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In this paper we construct high-order weighted essentially non-oscillatory schemes
on two-dimensional unstructured meshes (triangles) in the finite volume formulation.
We presentthird-order schemes using a combination of linear polynomials and fourth-
order schemes using a combination of quadratic polynomials. Numerical examples
are shown to demonstrate the accuracies and robustness of the methods for shock
calculations. © 1999 Academic Press
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1. INTRODUCTION

ENO (essentially non-oscillatory) schemes (Ham¢al. [16], Shu and Osher [28, 29])
have been successfully applied to solve hyperbolic conservation laws and other conve
dominated problems, for example in simulating shock turbulence interactions (Shu
Osher [29], Shet al. [30], and Adams and Shatriff [2]), in the direct simulation of corr
pressible turbulence (Skat al.[30], Walsteijn [35], and Ladeindet al.[20]), in solving the
relativistic hydrodynamics equations (Dolezal and Wong [8]), in shock vortex interacti
and other gas dynamics problems (Casper and Atkins [6] and Erlebatch&f10]), in
incompressible flow calculations (E and Shu [9] and Harabetiah.[13]), in solving the
viscoelasticity equations with fading memory (Shu and Zeng [31]), in semiconductor de
simulation (Fatemeét al.[11] and Jerome and Shu [17, 18]), and in image processing :
level set methods (Osher and Sethian [24], Sethian [26], and Sitdif[32]). The original
ENO paper by Harteat al.[16] was for a one-dimensional finite volume formulation. Late
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98 HU AND SHU

this finite volume formulation of ENO schemes was extended to two-dimensional structu
meshes by Harten [14] and by Casper [5], and to unstructured triangular meshes by Ab
[1], Harten and Chakravarthy [15], and Sonar [34]. Finite volume ENO schemes basec
a staggered grid and Lax—Friedrichs formulation were given in Biahedh [4]. Although
finite difference versions of ENO schemes [28, 29] are more efficient for multidimensior
calculations, finite volume schemes have the advantage of easy handling of complic
geometry by arbitrary triangulations.

Weighted ENO (WENO) schemes were developed later to improve upon ENO schen
in Liu et al.[23] and Jiang and Shu [19]. Advantages of WENO schemes over ENO inclu
the smoothness of numerical fluxes, better steady-state convergence, and better acc
using the same stencils. Lewy al. [22] designed one-dimensional finite volume WENO
schemes based on a staggered grid and Lax—Friedrichs formulation.

For a review of ENO and WENO schemes, see [27].

Recently, Friedrich [12] constructed WENO schemes on unstructured meshes usir
covolume formulation as in Abgrall [1]. The WENO schemes in [12] only achieve tt
same order of accuracy as the corresponding ENO schemes when the same set of ster
considered. This is not optimal, as was known in Jiang and Shu [19] for structured mes

In this paper, we present higher order WENO schemes on triangular meshes when u
the same set of ENO stencils. We will construct third-order schemes using a combina
of two-dimensional linear polynomials and fourth-order schemes using a combinatior
two-dimensional quadratic polynomials.

We will first sketch the procedure to construct the high-order linear schemes. The forr
lation at this stage is important to accommodate nonlinear WENO weights later. We tl
describe the third- and fourth-order WENO schemes. Numerical examples will be given
demonstrate the accuracy and resolution of the constructed schemes. Concluding rer
are included at the end.

2. FINITE VOLUME FORMULATION
In this paper we solve the two-dimensional conservation law

ou af(u) agu)

ot ax ay

0 (2.1)

using the finite volume formulation. Computational control volumes are simply triangle:
Taking the triangle\; as our control volume, we formulate the semi-discrete finite volum
scheme of Eq. (2.1) as

d_ 1
— Ui (t +—/ F.nds=0, 2.2
gt i(t) oo (2.2)

whereu; (t) is the cell average af on the cellA;, F = (f, g)", andn is the outward unit
normal of the triangle boundag,;.
The line integral in (2.2) is discretized bygapoint Gaussian integration formula,

q
F .-nds~ |9A; iFUuGj, ) -n, 2.3
/M nds~[94i] Y o] FU(G,b)-n (2.3)

j=1



WENO SCHEMES ON TRIANGULAR MESHES 99

andF (u(Gj, t)) - nis replaced by a numerical flux. The simple Lax—Friedrichs flux is ust
in all our numerical experiments, which is given by

1
FUG, ) -n~ 5[(F(U7(Gj,t)) + FU(Gj, 1)) - n—aUut(Gj,t) —u™(Gj,1))],
(2.4)

whereq is taken as an upper bound for the eigenvalues of the Jacobianrindihection,
andu~ andut are the values afi inside the triangle and outside the triangle (inside th
neighboring triangle) at the Gaussian point.

Since we are constructing schemes up to fourth-order accuracy, two-point Gaus
g=2 is used, which ha&;=cP,+ (1—-c)P,, Go=cP,+(1—c)P, c= % + *? and
w1 = wp = 3 for the line with endpoint®, and P».

3. RECONSTRUCTION AND LINEAR SCHEMES

Let P denote the set of two-dimensional polynomials of degree less than or equs
k. The reconstruction problem, from cell averages to point values, is as follows: give
smooth functioru, and a triangulation with trianglgg\q, A1, ..., An}, we would like to
construct, for each triangla;, a polynomialp(x, y) in P¥ that has the same mean value
asu on Aj, and is ak + 1)th-order approximation ta on the cellA;. The mean value of
a functionu(x, y) on a cellA; is defined as

_ 1
U=—— ux, y)ydxdy. (3.1)
|AI| Aj

In order to determin& = (k“)# degrees of freedom inlth degree polynomiap,
we need to use the information of at le&striangles. In addition ta\; itself, we may take
its K — 1 neighboring cells, and we rename thésdriangles as§ ={Q3, Qo, ..., Qk},

§ is called a stencil for the triangle; . If we require thatp has the mean valug; on Q;
forall 1< j <K, we will get aK x K linear system. If this linear system has a uniqu
solution, § is called anadmissiblestencil. Of course, in practice, we also have to worr
about any ill-conditioned linear system even if it is invertible. For linear polynorkiald,
a stencil formed by\; and two of its neighbors is admissible for most triangulations.

