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In this paper, we review the development of the Runge–Kutta discontinuous
Galerkin (RKDG) methods for non-linear convection-dominated problems.
These robust and accurate methods have made their way into the main stream
of computational fluid dynamics and are quickly finding use in a wide variety of
applications. They combine a special class of Runge–Kutta time discretizations,
that allows the method to be non-linearly stable regardless of its accuracy, with
a finite element space discretization by discontinuous approximations, that
incorporates the ideas of numerical fluxes and slope limiters coined during the
remarkable development of the high-resolution finite difference and finite volume
schemes. The resulting RKDG methods are stable, high-order accurate, and
highly parallelizable schemes that can easily handle complicated geometries and
boundary conditions. We review the theoretical and algorithmic aspects of these
methods and show several applications including nonlinear conservation laws, the
compressible and incompressibleNavier–Stokes equations, andHamilton–Jacobi-
like equations.

KEY WORDS: Discontinuous Galerkin methods; non-linear conservation laws;
convection-diffusion equations.

1. INTRODUCTION

In this paper, we review the development of the Runge–Kutta discontinuous
Galerkin (RKDG) methods for non-linear convection-dominated problems.
These are methods that have recently found their way into the main stream of



computational fluid dynamics and are currently being applied to a variety of
situations including problems for which they were not originally intended,
like purely elliptic systems.

Numerical methods for convection-dominated problems are very useful
in a wide variety of applications. Indeed, as pointed out in [44]: ‘‘Practical
problems in which convection plays an important role arise in applications as
diverse as meteorology, weather-forecasting, oceanography, gas dynamics,
turbomachinery, turbulent flows, granular flows, oil recovery simulation,
modeling of shallow waters, transport of contaminant in porous media, visco-
elastic flows, semiconductor device simulation, magneto-hydrodynamics,
and electro-magnetism, among many others. This is why devising robust,
accurate and efficient methods for numerically solving these problems is of
considerable importance.’’

The need for such methods prompted and sustained the remarkable
development of the so-called high-resolution finite difference and finite
volume methods for non-linear hyperbolic systems in divergence form:

ut+N ·f(u)=0

see, for example, the monograph by LeVeque [84]. The satisfactory
approximation of the exact solutions of these systems is particularly diffi-
cult because of the presence of discontinuities in the exact solution. Let us
describe this difficulty in the scalar case. On the one hand, the physically
relevant solution, called the entropy solution, can be captured by means of
the so-called monotone schemes; unfortunately, they are only first-order
accurate when the solution is smooth and display a poor approximation of
moving discontinuities. On the other hand, high-order accurate schemes
generate spurious oscillations around the discontinuities which, due to the
non-linear nature of the equation, can also induce the convergence of the
method to a solution that is not the entropy solution; see the 1976 paper by
Harten et al. [69].

This impasse between high-order accuracy and convergence to the
entropy solution was solved by the high-resolution schemes. The success of
these methods is mainly due to two facts. First, the non-linear conservation
laws are enforced locally; that is, the averages of the approximation uh on
each element or cell K, are evolved in time by imposing that

F
K
(uh)t+F

“K
f̂(uh) · nK ds=0

where nK denotes the outward unit normal to “K and f̂(uh) is the so-called
approximate Riemann solver or numerical flux. We can see that the numeri-
cal flux f̂(uh) is an approximation to the value of f(u) on the boundary of
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the elements K. It is devised in such a way that, when u is a scalar-valued
function and uh is piecewise-constant, the resulting method is a monotone
scheme; as we pointed out, it is always stable and converges to the exact
solution. Second, when the approximate solution uh is not piecewise-con-
stant, the stability of the method does not follow from the form of the
numerical fluxes anymore and has to be enforced by means of flux or slope
limiters. Indeed, once the averages have been evolved in time, the remain-
ing degrees of freedom of uh are usually determined from them by means
of a reconstruction step whose main objective is to achieve high-order
accuracy; the flux or slope limiters are then applied in order to render the
method stable while maintaining its high-order accuracy.

However, these methods cannot handle complex geometries and
boundary conditions and achieve high-order accuracy as easily as finite
element methods do. On the other hand, most finite element methods for
non-linear conservation laws do not enforce the conservation law locally,
a property highly valued in practice, and do not satisfy maximum principles
(or other stability properties like total variation boundedness) which are
essential in many practical situations. More importantly, they give rise to
systems of equations that have to be solved implicitly which renders them
quite inefficient when strong shocks are present; see the analysis of this
fact for non-linear scalar hyperbolic conservation laws by Bourgeat and
Cockburn [27].

