3.2

Accuracy for 2D Linear Equation, Non-uniform Meshes, Linear Schemes

P1 (third order) P2 (fourth order)

h L1 error Order L∞ error Order L1 error Order L∞ error Order

h0/2 1.21E-01 — 2.25E-01 — 4.95E-03 — 1.73E-02 —
h0/4 1.81E-02 2.74 3.74E-02 2.59 2.90E-04 4.09 1.42E-03 3.61
h0/8 2.36E-03 2.94 5.39E-03 2.80 2.21E-05 3.71 8.32E-05 4.09
h0/16 3.00E-04 2.98 7.19E-04 2.91 1.29E-06 4.10 5.09E-06 4.03
h0/32 3.78E-05 2.99 9.40E-05 2.94 7.76E-08 4.06 3.16E-07 4.01
h0/64 4.75E-06 2.99 1.22E-05 2.95 4.75E-09 4.03 1.95E-08 4.02
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TABLE 3.3

Accuracy for 2D Burgers’ Equation, Uniform Meshes, Linear Schemes

P1 (third order) P2 (fourth order)

h L1 error Order L∞ error Order L1 error Order L∞ error Order

2/5 2.67E-02 — 7.75E-02 — 8.63E-03 — 2.18E-02 —
1/5 3.65E-03 2.87 1.16E-02 2.74 6.08E-04 3.83 1.70E-03 3.68
1/10 4.60E-04 2.99 1.52E-03 2.93 3.97E-05 3.94 1.16E-04 3.87
1/20 5.75E-05 3.00 1.91E-04 2.99 2.51E-06 3.98 7.37E-06 3.98
1/40 7.18E-06 3.01 2.38E-05 3.01 1.57E-07 4.00 4.62E-07 4.00
1/80 8.96E-07 3.00 2.97E-06 3.00 9.83E-09 4.00 2.89E-08 4.00

where

ξ = (ρ, ρu, ρv, E),

f (ξ) = (ρu, ρu2+ p, ρuv, u(E + p)),

g(ξ) = (ρv, ρuv, ρv2+ p, v(E + p)).

Hereρ is the density,(u, v) is the velocity,E is the total energy,p is the pressure, and

E = p

γ − 1
+ 1

2
ρ(u2+ v2),

with γ = 1.4.
The mean flow isρ= 1, p= 1, and(u, v)= (1, 1). We add, to the mean flow, an isentropic

vortex (perturbations in(u, v) and the temperatureT = p/ρ, no perturbation in the entropy
S= p/ργ )

(δu, δv) = ε

2π
e0.5(1−r 2)(−ȳ, x̄)

δT = − (γ − 1)ε2

8γπ2
e1−r 2

, δS= 0,

where(x̄, ȳ) = (x − 5, y− 5), r 2 = x̄2+ ȳ2, and the vortex strengthε = 5.

TABLE 3.4

Accuracy for 2D Burgers’ Equation, Non-uniform Meshes, Linear Schemes

P1 (third order) P2 (fourth order)

h L1 error Order L∞ error Order L1 error Order L∞ error Order

h0/2 1.69E-02 — 7.95E-01 — 3.96E-03 — 1.88E-02 —
h0/4 2.23E-03 2.92 1.23E-02 2.69 2.87E-04 3.79 2.17E-03 3.12
h0/8 2.84E-04 2.97 1.69E-03 2.86 1.90E-05 3.92 1.81E-04 3.58
h0/16 3.57E-05 2.99 2.22E-04 2.93 1.20E-06 3.99 1.34E-05 3.77
h0/32 4.48E-06 2.99 3.00E-05 2.89 7.57E-08 3.99 1.00E-06 3.74
h0/64 5.63E-07 2.99 4.26E-06 2.82 4.75E-09 4.00 7.57E-08 3.72
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TABLE 3.5