3.1. Third-Order Reconstruction

To construct a third-order linear scheme (a scheme is called linear if it is linear wil
applied to a linear equation with constant coefficients) as a starting point for the WE
procedure, we need a quadratic polynomial reconstruction. Notice that, as a linear sct
the stencil of this quadratic polynomial depends not on the solution, but only on the I
geometry of the mesh. It seems that one robust way is the least-square reconstrt
suggested by Barth and Frederickson [3]. For the control volume of triangkeee Fig. 3.1),
let A, Aj, Ag be its three neighbors, andl,, Aj, be the two neighbors (other thay) of
A, and so on. We determine the quadratic polynomfaby requiring that it have the same
cell average as on A, and also it matches the cell averages oh the triangles in the set

{Ai, Aja, Aib, Aj, Aja, Ajb, Dk, Dka, Db},
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FIG. 3.1. Atypical stencil.

in a least-squaresense (as this is an overdetermined system). Notice that some of -
neighbors’ neighborsAa, Aip, Aja, ...) may coincide. For example)j, might be the
same ag\ j,. This, however, does not affect the least-square procedure to detgofnine

A key step in building a high-order WENO scheme based on lower order polynomials
carried outinthe following. We want to construct several linear polynomials whose weight
average will give the same result as the quadratic reconstrystiaheach quadrature point
(the weights are different for different quadrature points).

We first build the following nine linear polynomials by agreeing with the cell averages of
on the following stencilsp; (on triangles: 0, k), pz (on triangles: Ok, i), ps (on triangles:
0.1, j), ps (on triangles: i, ia), ps (on triangles: Oi, ib), ps (on triangles: 0j, ja), p;
(on triangles: 0j, jb), ps (on triangles: 0k, ka), and pg (on triangles: 0k, kb).

For each quadrature poix®, y®), we want to find the linear weights,, which are
constants depending only on the local geometry of the mesh, such that the linear polyno
obtained from a linear combination of thegg

9
ROGY) =D ysPs(X. Y), (3.2)
s=1
satisfies
R(x®, y®) = p*(x®, y©), (3.3)

where p? is defined before using the least-square procedure, for arbitrary choices of «
averages

{Uo, Uj, Uj, Uk, Uia, Uib, Uja, Ujp, Uka, Ukb}. (3.4)

Since both the left side and the right side of the equality (3.3) are linear in the cell avera
(3.4), for the equality to hold for arbitratys in (3.4) one must have all 10 coefficients of the
U's to be identically zero (when all terms are moved to one side of the equality), which lez
to 10 linear equations for the nine weights This looks like an overdetermined system,
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but is in fact underdetermined of rank 8, allowing for one degree of freedom in the chc
of the nineys.

Before explaining this, we first look at a simpler butillustrative one-dimensional examj
Let us denotdlj, j =0, 1, 2, as three equal-sized consecutive intervals. The two line
polynomialsps, wherep; agrees withu on cell averages in the intervalgandl,, andp,
agrees withu on cell averages in the intervdisandl,, give the following two second-order
approximations to the value afat the pointxs/, (the boundary of; andl,):

1 3_ I
—§U0+ éul, §U1+ EUz. (3.5)
The quadratic polynomigh?, which agrees witlu on cell averages in the intervallg, 11,
andl,, gives the following third-order approximation to the valueugit the pointxs/»:

1 5_ 1_
——Up+ U1 + =Uj. 3.6
6 o+6 1+3 1 (3.6)
We would like to findys such that
Lo+ 20 ) 4o St i) = — o+ 204 ol (37)
V1 2o oH1 V22122—606131 .
for arbitraryu’s. This leads to the three equations
1 1 3 N 1 5 1 1
2)’1 =76 27/1 27/2 iy 2)/2 =3

for the two unknowng, andy». It looks like an overdetermined system but is in fact ran
2 and has a unique solution

1 2

év Y2 = 3-

V1= 3

The reason can be understood if we ask for the validity of the equality (3.7) in the case
u=1,u=x, andu = x2. Clearly if (3.7) holds in these three cases then it holds for arbitra
choices ofu’s. The crucial observation is that (3.7) holds for batk 1 andu = x as long
asy1+ y2 =1, as all three expressions in (3.5) and (3.6) reproduce linear functions exa
Hence the equality (3.7) is valid for all the three cases1, u = x, andu = x? with only
two conditions:y; + y» = 1 and another one obtained whee: x2, resulting in a solvable
2 x 2 system fornys.

The same argument can be applied in the current two-dimensional case. Although
are 10 linear equations for the nine weightsresulting from equality (3.3), we should
notice that equality (3.3) is valid for all three cases 1, u = x, andu =y under only one
constraint onys, namelyzgzl ¥s =1, again becausps(x) and p?(x) all reproduce linear
functions exactly. Thus we can eliminate 2 equations from the 10, resulting in a rar
system with one degree of freedom in the solutionyfotn practice, we obtain the solution
ys for s > 2 with y, as the degree of freedom.

The first effort we would like to make is to use this degree of freedom to obtain a set of r
negativeys, which is important for the WENO procedure to be developed later for shc
calculations. Unfortunately, it turns out that, for many triangulations, this is impossit
Some grouping is needed and will be discussed later.



102 HU AND SHU

3.2. Fourth-Order Reconstruction

To construct a fourth-order linear scheme as a starting point for the WENO procedt
we need a cubic polynomial reconstruction, which has 10 degrees of freedom. We t
only consider the case whe, ib, ja, jb, ka, kb are distinct in the stencil (see Fig. 3.1).
We construct the cubic polynomigl® by requiring that its cell average agree with that
of u on each triangle in the 10-triangle stencil shown in Fig. 3.1. It seems that for mc
triangulations this reconstruction is possible.