1.1. The RKDG Method for Purely Convective Non-Linear Problems

The RKDG methods, introduced and studied by the authors and their
collaborators [49, 48, 46, 41, 51], realize a fortunate compromise between
these two types of numerical schemes by incorporating the ideas of
numerical fluxes and slope limiters into a finite element framework. Next,
we give a brief idea of how to construct the RKDG methods. We proceed
in three steps:

Step 1: The DG Space Discretization. First, the conservation law is
discretized in space by using a discontinuous Galerkin (DG) method. A dis-
continuous approximate solution uh is sought such that when restricted to the
element K, it belongs to the finite dimensional space U(K), typically a space
of polynomials. It is defined by imposing that, for all vh ¥U(K),

F
K
(uh)t vh dx−F

K
f(uh) ·Nvh dx+F

“K
f̂(uh) · nKvh ds=0
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Note that it is here that the notion of approximate Riemann solver or
numerical flux is actually incorporated into the method. Like all finite
element methods, complex geometries and boundary conditions are very
easily dealt with and high-order accuracy can be easily obtained. Moreover,
since the approximation is discontinuous, the so-called mass matrix is block
diagonal and hence, easily invertible.

Step 2: The RK Time Discretization. Then, we discretize the resulting
system of ordinary differential equations, d

dt uh=L(uh), by using the
following explicit high-order accurate Runge–Kutta (RK) methods:

1. Set u (0)h =unh ;
2. For i=1,...,K compute the intermediate functions:

u (i)h =C
i−1

l=0
ailw

il
h , w il

h=u(l)h +
bil

ail
DtnLh(u

(l)
h )

3. Set un+1h =uK
h .

The distinctive feature of these RK methods is that their stability follows
from the stability of the mapping u (l)h W w il

h defining the intermediate steps.
More precisely, if for some semi-norm | · |, we have that |w il

h | [ |u
(l)
h |, then

we have |un+1h | [ |unh |.

Step 3: The Generalized Slope Limiter. Finally, a generalized slope
limiter LPh, which is a non-linear projection operator, is devised in such a
way that if u (l)h =LPhvh for some function vh, then the mapping u

(l)
h W w il

h

is stable, that is, |w il
h | [ |u

(l)
h |.

The above time-marching algorithm is then modified as follows:

1. Set u (0)h =unh ;
2. For i=1,...,K compute the intermediate functions:

u (i)h =LPh
1 C
i−1

l=0
ailw

il
h
2 , w il

h=u(l)h +
bil

ail
DtnLh(u

(l)
h )

3. Set un+1h =uK
h .

This is the general form of the RKDG methods; they can be proven to be
stable in the semi-norm | · |, that is, that |unh | [ |u

0
h | [ C |u0 |, if the approxi-

mation to the initial data, u0h is chosen in a reasonable way, of course.
Note that the RKDG method is devised in such a way that when piece-

wise constant approximations are used for the space discretization and the
forward Euler method is employed for the time discretization, a standard
finite volume scheme is obtained; in this case, the generalized slope
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limiter LPh is nothing but the identity. Thus, the RKDG methods can be
considered to be a generalization of finite volume methods. When high-
order degree polynomials are used, a high-order RK method that matches
the accuracy of the space discretization has to be used which renders the
resulting method high-order accurate. In such a case, the use of the gener-
alized slope limiters LPh is crucial to ensure the stability of the method;
indeed, although the use of the generalized slope limiter turns out to be
unnecessary when the solution is smooth, it is indispensable when strong
shocks are present. The fact that it is possible to construct generalized slope
limiters LPh that enforce stability without degrading the high-order
accuracy achieved by the space and time discretizations is one of the most
remarkable features of the construction of the RKDG methods.

Note also the high degree of locality that the RKDG methods display.
First, thanks to the structure of the DG space discretization and to the
explicitness of the RK time discretization, to update the degrees of freedom
inside an element K, only the information about the elements sharing edges
with K is used in each inner RK step. This property is not shared by any of
the above mentioned high-resolution methods, which in their reconstruc-
tion step typically use the information associated to far-away elements.
Finally, let us point out that to compute LPh(uh) in the element K, only
information about uh on elements sharing edges with K is necessary. These
properties render the RKDG methods highly parallelizable.

Let us briefly illustrate some of the main features of the RKDG
methods:

• Capturing shocks. First, let us show in a simple example that the
RKDG methods can capture shocks as well as any high-resolution finite
difference or finite volume scheme does [38]. Consider the approximation
of the entropy solution of the inviscid Burgers equation

ut+(u2/2)x=0

on the domain (0, 1)×(0, T) with initial condition 1/4+sin(p(2x−1))/2
and periodic boundary conditions. In Fig. 1.1, we display the RKDG solu-
tion using piecewise linear and piecewise quadratic approximations; note
how, in both cases, the shock has been captured within three elements as
would be expected of any high-resolution scheme.