Accuracy for 2D Euler Equation of Smooth Vortex Evolution, Uniform Meshes,

Linear Schemes

P1 (third order) P2 (fourth order)

h L1 error Order L∞ error Order L1 error Order L∞ error Order

1 1.65E-02 — 2.60E-01 — 5.26E-03 — 7.89E-02 —
1/2 6.31E-03 1.39 1.21E-01 1.10 7.36E-04 2.84 1.62E-02 2.28
1/4 1.31E-03 2.27 2.53E-02 2.26 5.40E-05 3.77 1.03E-03 3.98
1/8 2.21E-04 2.57 4.66E-03 2.44 2.32E-06 4.54 5.36E-05 4.26
1/16 2.98E-05 2.89 6.44E-04 2.86 1.10E-07 4.40 2.48E-06 4.43
1/32 3.77E-06 2.98 8.23E-05 2.97 6.37E-09 4.11 1.25E-07 4.31

The computational domain is taken as [0, 10]× [0, 10], and periodic boundary conditions
are used.

It is clear that the exact solution of the Euler equation with the above initial and boundary
conditions is just the passive convection of the vortex with the mean velocity.

The reconstruction procedure is applied to each component of the solutionξ . We first
compute the solution tot = 2.0 for the accuracy test. The meshes are the same as those in
Example 3.1 suitably scaled for the new spatial domain. The accuracy results are shown
in Table 3.5 for the uniform meshes and Table 3.6 for the non-uniform meshes. The errors
presented are those of the cell averages ofρ.

We then fix the mesh ath= 1
8 (uniform) and compute the long-time evolution of the

vortex. Figure 3.4 is the result by the third-order scheme att = 0 and after 1, 5, and 10
time periods, and Fig. 3.5 is the result by the fourth-order scheme. We show the line cut
through the center of the vortex for the densityρ. It is easy to see the difference between the
third- and fourth-order schemes. The fourth-order scheme gives almost no dissipation even
after 10 periods, while the dissipation is quite noticeable for the long-time results of the
third-order scheme. The mesh chosen is on the borderline of resolution for the fourth-order
scheme and does not give enough resolution for long-time simulation of the third-order
scheme.

TABLE 3.6

Accuracy for 2D Euler Equation of Smooth Vortex Evolution, Non-uniform Meshes,

Linear Schemes

P1 (third order) P2 (fourth order)

h L1 error Order L∞ error Order L1 error Order L∞ error Order

h0/2 1.81E-02 — 2.98E-01 — 7.00E-03 — 8.16E-02 —
h0/4 7.74E-03 1.28 1.44E-01 1.05 1.18E-03 2.57 1.61E-02 2.34
h0/8 1.67E-03 2.21 2.47E-02 2.54 8.17E-05 3.85 1.31E-03 3.62
h0/16 2.86E-04 2.55 4.79E-03 2.37 4.70E-06 4.12 1.10E-04 3.57
h0/32 3.94E-05 2.86 7.95E-04 2.59 2.68E-07 4.13 7.73E-06 3.83
h0/64 5.07E-06 2.96 1.25E-04 2.67 1.56E-08 4.10 5.99E-07 3.69
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FIG. 3.4. 2D vortex evolution: third-order linear scheme.

4. WENO RECONSTRUCTION AND WENO SCHEMES

In this section, we will introduce non-linear weights to make the resulting schemes
suitable for shock computations. To ensure stability near shocks, we need non-negative
weights, and thus we need non-negative linear weights to start with. As there is one degree
of freedom in the choice of linear weights for both the third-order and fourth-order cases
described in the previous section, this will be explored to produce positive linear weights.
In the case of the third-order scheme, grouping of polynomials is also used to achieve
positivity.

4.1. Positivity of Linear Weights for the Third-Order Scheme

We will use the same notation as in the previous section. In (3.2), by consistency,∑9
s=1 γs= 1. We want to group these nine linear polynomials into three groups,

9∑
s=1

γs ps(x, y) =
3∑

s=1

γ̃sp̃s(x, y),

FIG. 3.5. 2D vortex evolution: fourth-order linear scheme.
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eachp̃s(x, y) being still a linear polynomial and a second-order approximation tou, with
positive coefficients ˜γs≥ 0. We also require the stencils corresponding to the three new
linear polynomials̃ps(x, y) to be reasonably separated, so that when shocks are present, not
all stencils will contain the shock under normal situations.