Again, the key step in building a high-order WENO scheme based on lower order pc
nomials is carried out in the following. We would like to construct several quadratic pol
nomials whose weighted average will give the same result as the cubic reconstpittior
at each quadrature point (the weights are different for different quadrature points). -
following six quadratic polynomials are constructed by having the same cell averages «
on the corresponding triangles:

g: (on triangles: 0i, ia, ib, k, kb), g (on triangles: Oi, ia, ib, j, ja),
gs (on triangles: 0j, ja, jb,i,ib), g4 (on triangles: 0j, ja, jb, k, ka),
gs (on triangles: Ok, ka, kb, j, jb), gs (on triangles: Ok, ka, kb, i, ia).

For each quadrature poimx®, y©), we would like to find the linear weights such that
the linear combination of thesg,

6
QX Y) =D ¥sGs(X, ), (3.8)

s=1

satisfies
Q(x®.y®) = p*(x®. y®) (3.9)

for all U's.

As before, (3.9) results in 10 linear equations for the six unknownsvhich are the
coefficients of the 10 cell average’ in (3.4). This looks like a grossly overdetermined
system, but it is in fact underdetermined with rank 5, thus allowing a solutiopsfaith
one degree of freedom. A crucial observation is again that (3.9) is valid for all the six ca
u=1x, Yy, x2 xy, y? under just one constraint on the, namelyzgzl ys=1, because
gs(x) andp®(x) all reproduce quadratic functions exactly. We can thus eliminate 5 equatic
from the 10, resulting in a rank 5 system with one degree of freedom in the solutipgn for
In practice, we obtain the solutign for s > 2 with y; as the degree of freedom.

Again, the first effort we would like to make is to use this degree of freedom to obtair
set of non-negatives, which is important for the WENO procedure to be developed late
for shock calculations. This has been performed for the mostly near-uniform meshes (
in the numerical examples.

3.3. Accuracy Test for the Linear Schemes

From the third- and the fourth-order reconstructions, we can now obtain the third- &
the fourth-order linear schemes for (2.1) by repladingG;j, t) in (2.4) with the recon-
structed valueR(x®, y©) in (3.2) orQ(xC, y©) in (3.8), respectively. Similarly* (G, t)
is replaced with the reconstructed values in the neighboringgell
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22 1 0 i

FIG.3.2. Uniform mesh withh = Z for accuracy test.

For the temporal discretization, the third-order TVD Runge—Kutta scheme of Shu
Osher [28] is used. For the fourth-order scheme, weaise (Ax)*2 to achieve fourth-
order accuracy in time, but only for the examples of the accuracy test.

ExampLE 3.1. Two-dimensional linear equation
Uy + Uy +uy =0, (3.10)

with the initial conditionug(X, y) = sin(Z(x +Y)), -2 < X <2, —2<y < 2, and periodic
boundary conditions.

We first use uniform triangular meshes which are obtained by adding one diagonal
in each rectangle, shown in Fig. 3.2 for the coarsest bas%. In Table 3.1, the accuracy
results are shown for both the third-order scheme (from the combination of linear p
nomials) and the fourth-order scheme (from the combination of quadratic polynomiz
whereh is the length of the rectangles,tat 2.0. The errors presented are those of the ce
averages ofi.

We then use non-uniform meshes, shown in Fig. 3.3 for the coarsesheakg=1,
whereh is just an average length. The refinement of the meshes is done in a uniform
namely by cutting each triangle into four smaller similar ones. The accuracy result is sh
in Table 3.2. We remark thdtt here is only a rough indicator of the mesh size. There a
more triangles here than in the uniform mesh cases with the kame

TABLE 3.1
Accuracy for 2D Linear Equation, Uniform Meshes, Linear Schemes

P? (third order) P2 (fourth order)
h L! error Order L error Order L* error Order L error Order
2/5 1.80E-01 — 2.79E-01 — 1.40E-02 — 2.17E-02 —

1/5 2.81E-02 2.68 4.37E-02 2.68 9.11E-04 3.94 1.41E-03 3.9/
1/10 3.65E-03 2.95 5.72E-03 2.93 5.57E-05 4.03 8.72E-05 4.0:
1/20 4.60E-04 2.99 7.22E-04 2.99 3.43E-06 4.02 5.39E-06 4.0:
1/40 5.76E-05 3.00 9.05E-05 3.00 2.12E-07 4.02 3.34E-07 4.0:
1/80 7.21E-06 3.00 1.13E-05 3.00 1.32E-08 4.01 2.07E-08 4.0:
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FIG. 3.3.  Non-uniform mesh withh = 1 for accuracy test.

ExampLE 3.2. Two-dimensional Burgers’ equation

2 2
e+ (“3) + (%)y —o, (3.11)

with the initial conditionug(x, y) =0.3+ 0.7 sin(Z(x 4+ Y)), —2<x<2,-2<y<2,and
periodic boundary conditions.

We first use the same uniform triangular meshes as in Example 3.1, shown in Fig. 3.2
the coarsest cate= % In Table 3.3, the accuracy results are shown for both the third-ord
scheme and the fourth-order schemd, 2t0.5/72 when the solution is still smooth. The
errors presented are those of the point values at the six quadrature points of each tria

as in this nonlinear case it is easier to obtain the exact solution of the PDE in point val
than in cell averages.

We then use the same non-uniform meshes as in Example 3.1, shown in Fig. 3.3 fol
coarsest case. The accuracy result is shown in Table 3.4.