• The artificial dissipation and the order of accuracy. Let us now illus-
trate the relation between the dissipation of the RKDG methods and their
order of accuracy. Consider the one and two dimensional transport equation

ut+ux=0, or ut+ux+uy=0
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Fig. 1.1. Burgers equation: Comparison of the exact and the RKDG solutions obtained with
Dx=1/40 at T=0.40. Full domain (left) and zoom on three elements (right) the first of
which contains the exact shock. Exact solution (solid line), piecewise linear approximation
(dotted line), and piecewise quadratic approximation (dashed line).

Fig. 1.2. Transport equation: Comparison of the exact and the RKDG solutions at
T=100p with second order (P1, left) and seventh order (P6, right) RKDG methods. Top: one
dimensional results with 40 cells, exact solution (solid line) and numerical solution (dashed
line and symbols, one point per cell); Bottom: two dimensional results with 40×40 cells.
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on the domain (0, 2p)×(0, T) or (0, 2p)2×(0, T) with the characteristic
function of the interval (p2 ,

3p
2 ) or the square (

p
2 ,

3p
2 )

2 as initial condition and
periodic boundary conditions; this is the case in which the dissipation of
the scheme is going to be most noticeable since, unlike the previous case,
the characteristics do not carry information into the discontinuity but par-
allel to it. To further accentuate the effect of the dissipation of the scheme,
we compute the solution after a long time, namely, at T=100p (50 time
periods). The results for the second and seventh order accurate RKDG
methods are shown in Fig. 1.2, where we can clearly see that, as the
accuracy increases, the dissipation decreases dramatically. These results are
obtained without limiters. For linear problems, even with discontinuous
solutions, limiters are usually not necessary for numerical stability (the
numerical results are oscillatory but oscillations are reduced and localized
when the order of the scheme increases). The result stays the same if we
apply the TVB limiters detailed in Section 2 with the constant M suitably
chosen.

• Approximation of complex solutions. Let us show that the RKDG
method can handle solutions with very complicated structure. Consider the
classical double-Mach reflection problem for the Euler equations of gas
dynamics. In Fig. 1.3, by Cockburn and Shu [51], details of the approxi-
mation of the density are shown. Note that the strong shocks are very well
resolved by the RKDG solution using piecewise linear and piecewise
quadratic polynomials defined on squares. Also, note that there is a
remarkable improvement in the approximation of the density near the
contacts when going from linear to quadratic polynomials.

• Curved boundaries. Bassi and Rebay [19] showed the importance
of approximating as accurately as possible the boundaries of the physical
domain and the easiness with which this is achieved by using the RKDG
methods. Indeed, for the classical two-dimensional isentropic flow around
a circle, they showed that approximating the circle by a polygonal results in
non-physical entropy production at each of the kinks which is then carried
downstream and accumulate into a non-physical wake which does not
disappear by further refining the grid. However, by simply taking into
account the exact shape of the boundary, a remarkably improved approx-
imation is obtained; see [19].

• Parallelizability. Finally, let us address the parallelizability of the
RKDG method. In Table 1.1 below, taken from Biswas et al. [26], we
display the results obtained by these authors; we see the solution time and
total execution time for the two-dimensional problem

ut+ux+uy=0
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Fig. 1.3. Euler equations of gas dynamics: Double Mach reflection problem. Isolines of the
density around the double Mach stems. Quadratic polynomials on squares Dx=Dy= 1

240 (top);
linear polynomials on squares Dx=Dy= 1

480 (middle); and quadratic polynomials on squares
Dx=Dy= 1

480 (bottom).

180 Cockburn and Shu



Table 1.1. Scaled Parallel Efficiency. Solution Times (Without I/O) and Total Execution
Times Measured on the nCUBE/2

Solution Solution Total total
Number of time parallel time parallel
processors Work (W) (secs.) efficiency (secs.) efficiency

1 18,432 926.92 — 927.16 —
2 36,864 927.06 99.98% 927.31 99.98%
4 73,728 927.13 99.97% 927.45 99.96%
8 147,456 927.17 99.97% 927.58 99.95%
16 294,912 927.38 99.95% 928.13 99.89%
32 589,824 927.89 99.89% 929.90 99.70%
64 1,179,648 928.63 99.81% 931.28 99.55%
128 2,359,296 930.14 99.65% 937.67 98.88%
256 4,718,592 933.97 99.24% 950.25 97.57%

on the domain (−p, p)2×(0, T) with initial condition u(x, y, 0)=sin(px)
sin(py) and periodic boundary conditions. Biswas et al. [26] used 256
elements per processor and ran the RKDG method with polynomials of
degree two and 8 time steps; the work per processor was kept constant.
Note how the solution time increases only slightly with the number of pro-
cessors and the remarkable parallel efficiency of the method.

1.2. The LDG Space Discretizations for Convection-Diffusion Problems

The excellent results given by the RKDG methods for purely convec-
tive problems prompted several authors to try to extend them to the more
complicated physical problems in which, although convection might be a
dominating force, other physical phenomena must be taken into account.
An early attempt, for example, was made in 1995 by Chen et al. [37] and
by Chen et al. [36] in the framework of semiconductor device simulation;
there, a DG space discretization was combined with standard mixed
method elements for second-order elliptic problems.