The grouping we will introduce in the following works for most triangulations. There are,
however, cases when it does give some negative coefficients with very small magnitudes,
but it does not seem to affect the stability of WENO schemes built upon them.2

For the first quadrature point on sidei (G1 in Fig. 3.1), Group 1 containsp2 (0, k, i ),
p4 (0, i, ia), andp5 (0, i, ib),

p̃1 = (γ2 p2+ γ4 p4+ γ5 p5)/(γ2+ γ4+ γ5), γ̃1 = γ2+ γ4+ γ5;

Group 2 containsp3 (0, i, j ), p6 (0, j, ja), andp7 (0, j, jb),

p̃2 = (γ3 p3+ γ6 p6+ γ7 p7)/(γ3+ γ6+ γ7), γ̃2 = γ3+ γ6+ γ7;

Group 3 containsp1 (0, j, k), p8 (0, k, ka), andp9 (0, k, kb),

p̃3 = (γ1 p1+ γ8 p8+ γ9 p9)/(γ1+ γ8+ γ9), γ̃3 = γ1+ γ8+ γ9.

The resulting linear polynomial

R̃(x, y) =
3∑

s=1

γ̃sp̃s(x, y) (4.1)

is identical toR(x, y) in (3.2) and in most cases the coefficients ˜γs can be made non-negative
by suitably choosing the value of the degree of freedomγ1, through the solution of a group
of three linear inequalities forγ1.

We remark that for practical implementation, it is the five constantsai which depend on
the local geometry only, such that

p̃1

(
xG1

, yG1) = a1ū0+ a2ūi + a3ūk + a4ūia + a5ūib, (4.2)

that have to be precomputed and stored once the mesh is generated. We do not need to store
any information about the polynomialp̃1 itself.

For the second quadrature point on sidei (G2 in Fig. 3.1), Group 1 containsp3 (0, i, j ),
p4 (0, i, ia), andp5 (0, i, ib), with the combination coefficient ˜γ1= γ3+ γ4+ γ5; Group 2
contains p2 (0, k, i ), p8 (0, k, ka), and p9 (0, k, kb), with the combination coefficient
γ̃2= γ2 + γ8 + γ9; Group 3 containsp1 (0, j, k), p6 (0, j, ja), and p7 (0, j, jb), with
combination coefficient ˜γ3= γ1 + γ6 + γ7. We can do the same thing for the other two
sides( j, k).

2 Recently we have learned, in a joint project with R. Biswas and J. Djomehri on using adaptive methods with
WENO schemes, that this grouping may fail near adaptively refined regions where triangle sizes change very
abruptly. New grouping techniques to overcome this are under investigation.
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4.2. Positivity of Linear Weights for the Fourth-Order Scheme

From Section 3.2, there is a degree of freedom (which was chosen to beγ1) in the
determination of the linear weightsγs in (3.8). Our objective is to use this degree of freedom
to obtain non-negative linear weights. This again amounts to solving a group of six linear
inequalities forγ1. We have found out through our numerical experiments that positivity
of linear weights can only be achieved for nearly uniform meshes. In this paper only such
meshes are used for the fourth-order WENO scheme. The difficulty in doing a grouping
here similar to the third-order case is that the stencil to each group would then be quite
large, and hence shocks may be included in all stencils. Good grouping strategies are still
under investigation.