ExampLE 3.3. Two-dimensional vortex evolution problem for the Euler equations. S¢

[27] for a description of this problem. We consider the compressible Euler equations of
dynamics

&+ F(E)x+9E)y =0, (3.12)

TABLE 3.2
Accuracy for 2D Linear Equation, Non-uniform Meshes, Linear Schemes

P? (third order) P2 (fourth order)
h L! error Order L error Order L error Order L error Order
hy/2 1.21E-01 — 2.25E-01 — 4.95E-03 — 1.73E-02 —

ho/4 1.81E-02 2.74 3.74E-02 2.59 2.90E-04 4.09 1.42E-03 3.61
ho/8 2.36E-03 2.94 5.39E-03 2.80 2.21E-05 3.71 8.32E-05 4.09
ho/16 3.00E-04 2.98 7.19E-04 291 1.29E-06 4.10 5.09E-06 4.03
ho/32 3.78E-05 2.99 9.40E-05 2.94 7.76E-08 4.06 3.16E-07 4.01
ho/64 4.75E-06 2.99 1.22E-05 2.95 4.75E-09 4.03 1.95E-08 4.02
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TABLE 3.3
Accuracy for 2D Burgers’ Equation, Uniform Meshes, Linear Schemes
P? (third order) P2 (fourth order)

h L! error Order L error Order L error Order L error Order
2/5 2.67E-02 — 7.75E-02 — 8.63E-03 — 2.18E-02 —
1/5 3.65E-03 2.87 1.16E-02 2.74 6.08E-04 3.83 1.70E-03 3.6¢
1/10 4.60E-04 2.99 1.52E-03 2.93 3.97E-05 3.94 1.16E-04 3.8
1/20 5.75E-05 3.00 1.91E-04 2.99 2.51E-06 3.98 7.37E-06 3.9

1/40 7.18E-06 3.01 2.38E-05 3.01 1.57E-07 4.00 4.62E-07 4.0
1/80 8.96E-07 3.00 2.97E-06 3.00 9.83E-09 4.00 2.89E-08 4.0(
where

& = (p, pu, pv, E),

f(&) = (pu, pu® + p, puv, U(E + p)),
9(&) = (pv, puv, pv° + p, v(E + p)).

Herep is the density(u, v) is the velocity,E is the total energyp is the pressure, and

with y =1.4.
The meanflowip =1, p=1, and(u, v) = (1, 1). We add, to the mean flow, an isentropic

vortex (perturbations ifu, v) and the temperatufe = p/p, no perturbation in the entropy
S=p/p")

(Su, $v) =

8T =

p

E_

_y—

1

B (y — l)ezel_rz

8ym?

1
+§,0(u2+v2),

€ 2 — —
S €S-y %)
JT

, 8S=0,

where(X, y) = (x — 5,y — 5), r?2 = X2 + y2, and the vortex strength= 5.

TABLE 3.4

Accuracy for 2D Burgers’ Equation, Non-uniform Meshes, Linear Schemes

P1 (third order)

P2 (fourth order)

L* error

Order

L error

Order L error Order L error Order
ho/2 1.69E-02 — 7.95E-01 — 3.96E-03 — 1.88E-02 —
ho/4 2.23E-03 2.92 1.23E-02 2.69 2.87E-04 3.79 2.17E-03 3.1¢
hy/8 2.84E-04 2.97 1.69E-03 2.86 1.90E-05 3.92 1.81E-04 3.5¢

hy/16 3.57E-05 2.99 2.22E-04 2.93 1.20E-06 3.99 1.34E-05 3.7
hy/32 4.48E-06 2.99 3.00E-05 2.89 7.57E-08 3.99 1.00E-06 3.7
hy/64 5.63E-07 2.99 4.26E-06 2.82 4.75E-09 4.00 7.57E-08 3.7:
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TABLE 3.5
Accuracy for 2D Euler Equation of Smooth Vortex Evolution, Uniform Meshes,
Linear Schemes

P1 (third order) P2 (fourth order)
h L error Order L error Order L* error Order L error Order
1 1.65E-02 — 2.60E-01 — 5.26E-03 — 7.89E-02 —

1/2 6.31E-03 1.39 1.21E-01 1.10 7.36E-04 2.84 1.62E-02 2.28
1/4 1.31E-03 2.27 2.53E-02 2.26 5.40E-05 3.77 1.03E-03 3.98
1/8 2.21E-04 2.57 4.66E-03 2.44 2.32E-06 4.54 5.36E-05 4.26
1/16 2.98E-05 2.89 6.44E-04 2.86 1.10E-07 4.40 2.48E-06 4.43
1/32 3.77E-06 2.98 8.23E-05 2.97 6.37E-09 4.11 1.25E-07 4.31

The computational domainis taken as10] x [0, 10], and periodic boundary conditions
are used.

Itis clear that the exact solution of the Euler equation with the above initial and bound:
conditions is just the passive convection of the vortex with the mean velocity.

The reconstruction procedure is applied to each component of the sautitva first
compute the solution tb= 2.0 for the accuracy test. The meshes are the same as those
Example 3.1 suitably scaled for the new spatial domain. The accuracy results are sh
in Table 3.5 for the uniform meshes and Table 3.6 for the non-uniform meshes. The er
presented are those of the cell averages.of

We then fix the mesh eh:% (uniform) and compute the long-time evolution of the
vortex. Figure 3.4 is the result by the third-order scheme=a0 and after 1, 5, and 10
time periods, and Fig. 3.5 is the result by the fourth-order scheme. We show the line
through the center of the vortex for the dengityt is easy to see the difference between the
third- and fourth-order schemes. The fourth-order scheme gives almost no dissipation ¢
after 10 periods, while the dissipation is quite noticeable for the long-time results of
third-order scheme. The mesh chosen is on the borderline of resolution for the fourth-ol

scheme and does not give enough resolution for long-time simulation of the third-or
scheme.

TABLE 3.6
Accuracy for 2D Euler Equation of Smooth Vortex Evolution, Non-uniform Meshes,
Linear Schemes

P? (third order) P2 (fourth order)
h L! error Order L error Order L error Order L error Order
hy/2 1.81E-02 — 2.98E-01 — 7.00E-03 — 8.16E-02 —

ho/4 7.74E-03 1.28 1.44E-01 1.05 1.18E-03 2.57 1.61E-02 2.34
ho/8 1.67E-03 2.21 2.47E-02 2.54 8.17E-05 3.85 1.31E-03 3.62
ho/16 2.86E-04 2.55 4.79E-03 2.37 4.70E-06 4.12 1.10E-04 3.57
ho/32 3.94E-05 2.86 7.95E-04 2.59 2.68E-07 4.13 7.73E-06 3.83
ho/64 5.07E-06 2.96 1.25E-04 2.67 1.56E-08 4.10 5.99E-07 3.69
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FIG. 3.4. 2D vortex evolution: third-order linear scheme.