In 1997, Bassi and Rebay [18] made a breakthrough in the framework
of the compressible Navier–Stokes equations; they rewrote the equations as
a first-order system and then discretized it by using the DG space discre-
tization technique. Computations were performed for the laminar, sub-
sonic flow around the NACA0012 airfoil at an angle of attack of zero
degrees, free stream Mach numberM=0.5, and Reynolds number equal to
5000. The boundary is curved and the boundary layer is captured within
only a few layers of elements; its separation at the trailing edge of the
airfoil has been clearly resolved as can be seen in [18].
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These remarkable results prompted the authors to introduce in 1998 the
local discontinuous Galerkin (LDG) space discretization [50] by generaliz-
ing the method of Bassi and Rebay [18] and applying it to general convec-
tion-diffusion systems. The LDG method is in the same form as the general
DG space discretization used for purely convective non-linear systems, with a
different guiding principle for the choice of the numerical fluxes. When used
with the special RK time discretizations and the generalized slope limiters
described above, we obtain an RKDGmethod.

Of course, it is efficient to use RK time discretizations for convection-
diffusion problems only if the convection is actually dominant, but, time
discretizations and slope limiters aside, what the work of Bassi and Rebay
[18] and Cockburn and Shu [50] showed is that DG discretizations could
be used for a wide range of equations for which the DG methods had not
been intended for originally, like, for example, purely elliptic equations.

1.3. Flexibility with the Mesh

Note also that, unlike any other finite element method, the RKDG
methods can easily deal with meshes with hanging nodes and elements of
several shapes since no inter-element continuity is required. This renders
them particularly well suited for hp-adaptivity and for handling situations
in which non-matching grids are necessary. These features have attracted
the attention of many researchers who are currently vigorously studying
and applying them (and other DG methods) to a wide variety of problems.

1.4. The Organization of this Review

In this paper, we expand the brief presentation of the discontinuous
Galerkin method displayed in this section. We begin in Section 2, by
describing in full detail the RKDG methods for non-linear scalar hyper-
bolic conservation laws in one space dimension; this contains most of the
key ideas of the RKDG methods. Extensions to systems of non-linear
hyperbolic conservation laws in several space dimensions are then discussed
in Section 3. In Section 4, we consider the LDG space discretization for
elliptic equations with emphasis on the discretization of the Laplacian and
the Stokes operators and, in Section 5, we consider the RKDG methods for
convection-diffusion problems. In Section 6, we extend the RKDG methods
to Hamilton–Jacobi and non-linear second-order parabolic equations. We
end in Section 7 by describing ongoing work and several important open
problems.

Our purpose has been to describe and summarize in a single paper, all
the work that the authors, their collaborators and other researchers have
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carried out during more than a decade in order to develop and analyze the
RKDG method. Thus, Section 2 is mainly related to the papers [49] and
[48]; Section 3 to the papers [46], [41] and [51]; Section 4 to the papers
[32], [42], and [43]; Section 5 to [107], [50], [33], and [88]; Section 6
to [72], [82] and [71]; finally, Section 7 to [47].

Part of the material in Sections 2, 3, 5 and 6, has also been considered in
the short introductory monograph to DG methods [38]. However, in this
paper, such material has been rewritten, updated and made more complete,
clear and concise; also, new results have been added. This is especially true
for Sections 2 and 5. For a description of the historical development of DG
methods, the reader is referred to the paper [44], and for an overview of the
state of the art of DGmethods up toMay 99, to [45].

2. SCALAR HYPERBOLIC CONSERVATION LAWS IN
ONE SPACE DIMENSION

In this section, we introduce and study the RKDG method for non-
linear hyperbolic conservation laws. Following the traditional path in this
field, we begin by considering the simple model Cauchy problem for the
scalar non-linear conservation law

ut+f(u)x=0, in (0, 1)×(0, T), u(x, 0)=u0(x), -x ¥ (0, 1), (2.1)

with periodic boundary conditions. All the main ideas of the devising of the
RKDG method are discussed in this section.

As is well known, the main difficulty of a numerical solution to (2.1) is
the appearance of shocks even if the initial condition u0(x) is smooth. A good
scheme for (2.1) would hopefully have the following properties:

• It is locally conservative.

• It is high-order accurate in smooth regions of the solution.

• It has sharp and monotone (non-oscillatory) shock transitions.

• The numerical solution should be self-similar, that is, it should
remain invariant when both space x and time t are scaled by the
same constant. Notice that this self-similarity is an important prop-
erty held by the exact solution of (2.1) and should be maintained by
the numerical solution whenever possible.