4.3. Smoothness Indicators and Nonlinear Weights

We finally come to the point of smooth indicators and nonlinear weights. For this we
follow exactly Jiang and Shu [19]. For a polynomialp(x, y) with degree up tok, we define
the following measurement for smoothness,

S=
∑

1≤|α|≤k

∫
4
|4||α|−1(Dα p(x, y))2 dx dy, (4.3)

whereα is a multi-index andD is the derivative operator; for example, whenα= (1, 2)
then |α| =3 and Dα p(x, y)= ∂p3(x, y)/∂x∂y2. The nonlinear weights are then defined
as

ω j = ω̃ j∑
i ω̃i

, ω̃i = γi

(ε + Si )2
, (4.4)

whereγi is thei th coefficient in the linear combination of polynomials (i.e., the ˜γs in (4.1)
for the third-order case and theγs in (3.8) for the fourth-order case),Si is the measurement
of smoothness of thei th polynomialpi (x, y) (i.e., thep̃s in (4.1) for the third-order case and
theqs in (3.8) for the fourth-order case), andε is a small positive number which we take as
ε = 10−3 for all the numerical experiments in this paper. The numerical results are not very
sensitive to the choice ofε in a range from 10−2 to 10−6. In general, largerε gives better
accuracy for smooth problems but may generate small oscillations for shocks. Smallerε is
more friendly to shocks. The nonlinear weightsω j in (4.4) would then replace the linear
weightsγ j to form a WENO reconstruction.

We emphasize that the smoothness measurements (4.3) are quadratic functions of the cell
averages in the stencil. For example, it is the 10 constantsbi andci , which depend on the
local geometry only, such that

S= (b1ū0+b2ūi +b3ūk+b4ūia+b5ūib)
2+ (c1ū0+c2ūi +c3ūk+c4ūia+c5ūib)

2 (4.5)

for the smoothness measurements (4.3) ofp̃1 in (4.1), that have to be precomputed and
stored once the mesh is generated. We do not need to store any information about the
polynomial p̃1 itself.
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4.4. Extension to the Euler Systems

There are two ways to extend the previous results to systems. One is to do so component
by component. This is easy to implement and cost effective, and it seems to work well for the
third-order scheme. We will use componentwise methods for all numerical examples with
the third-order scheme. Another extension method is by the characteristic decomposition.
We will give a brief description in the following.

Let us take one side of the triangle which has the outward unit normal(nx, ny). Let A be
some average Jacobian at one quadrature point,

A = nx
∂ f

∂u
+ ny

∂g

∂u
. (4.6)

For Euler systems, the Roe’s mean matrix [25] is used. Denote byR the matrix of right
eigenvectors andL the matrix of left eigenvectors ofA. Then the scalar triangular WENO
scheme can be applied to each of the characteristic fields, i.e., to each component of the
vectorv= L u. With the reconstructed point valuesv, we define our reconstructed point
valuesu by u= Rv.

4.5. Algorithm Flowchart and Parallel Implementation

We summarize the practical aspects and operation and storage costs of implementing the
method:

• Generate a triangular mesh.
• Compute and store the following mesh-dependent constants:

—The constant coefficients in the linear combinations of cell averages to recover
values ofu at Gaussian points, for each stencil. Examples of these constants are given in
(4.2). There are 5× 3× 6= 90 such constants per triangle for the third-order case (5 for
each of the 3 grouped linear polynomialsp̃s in (4.1), for each of the 6 quadrature points),
and 6× 6× 6= 216 such constants per triangle for the fourth-order case (6 for each of the
6 quadratic polynomials̃qs in (3.8), for each of the 6 quadrature points).

—For the third-order case, the constant coefficients in the linear combinations inside
each of the squares of the smoothness indicatorS in (4.3), for each stencil. Examples of
these constants are given in (4.5). There are 10× 3× 6= 180 such constants per triangle
for the third-order case (10 for each of the 3 grouped linear polynomialsp̃s in (4.1), for
each of the 6 quadrature points). For the fourth-order case, the constant coefficients in the
combination of all the quadratic terms of the smoothness indicatorS in (4.3), for each
polynomialqs in (3.8). There are 21× 6= 126 such constants per triangle (21 quadratic
terms, such as̄u2

0, ū0ūi , . . . , out of the 6ū’s in the stencil, for each of the 6 quadratic
polynomialsqs in (3.8)).