4. WENO RECONSTRUCTION AND WENO SCHEMES

In this section, we will introduce non-linear weights to make the resulting schen
suitable for shock computations. To ensure stability near shocks, we need non-neg
weights, and thus we need non-negative linear weights to start with. As there is one de
of freedom in the choice of linear weights for both the third-order and fourth-order ca
described in the previous section, this will be explored to produce positive linear weig
In the case of the third-order scheme, grouping of polynomials is also used to ach
positivity.

4.1. Positivity of Linear Weights for the Third-Order Scheme

We will use the same notation as in the previous section. In (3.2), by consistel
22:1 ys = 1. We want to group these nine linear polynomials into three groups,

9 3
D reps, y) =Y R, ),

s=1 s=1

09

o
@

E
1]
4
807 \ 1=0
r \ — — — — 1 period
L Vortex evolution | i 5 periods
L Center line cut \ !
0.6 4th order scheme | J 10 periods
r \\/’/
05
£ ] Ll I 1 ]
0 2 4 6 § 10

FIG. 3.5. 2D vortex evolution: fourth-order linear scheme.
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eachfi(x, y) being still a linear polynomial and a second-order approximatian twith
positive coefficientss> 0. We also require the stencils corresponding to the three ne
linear polynomialfi(x, y) to be reasonably separated, so that when shocks are present,
all stencils will contain the shock under normal situations.

The grouping we will introduce in the following works for most triangulations. There ar
however, cases when it does give some negative coefficients with very small magnitu
but it does not seem to affect the stability of WENO schemes built upon them.

For the first quadrature point on sid€G; in Fig. 3.1), Group 1 containg, (0, k, i),

P4 (0,i,ia), andps (0,1, ib),

D1 = (yv2P2 + vapsa + vs5ps)/(v2 + va + vs), n=vy2+ya+ys

Group 2 contaings (0, i, j), ps (0, j, ja), andp; (O, j, jb),

Po=(yaps+vsPs + v7P7)/ (V3 + ¥+ v7), Ve=Vy3+vet+ v

Group 3 containg; (0, |, k), ps (0, k, ka), and pg (O, k, kb),

B3 = (yaP1+ y8Ps + yoPo)/(y1 + ¥ + vo), V3=y1+ ¥s+ yo.

The resulting linear polynomial

3
R, y) =) 7 (X, Y) (4.2)

s=1

isidentical toR(x, y) in (3.2) and in most cases the coefficieptsan be made non-negative
by suitably choosing the value of the degree of freede@nthrough the solution of a group
of three linear inequalities for,.

We remark that for practical implementation, it is the five constantghich depend on
the local geometry only, such that

B (X%, y®) = aullo + @l + agliy + asliia + astip, (4.2)

that have to be precomputed and stored once the mesh is generated. We do not need tc
any information about the polynomidl, itself.

For the second quadrature point on sid&; in Fig. 3.1), Group 1 containpz (0,1, j),
ps (0, i,ia), andps (0, i, ib), with the combination coefficient = y3 + y4 + ys; Group 2
contains p2 (0, k, i), ps(0,k, ka), and pg (O, k, kb), with the combination coefficient
Y2=v2 + y8 + vo; Group 3 containgp; (0, j, k), ps (0, j, ja), and p7 (0, j, jb), with
combination coefficienys=y1 + ys + y7. We can do the same thing for the other two
sidegj, k).

2 Recently we have learned, in a joint project with R. Biswas and J. Djomehri on using adaptive methods v
WENO schemes, that this grouping may fail near adaptively refined regions where triangle sizes change
abruptly. New grouping techniques to overcome this are under investigation.



WENO SCHEMES ON TRIANGULAR MESHES 109

4.2. Positivity of Linear Weights for the Fourth-Order Scheme

From Section 3.2, there is a degree of freedom (which was chosen i) lie the
determination of the linear weightgin (3.8). Our objective is to use this degree of freedor
to obtain non-negative linear weights. This again amounts to solving a group of six lir
inequalities fory;. We have found out through our numerical experiments that positiv
of linear weights can only be achieved for nearly uniform meshes. In this paper only s
meshes are used for the fourth-order WENO scheme. The difficulty in doing a grouj
here similar to the third-order case is that the stencil to each group would then be ¢
large, and hence shocks may be included in all stencils. Good grouping strategies ar
under investigation.

4.3. Smoothness Indicators and Nonlinear Weights

We finally come to the point of smooth indicators and nonlinear weights. For this
follow exactly Jiang and Shu [19]. For a polynomgalx, y) with degree up td&, we define
the following measurement for smoothness,

S= Y [ IA*7H D" p(x, y)?dxdy, (4.3)

1<lazk /2

wherew is a multi-index andD is the derivative operator; for example, whee= (1, 2)
then|a| =3 and D p(x, y) = dp3(x, y)/dxdy?. The nonlinear weights are then definec
as

O - Vi

So T e+ s)?

(4.4)

wj =

wherey; is theith coefficient in the linear combination of polynomials (i.e., thén™(4.1)
for the third-order case and thein (3.8) for the fourth-order case$, is the measurement
of smoothness of thigh polynomialp; (x, y) (i.e., thefi in (4.1) for the third-order case and
theqs in (3.8) for the fourth-order case), aads a small positive number which we take a:
e = 1072 for all the numerical experiments in this paper. The numerical results are not v
sensitive to the choice afin a range from 107 to 1076. In general, largee gives better
accuracy for smooth problems but may generate small oscillations for shocks. Snislle
more friendly to shocks. The nonlinear weightsin (4.4) would then replace the linear
weightsy; to form a WENO reconstruction.