We start by considering the DG space discretization. Next, we introduce
the special RK time discretization and show how its structure allows us to
guarantee the stability of the whole method provided the stability of a
generic intermediate step holds. Then, we study carefully the stability of the
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intermediate step and construct a generalized slope limiter that enforces it
without degrading the high-order accuracy of the method. We then put all
these elements together, show that the RKDG method is indeed stable and
display several numerical results illustrating key features of the method. We
end this section by extending the method to the bounded domain case.

2.1. The DG Space Discretization

We seek an approximation uh whose restriction to each element Ij=
(xj−1/2, xj+1/2) is, for each value of the time variable, an element of the
local space U(Ij); typically, U(Ij) is the space of polynomials of degree at
most k \ 0. A reasonable way to define the initial data uh( · , 0) on the
element Ij is to take the L2-projection of u0 on the local space U(Ij), that is,
for all vh ¥U(Ij),

F
Ij
uh(x, 0) vh(x) dx=F

Ij
u0(x) vh(x) dx (2.2)

To determine the approximate solution for t > 0, we enforce the non-linear
conservation law element-by-element by means of a Galerkin method. Thus,
on each interval Ij=(xj−1/2, xj+1/2), we require that, for all vh ¥U(Ij),

F
Ij
(uh(x, t))t vh(x) dx−F

Ij
f(uh(x, t))(vh(x))x dx+f̂(uh( · , t)) vh :

xj+1/2

xj−1/2

=0

(2.3)

where f̂(uh) is the numerical flux. Note that uh is a well defined function
since there are as many equations per element as unknowns. The integral

F
Ij
f(uh(x, t))(vh(x))x dx

could either be computed exactly or approximately by using suitable
numerical quadratures or other methods; we will come back to this point in
Section 3 when we discuss the multi-dimensional case. Thus, to complete
the DG space discretization, we only have to define the numerical flux.

There are two main ideas in this crucial step. The first is to make the
numerical flux depend only on the two values of the approximate solution
uh at the discontinuities, that is,

f̂(uh)(xj+1/2)=f̂(uh(x
−
j+1/2), uh(x

+
j+1/2))
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this is computationally very convenient since we have a single recipe for the
mapping (a, b)W f̂(a, b) regardless of the form of the local spaces U(Ij).
Of course, we must make sure that the numerical flux is consistent with the
non-linearity f it approximates and so we require that f̂(a, a)=f(a), The
second idea is to pick the numerical flux in such a way that when the
approximate solution uh is piecewise-constant, the DG space discretization
gives rise to a monotone finite volume scheme. The motivation for this is
that, although only first-order accurate, monotone schemes are known to
be stable and convergent to the exact solution; see the 1976 papers by
Harten et al. [69] and by Kuznetsov [79] and the 1980 work by Crandall
and Majda [52]. This is achieved by simply requiring that aW f̂(a, · ) be
non-decreasing and bW f̂( · , b) be non-increasing. The main examples of
numerical fluxes satisfying the above properties are the following:

(i) The Godunov flux:

f̂G(a, b)=˛
min
a [ u [ b

f(u), if a [ b

max
b [ u [ a

f(u), otherwise

(ii) The Engquist–Osher flux:

f̂EO(a, b)=F
b

0
min(fŒ(s), 0) ds+F

a

0
max(fŒ(s), 0) ds+f(0)

(iii) The Lax–Friedrichs flux:

f̂LF(a, b)=1
2 [f(a)+f(b)−C(b−a)]

C= max
inf u0(x) [ s [ sup u0(x)

|fŒ(s)|

This completes the definition of the DG space approximation.
Several comments about this DG space discretization are in order:

• The class of monotone schemes is one of the great achievements of
the development of numerical schemes for non-linear scalar hyperbolic
conservation laws. The stability and convergence properties of these
schemes are corner stones for the construction of high-resolution finite
volume and finite difference schemes. The same thing can be said about
DG space discretizations which, as we have seen, try to capture those
properties by incorporating their numerical fluxes.
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• In the linear case f(u)=cu, all the above numerical fluxes coincide
with the so-called upwind numerical flux, namely,

f̂(a, b)=3ca if c \ 0
cb if c < 0

The first DG method was introduced in 1973 by Reed and Hill [98] for a
linear equation modeling transport of neutrons, namely,

su+N · (au)=f, in W

They used the upwind numerical flux, even though the concept of mono-
tone schemes and numerical fluxes had not been introduced yet.