—The total storage requirement per triangle: 270 numbers for the third-order case and
342 numbers for the fourth-order case.
• Start the time iteration. For each time stage:

—For each triangle, compute the lower order reconstructions for each quadrature point
and the nonlinear weights, using the prestored constants.

∗ For the third-order case, per triangle, the number of multiplications is 306 and
the number of additions is 234. This is because for each quadrature point there are 3
reconstructions, for the 3̃ps in (4.1), each with 5 multiplications and 4 additions in (4.2). It
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also involves 3 evaluations of the smooth indicator (4.3), for the 3p̃s in (4.1), each with 12
multiplications and 9 additions in (4.5).

∗ For the fourth-order case, per triangle, the number of multiplications is 468 and
the number of additions is 300. This is because for each quadrature point there are 6
reconstructions, for the 6qs in (3.8), each with 6 multiplications and 5 additions. There are
also 6 evaluations of the smooth indicator (4.3) for the whole triangle, for the 6qs in (3.8),
each with 42 multiplications and 20 additions.

—Compute the numerical flux (2.4) at each quadrature point, then form the residue
and forward in time.

—The total costs per triangle per residue evaluation, including the WENO reconstruc-
tion and flux evaluation (2.4), are 390 multiplications/divisions, 285 additions/subtractions,
and 6 flux evaluations for the third-order scheme, and 594 multiplications/divisions, 375
additions/subtractions, and 6 flux evaluations for the fourth-order scheme. In our imple-
mentation on a SUN Ultra1 workstation, the third-order WENO scheme takes 33.6µs per
triangle per residue evaluation, while the fourth-order WENO scheme takes 35.9µs. This
is about six times the CPU time needed for a linear scheme of the same order of accuracy
implemented in a most economical way.

As an explicit method, the WENO schemes constructed above are easily implemented
on an IBM SP-2 parallel computer. The parallel efficiency is over 90% when 16 processors
are used. Most of the numerical examples with large meshes in the next section are obtained
with the SP-2 parallel computer using 16 processors at the Center for Fluid Mechanics of
Brown University.

5. NUMERICAL EXAMPLES

We will implement the third- and fourth-order WENO schemes developed in the pre-
vious sections to some two-dimensional test problems. First, the same accuracy tests as
in the linear weights case are given for linear, Burgers’ equation and the smooth vor-
tex problem. Next, some non-smooth problems for two-dimensional Euler equations are
tested.

5.1. Accuracy Test for Triangular WENO Schemes

We use the same examples as in Section 3.3 to test the accuracy of third- and fourth-order
triangular WENO schemes constructed in the previous section.

EXAMPLE 5.1. Two-dimensional linear equation as defined in Example 3.1, Eq. (3.10).
The accuracy results are shown in Table 5.1 for the uniform meshes and in Table 5.2 for
the non-uniform meshes. We can see that the correct orders of accuracy are obtained by the
third- and fourth-order WENO methods.

EXAMPLE 5.2. Two-dimensional Burgers’ equation as defined in Example 3.2,
Eq. (3.11). The accuracy results are shown in Table 5.3 for the uniform meshes and in
Table 5.4 for the non-uniform meshes. We can see that the correct orders of accuracy are
again obtained by the third- and fourth-order WENO methods.

To demonstrate the application for shock computations, we continue the the above cal-
culation tot = 5/π2 when discontinuities develop. Figure 5.1 is the result forh = 1/20 of
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TABLE 5.1

Accuracy for 2D Linear Equation, Uniform Meshes, WENO Schemes

P1 (third order) P2 (fourth order)

h L1 error Order L∞ error Order L1 error Order L∞ error Order

2/5 2.66E-01 — 4.30E-01 — 1.38E-02 — 2.94E-02 —
1/5 8.11E-02 1.71 1.93E-01 1.16 1.80E-03 2.94 2.74E-03 3.42
1/10 2.65E-02 1.62 6.16E-02 1.65 8.87E-05 4.34 1.46E-04 4.23
1/20 2.68E-03 3.31 8.77E-03 2.81 4.34E-06 4.35 7.11E-06 4.36
1/40 1.44E-04 4.22 4.88E-04 4.17 2.30E-07 4.24 3.71E-07 4.26
1/80 8.05E-06 4.16 2.40E-05 4.35 1.34E-08 4.10 2.12E-08 4.13