We emphasize that the smoothness measurements (4.3) are quadratic functions of tl
averages in the stencil. For example, it is the 10 constargadc;, which depend on the
local geometry only, such that

S = (bylo+ byl + bl + balia + bstin )2 + (C1Uo + Coli 4 C3U + Callia + Cstip)?  (4.5)

for the smoothness measurements (4.3ppfn (4.1), that have to be precomputed an
stored once the mesh is generated. We do not need to store any information abol
polynomial p, itself.
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4.4. Extension to the Euler Systems

There are two ways to extend the previous results to systems. One is to do So compa
by component. This is easy to implement and cost effective, and it seems to work well for
third-order scheme. We will use componentwise methods for all numerical examples v
the third-order scheme. Another extension method is by the characteristic decomposi
We will give a brief description in the following.

Let us take one side of the triangle which has the outward unit naimanhy). Let A be
some average Jacobian at one quadrature point,

of ag
A_nxa_u+ny8_u' (4.6)
For Euler systems, the Roe’s mean matrix [25] is used. Denote the matrix of right
eigenvectors antl the matrix of left eigenvectors d&. Then the scalar triangular WENO
scheme can be applied to each of the characteristic fields, i.e., to each component o
vectorv = L u. With the reconstructed point values we define our reconstructed point
valuesu by u= Ru.

4.5. Algorithm Flowchart and Parallel Implementation

We summarize the practical aspects and operation and storage costs of implementin
method:

e Generate a triangular mesh.
e Compute and store the following mesh-dependent constants:

—The constant coefficients in the linear combinations of cell averages to reco
values ofu at Gaussian points, for each stencil. Examples of these constants are give
(4.2). There are & 3 x 6=90 such constants per triangle for the third-order case (5 ft
each of the 3 grouped linear polynomiglsn (4.1), for each of the 6 quadrature points),
and 6x 6 x 6= 216 such constants per triangle for the fourth-order case (6 for each of 1
6 quadratic polynomial§s in (3.8), for each of the 6 quadrature points).

—TFor the third-order case, the constant coefficients in the linear combinations ins
each of the squares of the smoothness indicatior (4.3), for each stencil. Examples of
these constants are given in (4.5). There are B0k 6 =180 such constants per triangle
for the third-order case (10 for each of the 3 grouped linear polynoriiais (4.1), for
each of the 6 quadrature points). For the fourth-order case, the constant coefficients ir
combination of all the quadratic terms of the smoothness indicator (4.3), for each
polynomialgs in (3.8). There are 2% 6 =126 such constants per triangle (21 quadratic
terms, such asZ, Uoli, . .., out of the 6U’s in the stencil, for each of the 6 quadratic
polynomialsgg in (3.8)).

—The total storage requirement per triangle: 270 numbers for the third-order case
342 numbers for the fourth-order case.

o Start the time iteration. For each time stage:

—TFor each triangle, compute the lower order reconstructions for each quadrature p
and the nonlinear weights, using the prestored constants.

* For the third-order case, per triangle, the number of multiplications is 306 al
the number of additions is 234. This is because for each quadrature point there a
reconstructions, for the in (4.1), each with 5 multiplications and 4 additions in (4.2). It
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also involves 3 evaluations of the smooth indicator (4.3), for tfi€ii3 (4.1), each with 12
multiplications and 9 additions in (4.5).

x For the fourth-order case, per triangle, the number of multiplications is 468 &
the number of additions is 300. This is because for each quadrature point there ¢
reconstructions, for thed in (3.8), each with 6 multiplications and 5 additions. There al
also 6 evaluations of the smooth indicator (4.3) for the whole triangle, for thers(3.8),
each with 42 multiplications and 20 additions.

—Compute the numerical flux (2.4) at each quadrature point, then form the resi
and forward in time.

—The total costs per triangle per residue evaluation, including the WENO reconst
tion and flux evaluation (2.4), are 390 multiplications/divisions, 285 additions/subtractic
and 6 flux evaluations for the third-order scheme, and 594 multiplications/divisions, .
additions/subtractions, and 6 flux evaluations for the fourth-order scheme. In our im
mentation on a SUN Ultral workstation, the third-order WENO scheme takeg/336r
triangle per residue evaluation, while the fourth-order WENO scheme takes85This
is about six times the CPU time needed for a linear scheme of the same order of acc
implemented in a most economical way.

As an explicit method, the WENO schemes constructed above are easily impleme
on an IBM SP-2 parallel computer. The parallel efficiency is over 90% when 16 proces
are used. Most of the numerical examples with large meshes in the next section are obt
with the SP-2 parallel computer using 16 processors at the Center for Fluid Mechanic
Brown University.

5. NUMERICAL EXAMPLES

We will implement the third- and fourth-order WENO schemes developed in the p
vious sections to some two-dimensional test problems. First, the same accuracy te:
in the linear weights case are given for linear, Burgers’ equation and the smooth
tex problem. Next, some non-smooth problems for two-dimensional Euler equations
tested.

5.1. Accuracy Test for Triangular WENO Schemes

We use the same examples as in Section 3.3 to test the accuracy of third- and fourth-
triangular WENO schemes constructed in the previous section.

ExampPLE 5.1. Two-dimensional linear equation as defined in Example 3.1, Eq. (3.1
The accuracy results are shown in Table 5.1 for the uniform meshes and in Table 5..
the non-uniform meshes. We can see that the correct orders of accuracy are obtained
third- and fourth-order WENO methods.

ExampLE 5.2. Two-dimensional Burgers' equation as defined in Example 3
Eqg. (3.11). The accuracy results are shown in Table 5.3 for the uniform meshes ar
Table 5.4 for the non-uniform meshes. We can see that the correct orders of accurac
again obtained by the third- and fourth-order WENO methods.