• The above linear problem has been studied by several authors. The
first error analysis of the DG method for this problem was carried out in
1974 by LeSaint and Raviart [83]. They proved that the L2(W)-norm of
the error is of order k when polynomials of degree k are used for general
triangulations; they also proved that, for tensor products of polynomials of
degree k in one variable, the method super-converges with order k+1.
Later in 1986, Johnson and Pitkaränta [77] showed that the method con-
vergences with order k+1/2 for general triangulations and polynomials of
degree k. In 1991, Peterson [97] numerically confirmed this rate to be
optimal. In 1988, Richter [99] obtained the optimal order of convergence
of k+1 for some structured two-dimensional non-Cartesian grids and
polynomials of degree k. In 1996, Lin et al. [86] showed first order con-
vergence for the DG method using piecewise-constant approximations.
Their result holds for almost uniform grids of rectangles and for almost
uniform grids of triangles. Their technique is based on a very interesting
key approximation result; see also the review paper by Lin [85]. In 1993,
Lin and Zhou [87] proved convergence to the weak solution assuming
only that the exact solution belongs to H1/2(W). More recently, Houston
et al. [70] proved spectral convergence of the DG method assuming that
the exact solution is piecewise analytic. A review of several techniques of
analysis for finite element methods for hyperbolic problems including the
DG method and the continuous Galerkin method can be found in the
paper by Falk [59].

• The non-linear case is much more difficult to study. In fact, it was
only in 1982, after the introduction of the monotone schemes, that Chavent
and Salzano [35] used for the first time a DG space discretization for a
non-linear hyperbolic conservation law in the framework of oil recovery
problems. Moreover, so far there is no convergence analysis of the DG
space discretization for non-linear scalar conservation laws with non-smooth
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solutions except for the piecewise-constant case. Notice that the DG space
discretization is linear (i.e. the scheme is linear for linear PDEs), hence it is
expected to be oscillatory for problems with shocks except for the piecewise-
constant case (the well known ‘‘Godunov Theorem’’, e.g. [84]). However,
comparing with other high-order linear schemes such as finite difference
and finite volume schemes, the method of lines version of the DG space
discretization (and also certain implicit time discretization of it, such as
backward Euler or Crank–Nicholson) satisfies a remarkably stronger
provable stability property: a local cell entropy inequality for the square
entropy as proven by Jiang and Shu in 1994 [74]. This result is valid for
any order of accuracy and any triangulation in any spatial dimensions. It
trivially implies a L2 norm non-increasing with time for the numerical
solution and enforces any limit solution to be the correct entropy solution
when f(u) is convex. The only comparable result for finite difference or
finite volume schemes is for one space dimension, second order accurate
only, non-linear schemes. However, unlike for the linear case, numerical
evidence suggests that the DG method with explicit time stepping might be
unstable in the general case with strong shocks.

• For non-linear problems, the best choice of numerical flux is the
Godunov flux f̂G since it is well-known that this is the numerical flux that
produces the smallest amount of artificial viscosity. The local Lax–Friedrichs
flux

f̂LLF(a, b)=1
2 [f(a)+f(b)−C(b−a)], C= max

min(a, b) [ s [max(a, b)
|fŒ(s)|

produces more artificial viscosity than the Godunov flux, but their per-
formances are remarkably similar. Of course, if f is too complicated, we
can always use the simple Lax–Friedrichs flux. Numerical experience
suggests that as the degree k of the approximate solution increases, the
impact of the choice of the numerical flux on the quality of the approxi-
mations decreases.

• In the special but important case in which the local space U(Ij) is
taken to be the space of polynomials of degree k, the system of ordinary
differential equations takes a particularly simple form if we choose the
Legendre polynomials Pa as basis functions because we can exploit their
L2-orthogonality, namely,

F
1

−1
Pa(s) PaŒ(s) ds=1

2
2a+1
2 daaŒ
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to obtain a diagonal mass matrix. Indeed, if, for x ¥ Ij, we express our
approximate solution uh as follows:

uh(x, t)=C
k

a=0
uajj

j
a(x), j ja(x)=Pa(2(x−xj)/Dj), Dj=xj+1/2−xj−1/2

the initial condition (2.2) becomes

uaj(0)=
2a+1
Dj

F
Ij
u0(x) j

j
a(x) dx

for a=0,..., k, and the weak formulation (2.3) takes the following simple
form:

d
dt
uaj(t)+

2a+1
Dj
1− F

Ij
f(uh(x, t))(j

j
a(x))x dx+f̂(uh( · , t)) j

j
a
:xj+1/2
xj−1/2

2=0

for a=0,..., k; moreover, note that j ja(xj+1/2)=Pa(1)=1 and that j ja(xj−1/2)
=Pa(−1)=(−1)a.

• In the general case, the local mass matrix can be inverted easily, by
means of a symbolic manipulator, for example, since its order is equal to
the dimension of the local spaces. We thus can always obtain a system of
ordinary differential equations for the degrees of freedom that we can write
as follows:

d
dt
uh=Lh(uh), in (0, T), uh(t=0)=Phu0

where Ph denotes the L2-projection and the function Lh(uh) is, of course,
the approximation to −f(u)x provided by the DG-space discretization.