TABLE 5.2

Accuracy for 2D Linear Equation, Non-uniform Meshes, WENO Schemes

P1 (third order) P2 (fourth order)

h L1 error Order L∞ error Order L1 error Order L∞ error Order

h0/2 2.79E-01 — 5.28E-01 — 1.77E-02 — 6.41E-02 —
h0/4 8.43E-02 1.73 2.32E-01 1.19 8.85E-04 4.32 3.07E-03 4.38
h0/8 2.53E-02 1.74 7.47E-02 1.64 4.08E-05 4.44 1.43E-04 4.42
h0/16 2.24E-03 3.50 1.14E-02 2.71 1.82E-06 4.49 6.37E-06 4.49
h0/32 1.18E-04 4.25 6.83E-04 4.06 8.95E-08 4.35 3.36E-07 4.25
h0/64 6.21E-06 4.25 3.15E-05 4.44 4.92E-09 4.19 2.00E-08 4.07

TABLE 5.3

Accuracy for 2D Burgers’ Equation, Uniform Meshes, WENO Schemes

P1 (third order) P2 (fourth order)

h L1 error Order L∞ error Order L1 error Order L∞ error Order

2/5 2.76E-02 — 8.18E-02 — 8.64E-03 — 2.106-02 —
1/5 4.63E-03 2.58 1.20E-02 2.77 6.05E-04 3.84 1.73E-03 3.60
1/10 6.97E-04 2.73 2.16E-03 2.47 3.94E-05 3.94 1.18E-04 3.87
1/20 7.12E-05 3.29 1.90E-04 3.51 2.50E-06 3.98 7.42E-06 3.99
1/40 7.63E-06 3.22 2.36E-05 3.01 1.57E-07 3.99 4.63E-07 4.00
1/80 9.08E-07 3.07 2.96E-06 3.00 9.83E-09 4.00 2.89E-08 4.00

TABLE 5.4

Accuracy for 2D Burgers’ Equation, Non-uniform Meshes, WENO Schemes

P1 (third order) P2 (fourth order)

h L1 error Order L∞ error Order L1 error Order L∞ error Order

h0/2 2.01E-02 — 9.16E-02 — 4.18E-03 — 2.376-02 —
h0/4 3.85E-03 2.38 1.80E-02 2.35 2.90E-04 3.85 2.61E-03 3.18
h0/8 5.79E-04 2.73 3.39E-03 2.41 1.85E-05 3.97 1.92E-04 3.77
h0/16 5.34E-05 3.44 3.55E-04 3.26 1.18E-06 3.97 1.35E-05 3.83
h0/32 5.12E-06 3.38 2.95E-05 3.59 7.45E-08 3.99 9.99E-07 3.76
h0/64 5.82E-07 3.14 4.23E-06 2.80 4.67E-09 4.00 7.56E-08 3.72



WENO SCHEMES ON TRIANGULAR MESHES 113

FIG. 5.1. 2D Burgers’ equation:t = 5/π2, uniform mesh.

a uniform mesh. Figure 5.2 is the result forh = h0/16 of a non-uniform mesh. We can see
that the shock transitions are sharp and non-oscillatory.

EXAMPLE 5.3. Two-dimensional vortex evolution problem as defined in Example 3.3.
The accuracy results are shown in Table 5.5 for the uniform meshes and in Table 5.6 for the
non-uniform meshes. We can see that the correct orders of accuracy are again obtained by
the third- and fourth-order WENO methods.

Figures 5.3 and 5.4 are the results for the long-time evolution of the vortex. These results
are similar to those obtained with the linear schemes in Figs. 3.4 and 3.5.