To demonstrate the application for shock computations, we continue the the above
culation tot = 5/7? when discontinuities develop. Figure 5.1 is the resultfer 1/20 of
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TABLE 5.1

Accuracy for 2D Linear Equation, Uniform Meshes, WENO Schemes

P1 (third order) P2 (fourth order)

h L error Order L> error Order L error Order L error Order
2/5 2.66E-01 — 4.30E-01 — 1.38E-02 — 2.94E-02 —
1/5 8.11E-02 1.71 1.93E-01 1.16 1.80E-03 2.94 2.74E-03 3.42
1/10 2.65E-02 1.62 6.16E-02 1.65 8.87E-05 4.34 1.46E-04 4.23
1/20 2.68E-03 3.31 8.77E-03 2.81 4.34E-06 4.35 7.11E-06 4.36
1/40 1.44E-04 4.22 4.88E-04 4.17 2.30E-07 4.24 3.71E-07 4.26
1/80 8.05E-06 4.16 2.40E-05 4.35 1.34E-08 4.10 2.12E-08 4.13

TABLE 5.2
Accuracy for 2D Linear Equation, Non-uniform Meshes, WENO Schemes
P? (third order) P2 (fourth order)

h L* error Order L> error Order L error Order L error Order
ho/2 2.79E-01 — 5.28E-01 — 1.77E-02 — 6.41E-02 —
ho/4 8.43E-02 1.73 2.32E-01 1.19 8.85E-04 4.32 3.07E-03 4.38
hy/8 2.53E-02 1.74 7.47E-02 1.64 4.08E-05 4.44 1.43E-04 4.42

ho/16 2.24E-03 3.50 1.14E-02 2.71 1.82E-06 4.49 6.37E-06 4.49
ho/32 1.18E-04 4.25 6.83E-04 4.06 8.95E-08 4.35 3.36E-07 4.25
ho/64 6.21E-06 4.25 3.15E-05 4.44 4.92E-09 4.19 2.00E-08 4.07
TABLE 5.3
Accuracy for 2D Burgers’ Equation, Uniform Meshes, WENO Schemes
P1 (third order) P2 (fourth order)

h L* error Order L> error Order L error Order L error Order
2/5 2.76E-02 — 8.18E-02 — 8.64E-03 — 2.106-02 —
1/5 4.63E-03 2.58 1.20E-02 2.77 6.05E-04 3.84 1.73E-03 3.60
1/10 6.97E-04 2.73 2.16E-03 2.47 3.94E-05 3.94 1.18E-04 3.87
1/20 7.12E-05 3.29 1.90E-04 3.51 2.50E-06 3.98 7.42E-06 3.99
1/40 7.63E-06 3.22 2.36E-05 3.01 1.57E-07 3.99 4.63E-07 4.00
1/80 9.08E-07 3.07 2.96E-06 3.00 9.83E-09 4.00 2.89E-08 4.00

TABLE 5.4
Accuracy for 2D Burgers’ Equation, Non-uniform Meshes, WENO Schemes
P (third order) P2 (fourth order)

h L* error Order L> error Order L error Order L error Order
he/2 2.01E-02 — 9.16E-02 — 4.18E-03 — 2.376-02 —
ho/4 3.85E-03 2.38 1.80E-02 2.35 2.90E-04 3.85 2.61E-03 3.18
hy/8 5.79E-04 2.73 3.39E-03 2.41 1.85E-05 3.97 1.92E-04 3.77

hy/16 5.34E-05 3.44 3.55E-04 3.26 1.18E-06 3.97 1.35E-05 3.83
hy/32 5.12E-06 3.38 2.95E-05 3.59 7.45E-08 3.99 9.99E-07 3.76
ho/64 5.82E-07 3.14 4.23E-06 2.80 4.67E-09 4.00 7.56E-08 3.72
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3rd order 4th order

FIG.5.1. 2D Burgers’ equationt = 5/72, uniform mesh.

a uniform mesh. Figure 5.2 is the result foe= hg/16 of a non-uniform mesh. We can see
that the shock transitions are sharp and non-oscillatory.

ExampLE 5.3. Two-dimensional vortex evolution problem as defined in Example 3
The accuracy results are shown in Table 5.5 for the uniform meshes and in Table 5.6 fc
non-uniform meshes. We can see that the correct orders of accuracy are again obtair
the third- and fourth-order WENO methods.

Figures 5.3 and 5.4 are the results for the long-time evolution of the vortex. These re:
are similar to those obtained with the linear schemes in Figs. 3.4 and 3.5.

5.2. Riemann Problems of Euler Equations

The two-dimensional triangular WENO methods are applied to one-dimensional st
tube problems. We consider the solution of the Euler equations (3.12) in a domai
[—1, 1] x [0, 0.2] with a triangulation of 101 vertices in thedirection and 11 vertices
in the y-direction. The velocity in they/-direction is zero, and periodic boundary condi
tion is used in they-direction. Part of the mesh is shown in Fig. 5.5. The pictures sho\

3rd order 4th order

FIG.5.2. 2D Burgers’ equation: = 5/72, non-uniform mesh.
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TABLE 5.5
Accuracy for 2D Euler Equation of Smooth Vortex Evolution, Uniform Meshes,
WENO Schemes

P1 (third order) P2 (fourth order)
h L error Order L> error Order L* error Order L error Order
1 1.87E-02 — 2.95E-01 — 1.30E-02 — 2.05E-01 —

1/2 1.01E-02 0.89 2.09E-01 0.50 2.50E-03 2.38 4.45E-02 2.49
1/4 2.78E-03 1.86 6.37E-02 1.71 1.79E-04 3.80 3.29E-03 3.76
1/8 6.47E-04 2.10 3.05E-02 1.06 6.92E-06 4.69 1.96E-04 4.07
1/16 8.74E-05 2.89 8.14E-03 1.91 2.03E-07 5.09 4.95E-06 5.31
1/32 7.10E-06 3.62 5.66E-04 3.85 7.83E-09 4.70 1.96E-07 4.66

below are obtained by extracting the data along the central cut line for 101 equally spa
points.

We consider the following Riemann-type initial conditions:

(oL, UL, pL) if x <0
U, p) = !
(P4, P) {(/OR: UR, Pr) if x > 0.

The first test case is Sod’s problem [33]. The initial data are

(oL, UL, pu) =(1,0,1),  (pr,Ur, Pr) = (0.1250,0.1).