2.2. The RK Time Discretization

We discretize in time our system of ordinary differential equations by
using the following RK method:

1. Set u (0)h =unh ;

2. For i=1,...,K compute the intermediate functions:

u (i)h =C
i−1

l=0
ailw

il
h , w il

h=u(l)h +
bil

ail
DtnLh(u

(l)
h )

3. Set un+1h =uK
h ,
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which is required to satisfy the following conditions:

(i) If bil ] 0 then ail ] 0,

(ii) ail \ 0,

(iii) ; i−1
l=0 ail=1.

We need to stress the following features of this special class of RKmethods:

• Note that these RK methods are extremely simple to code since only
a single routine for Lh(uh) needs to be written. Moreover, the evaluation of
Lh(uh) can be efficiently done in parallel not only because the mass matrix
can always be taken to be the identity but because when computing the
restriction of Lh(uh) to the element K, only information of uh of the neigh-
bors sharing edges (in 2D) or faces (in 3D) with K is needed. This remains
true regardless of the degree of the polynomial approximation and the
accuracy in time of the RK method.

• Note that the first property allows us to express the RK method in
terms of the functions w il

h . Together with the two other properties this
ensures the distinctive feature of these RK methods which is that their
stability follows from the stability of the mapping u (l)h W w il

h . Indeed, if we
assume that, for some arbitrary semi-norm | · |, we have that |w il

h | [ |u
(l)
h |,

then

|u (i)h |= : C
i−1

l=0
ailw

il
h
:

[ C
i−1

l=0
ail |w

il
h |, by the positivity property (ii)

[ C
i−1

l=0
ail |u

(l)
h |, by the stability assumption

[ max
0 [ l [ i−1

|u (l)h |, by the consistency property (iii)

It is clear now that that the inequality |unh | [ |Phu0 |, -n \ 0, follows from
the above inequality by a simple induction argument.

• This elegant and simple class of RK methods was identified in 1988
by Shu [106] in the framework of finite difference methods for non-linear
hyperbolic conservation laws and was called the Total Variation Diminish-
ing (TVD) RK time discretizations because the total variation was used
as the semi-norm | · |. The TVD–RK methods were further developed by
Shu and Osher in 1988 [108] and in 1989 [109] for the efficient imple-
mentation of the high-resolution essentially non-oscillatory (ENO) schemes
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Table 2.1. TVD–RK Time Discretization Parameters

order ail bil max{bil/ail}

2 1 1 1
1
2
1
2 0 1

2

3 1 1
3
4
1
4 0 1

4 1
1
3 0

2
3 0 0 2

3

for hyperbolic conservation laws. In 1998, Gottlieb and Shu [63] carried
out an exhaustive study of these methods. In 2000, Gottlieb et al. [64]
reviewed this class of time discretizations, with new results for linear
problems, and renamed it as ‘‘strong stability preserving,’’ which seems
closer to the spirit of the method. Some of the RK methods in this class are
displayed in the Table 2.1.

• It is essential to carry out a von Neumann stability analysis of the
method for the linear case f(u)=cu in order to know for what values of
the number CFLL2, the condition

|c|
Dt
Dx

[ CFLL2

ensures its L2-stability. This condition has to be respected even for non-
linear functions f since only under this condition are the round-off errors
not amplified.

For example, for DG discretizations using polynomials of degree k
and a k+1 stage RK method of order k+1 (which give rise to an (k+1)th
order accurate method), we can take in practice

CFLL2=
1

2k+1

Indeed, this can be trivially proven for k=0 and was proven for k=1 in
[49]. Moreover, for k \ 2, the number 1

2k+1 is less than 5% smaller than
numerically-obtained estimates of CFLL2. In Table 2.2, we display these
CFLL2 numbers for a wide variety of time and space discretizations. The
symbol ‘‘a’’ indicates that the method is unstable when the ratio Dt/Dx is
held constant. In such a case, the method is typically stable for Dt of the
order of (Dx)1+e for some e > 0; for example e=1/2 for the forward Euler
method and polynomials of degree one [34].
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Table 2.2. The CFLL2 Numbers for Polynomials of Degree k and RK Methods of Order n

k 0 1 2 3 4 5 6 7 8

n=1 1.000 a a a a a a a a
n=2 1.000 0.333 a a a a a a a
n=3 1.256 0.409 0.209 0.130 0.089 0.066 0.051 0.040 0.033
n=4 1.392 0.464 0.235 0.145 0.100 0.073 0.056 0.045 0.037
n=5 1.608 0.534 0.271 0.167 0.115 0.085 0.065 0.052 0.042
n=6 1.776 0.592 0.300 0.185 0.127 0.093 0.072 0.057 0.047
n=7 1.977 0.659 0.333 0.206 0.142 0.104 0.080 0.064 0.052
n=8 2.156 0.718 0.364 0.225 0.154 0.114 0.087 0.070 0.057
n=9 2.350 0.783 0.396 0.245 0.168 0.124 0.095 0.076 0.062
n=10 2.534 0.844 0.428 0.264 0.182 0.134 0.103 0.082 0.067
n=11 2.725 0.908 0.460 0.284 0.195 0.144 0.111 0.088 0.072
n=12 2.911 0.970 0.491 0.303 0.209 0.153 0.118 0.094 0.077