5.2. Riemann Problems of Euler Equations

The two-dimensional triangular WENO methods are applied to one-dimensional shock
tube problems. We consider the solution of the Euler equations (3.12) in a domain of
[−1, 1] × [0, 0.2] with a triangulation of 101 vertices in thex-direction and 11 vertices
in the y-direction. The velocity in they-direction is zero, and periodic boundary condi-
tion is used in they-direction. Part of the mesh is shown in Fig. 5.5. The pictures shown

FIG. 5.2. 2D Burgers’ equation:t = 5/π2, non-uniform mesh.
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TABLE 5.5

Accuracy for 2D Euler Equation of Smooth Vortex Evolution, Uniform Meshes,

WENO Schemes

P1 (third order) P2 (fourth order)

h L1 error Order L∞ error Order L1 error Order L∞ error Order

1 1.87E-02 — 2.95E-01 — 1.30E-02 — 2.05E-01 —
1/2 1.01E-02 0.89 2.09E-01 0.50 2.50E-03 2.38 4.45E-02 2.49
1/4 2.78E-03 1.86 6.37E-02 1.71 1.79E-04 3.80 3.29E-03 3.76
1/8 6.47E-04 2.10 3.05E-02 1.06 6.92E-06 4.69 1.96E-04 4.07
1/16 8.74E-05 2.89 8.14E-03 1.91 2.03E-07 5.09 4.95E-06 5.31
1/32 7.10E-06 3.62 5.66E-04 3.85 7.83E-09 4.70 1.96E-07 4.66

below are obtained by extracting the data along the central cut line for 101 equally spaced
points.

We consider the following Riemann-type initial conditions:

(ρ, u, p) =
{
(ρL , uL , pL) if x ≤ 0
(ρR, uR, pR) if x > 0.

The first test case is Sod’s problem [33]. The initial data are

(ρL , uL , pL) = (1, 0, 1), (ρR, uR, pR) = (0.125, 0, 0.1).

Density att = 0.40 is shown in the first three plots in Fig. 5.6.
The second test case is the Riemann problem proposed by Lax [21]:

(ρL , uL , pL) = (0.445, 0.698, 3.528), (ρR, uR, pR) = (0.5, 0, 0.571).

Density att = 0.26 is shown in the last three plots in Fig. 5.6.
We can observe a better resolution of the fourth-order scheme over the third-order one,

and also a less oscillatory result from the characteristic version of the fourth-order scheme
over the component version.

TABLE 5.6

Accuracy for 2D Euler Equation of Smooth Vortex Evolution, Non-uniform Meshes,

WENO Schemes

P1 (third order) P2 (fourth order)

h L1 error Order L∞ error Order L1 error Order L∞ error Order

h0/2 2.12E-02 — 3.33E-01 — 1.84E-02 — 2.14E-01 —
h0/4 1.28E-02 0.73 2.27E-01 0.55 2.80E-03 2.69 3.43E-02 2.64
h0/8 3.84E-03 1.74 6.85E-02 1.73 2.12E-04 3.72 6.57E-03 2.38
h0/16 8.32E-04 2.21 3.02E-02 1.18 1.09E-05 4.28 5.91E-04 3.48
h0/32 1.26E-04 2.72 5.64E-03 2.42 3.76E-07 4.86 1.97E-05 4.91
h0/64 1.16E-05 3.44 6.19E-04 3.19 1.66E-08 4.50 6.78E-07 4.86
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FIG. 5.3. 2D vortex evolution: third-order WENO scheme.

5.3. A Mach 3 Wind Tunnel with a Step

This problem is from [36]. We solve the Euler equations (3.12) in a wind tunnel of 1
length unit wide and 3 length units long. The step is 0.2 length units high and is located
0.6 length units from the left end of the tunnel. Initially, a right-going Mach 3 flow is used.
Reflective boundary conditions are applied along the walls of the tunnel, and inflow and
outflow boundary conditions are used at the entrance and the exit.

The corner of the step is a singularity point. [36] uses an assumption of nearly steady
flow in the region near the corner to fix this singularity. In this paper, we do not modify our
method near the corner; instead we adopt the same technique as the one used in [7], namely
refining the mesh near the corner and using the same scheme in the whole domain.