Density att = 0.40 is shown in the first three plots in Fig. 5.6.
The second test case is the Riemann problem proposed by Lax [21]:

(oL, UL, pu) = (0.4450.698 3.528,  (pr,URr, Pr) = (0.5,0,0.571).

Density att = 0.26 is shown in the last three plots in Fig. 5.6.
We can observe a better resolution of the fourth-order scheme over the third-order

and also a less oscillatory result from the characteristic version of the fourth-order sche
over the component version.

TABLE 5.6
Accuracy for 2D Euler Equation of Smooth Vortex Evolution, Non-uniform Meshes,
WENO Schemes

P* (third order) P2 (fourth order)
h L error Order L error Order L error Order L error Order
ho/2 2.12E-02 — 3.33E-01 — 1.84E-02 — 2.14E-01 —

ho/4 1.28E-02 0.73 2.27E-01 0.55 2.80E-03 2.69 3.43E-02 2.64
ho/8 3.84E-03 1.74 6.85E-02 1.73 2.12E-04 3.72 6.57E-03 2.38
ho/16 8.32E-04 2.21 3.02E-02 1.18 1.09E-05 4.28 5.91E-04 3.48
ho/32 1.26E-04 2.72 5.64E-03 2.42 3.76E-07 4.86 1.97E-05 4.91
ho/64 1.16E-05 3.44 6.19E-04 3.19 1.66E-08 4.50 6.78E-07 4.86
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FIG. 5.3. 2D vortex evolution: third-order WENO scheme.

5.3. A Mach 3 Wind Tunnel with a Step

This problem is from [36]. We solve the Euler equations (3.12) in a wind tunnel o
length unit wide and 3 length units long. The step is 0.2 length units high and is loce
0.6 length units from the left end of the tunnel. Initially, a right-going Mach 3 flow is use
Reflective boundary conditions are applied along the walls of the tunnel, and inflow
outflow boundary conditions are used at the entrance and the exit.

The corner of the step is a singularity point. [36] uses an assumption of nearly ste
flow in the region near the corner to fix this singularity. In this paper, we do not modify c
method near the corner; instead we adopt the same technique as the one used in [7],
refining the mesh near the corner and using the same scheme in the whole domain.

We use the third-order scheme for this problem. Four meshes have been usec
Fig. 5.7. For first mesh, the triangle size away from the corner is roughly equal to ar
angular element case ofx = Ay = %, while it is one-quarter that near the corner. For th
second mesh, the triangle size away from the corner is the same as in the first mesh, b
one-eighth that near the corner. The third mesh has a triangle sizr 6fAy = % away

0.9

©
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0.7 1=0
-~ — 1 period
gonex evolution - —-— 5periods

L enter line cut — i
0.6 4th order WENO 10 periods
05—

£ 1 P Ll 1 ]

0 2 4 6 8 10

FIG. 5.4. 2D vortex evolution: fourth-order WENO scheme.
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FIG.5.5. Mesh for the Riemann problems.
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from the corner, and it is one-quarter that near the corner. The last mesh has a triangl

half that near the corner. Figure
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of AX

is the contour picture for the density at time- 4.0. It is clear that with more triangles near

the corner the artifacts from the singularity decrease significantly.
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FIG. 5.9. Triangulation for the double Mach reflection.

5.4. Double Mach Reflection

This problem (Fig. 5.9) is also from [36]. We solve the Euler equations (3.12) ir
computational domain of [@1] x [0, 1]. A reflecting wall lies at the bottom of the domain
starting fromx = % Initially a right-moving Mach 10 shock is located at= %, y=0,
making a 60 angle with thex-axis. The reflective boundary condition is used at the wa
while for the rest of the bottom boundary (the part frem Otox = %), the exact postshock
condition is imposed. At the top boundary, the flow values are set to describe the e
motion of the Mach 10 shock. The results shown are-at0.2.

We test both the third- and the fourth-order schemes. Four triangle sizes are used; the
roughly equal to rectangular element cased\gf= Ay = 5—10 (Fig. 5.10),Ax=Ay= 1—(1)0
(Fig. 5.11),Ax = Ay = 555 (Figs. 5.12 and 5.13), antix = Ay = ;1 (Figs. 5.14 and 5.15),
respectively. For the third-order scheme, we use both uniform triangular mesh (equila
triangles) and locally refined triangular mesh (the refined region has the above tria
sizes; Fig. 5.9 shows the region [] x [0, 1] of such a mesh oAx=Ay= 5% locally).
Figures 5.10-5.15 provide further examples for the fourth order, we use uniform triang
mesh only. For the casesk = Ay = ﬁ) andAx=Ay= %OO, we present both the picture
of whole region ([03] x [0, 1]) and a blow-up region around the double Mach stems. A
pictures are the density contours with 30 equally spaced contour lines from 1.5 to 21.5
can clearly see that the fourth-order scheme captures the complicated flow structure
the triple Mach stem much better than the third-order scheme, and the characteristic ve
is much less oscillatory than the component version for the fourth-order scheme. We |
to [7] for similar results obtained with discontinuous Galerkin methods.

6. CONCLUDING REMARKS

We have presented the development of third- and fourth-order WENO schemes b
on linear and quadratic polynomials for 2D triangle meshes. Accuracy and stability iss
are considered in the design of the schemes and verified numerically. Numerical exan
show the improvement of resolution using high-order schemes.
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FIG. 5.10. Double Mach reflectionh = &, t=0.2.
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Third order, h = 1/100
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FIG.5.11. Double Mach reflectionh= -, t=0.2.
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FIG.5.12. Double Mach reflectiorh = 55, t =0.2.
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Third order, h = 1/200

FIG.5.13. Double Mach reflectionh = -, t =0.2 (blow-up).
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FIG. 5.14. Double Mach reflectiorh = 2, t =0.2.
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Third order, h = 1/400

FIG. 5.15. Double Mach reflectiorh = X, t = 0.2 (blow-up).
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