We use the third-order scheme for this problem. Four meshes have been used; see
Fig. 5.7. For first mesh, the triangle size away from the corner is roughly equal to a rect-
angular element case of4x=4y= 1

40, while it is one-quarter that near the corner. For the
second mesh, the triangle size away from the corner is the same as in the first mesh, but it is
one-eighth that near the corner. The third mesh has a triangle size of4x=4y= 1

80 away

FIG. 5.4. 2D vortex evolution: fourth-order WENO scheme.
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FIG. 5.5. Mesh for the Riemann problems.

FIG. 5.6. Riemann problems of Euler equations: density.
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FIG. 5.7. Triangulations for the forward step problem: part near the corner.

from the corner, and it is one-quarter that near the corner. The last mesh has a triangle size
of 4x=4y= 1

160 away from the corner, and it is one-half that near the corner. Figure 5.8
is the contour picture for the density at timet = 4.0. It is clear that with more triangles near
the corner the artifacts from the singularity decrease significantly.
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FIG. 5.8. Forward step problem: 30 contours from 0.32 to 6.15.
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FIG. 5.9. Triangulation for the double Mach reflection.

5.4. Double Mach Reflection

This problem (Fig. 5.9) is also from [36]. We solve the Euler equations (3.12) in a
computational domain of [0, 4]× [0, 1]. A reflecting wall lies at the bottom of the domain
starting fromx= 1

6. Initially a right-moving Mach 10 shock is located atx= 1
6, y= 0,

making a 60◦ angle with thex-axis. The reflective boundary condition is used at the wall,
while for the rest of the bottom boundary (the part fromx= 0 tox= 1

6), the exact postshock
condition is imposed. At the top boundary, the flow values are set to describe the exact
motion of the Mach 10 shock. The results shown are att = 0.2.

We test both the third- and the fourth-order schemes. Four triangle sizes are used; they are
roughly equal to rectangular element cases of4x=4y= 1

50 (Fig. 5.10),4x=4y= 1
100

(Fig. 5.11),4x=4y= 1
200 (Figs. 5.12 and 5.13), and4x=4y= 1

400 (Figs. 5.14 and 5.15),
respectively. For the third-order scheme, we use both uniform triangular mesh (equilateral
triangles) and locally refined triangular mesh (the refined region has the above triangle
sizes; Fig. 5.9 shows the region [0, 2] × [0, 1] of such a mesh of4x=4y= 1

50 locally).
Figures 5.10–5.15 provide further examples for the fourth order, we use uniform triangular
mesh only. For the cases of4x=4y= 1

200 and4x=4y= 1
400, we present both the picture

of whole region ([0, 3]× [0, 1]) and a blow-up region around the double Mach stems. All
pictures are the density contours with 30 equally spaced contour lines from 1.5 to 21.5. We
can clearly see that the fourth-order scheme captures the complicated flow structure under
the triple Mach stem much better than the third-order scheme, and the characteristic version
is much less oscillatory than the component version for the fourth-order scheme. We refer
to [7] for similar results obtained with discontinuous Galerkin methods.

6. CONCLUDING REMARKS

We have presented the development of third- and fourth-order WENO schemes based
on linear and quadratic polynomials for 2D triangle meshes. Accuracy and stability issues
are considered in the design of the schemes and verified numerically. Numerical examples
show the improvement of resolution using high-order schemes.
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FIG. 5.10. Double Mach reflection:h= 1
50

, t = 0.2.
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FIG. 5.11. Double Mach reflection:h= 1
100

, t = 0.2.
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FIG. 5.12. Double Mach reflection:h= 1
200

, t = 0.2.
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FIG. 5.13. Double Mach reflection:h= 1
200

, t = 0.2 (blow-up).
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FIG. 5.14. Double Mach reflection:h= 1
400

, t = 0.2.
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FIG. 5.15. Double Mach reflection:h= 1
400

, t = 0.2 (blow-up).
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