• Finally, let us consider the issue of the stability of the intermediate
mapping u (l)h W w il

h , which is nothing but a simple Euler forward step
applied to the DG space discretization. That such a step could be stable is
certainly not evident. In fact, in 1989, Chavent and Cockburn [34] used a
DG space discretization with piecewise-linear functions and discretized it in
time by using the forward Euler scheme. For the linear case f(u)=cu, they
proved that a standard von Neumann analysis shows that the method is
unconditionally unstable. This implies that all the mappings u (l)h W w il

h are
unstable in L2 as soon as polynomials of degree bigger than or equal to one
are used (see Cockburn and Shu [49]), even though the complete RKDG
method might be L2-stable.

The above arguments indicate that a weaker measure of stability has
to be used for the mapping u (l)h W w il

h to be stable. The fact that monotone
schemes are obtained when piecewise-constant approximations are taken
suggests that semi-norms of the local means of the approximate solution
could be a good candidate for achieving the sought stability. As we show
next, this turns out to be the case.

2.3. The Stability of the Step uh W wh=uh+dLh(uh)

Let us denote by ūj the mean of uh on the interval Ij. If we set vh — 1 in
Eq. (2.3), we obtain,

(ūj)t+(f̂(u
−
j+1/2, u

+
j+1/2)− f̂(u

−
j−1/2, u

+
j−1/2))/Dj=0
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where u−j+1/2 denotes the limit from the left and u
+
j+1/2 the limit from the

right. This shows that if we set wh equal to the Euler forward step uh+
dLh(uh), we obtain

(w̄j−ūj)/d+(f̂(u
−
j+1/2, u

+
j+1/2)− f̂(u

−
j−1/2, u

+
j−1/2))/Dj=0 (2.4)

When the approximate solution is piecewise-constant, we obtain a mono-
tone scheme for small enough values of |d| and, as a consequence, we have
that the scheme is TVD, i.e.,

|w̄h |TV(0, 1) [ |ūh |TV(0, 1)

where

|ūh |TV(0, 1) — C
1 [ j [N

|ūj+1−ūj |

is the total variation of the local means. For general approximate solutions,
we get an analogous result that tells us when the scheme is total variation
diminishing in the means (TVDM) of the approximate solution by using
the following Lemma due to Harten [68].

Proposition 2.1 (Harten’s Lemma). If the scheme (2.4) can be written
into the form

w̄j=ūj+Cj+1/2(ūj+1−ūj)−Dj−1/2(ūj−ūj−1) (2.5)

with Cj+1/2 and Dj−1/2 being arbitrary non-linear functions of ūj, ūj±1 and
u ±j±1/2 satisfying

Cj+1/2 \ 0, Dj+1/2 \ 0, Cj+1/2+Dj+1/2 [ 1 (2.6)

then it is TVDM, namely

|w̄h |TV(0, 1) [ |ūh |TV(0, 1)

The proof follows easily when we take a forward difference on both
sides of (2.5), sum over j and group terms on the right hand side taking
into consideration (2.6).

In fact, it is easy to rewrite (2.4) in the form (2.5) with

Cj+1/2=−d 1 f̂(u
−
j+1/2, u

+
j+1/2)− f̂(u

−
j+1/2, u

+
j−1/2)

ūj+1−ūj
2 (2.7)

Dj−1/2=d 1
f̂(u−j+1/2, u

+
j−1/2)− f̂(u

−
j−1/2, u

+
j−1/2)

ūj−ūj−1
2 (2.8)
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Thus, the coefficients Cj+1/2 and Dj−1/2 are non-negative if and only if the
following sign conditions are satisfied

sign(u+j+1/2−u
+
j−1/2)=sign(ūj+1−ūj),

sign(u−j+1/2−u
−
j−1/2)=sign(ūj−ūj−1)

by the monotonicity of the numerical flux f̂. Once these two conditions are
satisfied, the third condition in (2.6) becomes a simple restriction on the
size of the parameter d.

Since the DG space discretization method does not provide an
approximate solution automatically satisfying the above sign conditions, it
is necessary to enforce them by means of what will be called a generalized
slope limiter, LPh.

2.4. The Generalized Slope Limiter

Next, we construct the operator LPh; set uh=LPhvh. We begin by
noting that for piecewise linear approximate solutions, that is,

vh |Ij=v̄j+(x−xj) vx, j

van Leer [111, 112] introduced the following slope limiter in the construc-
tion of his MUSCL schemes:

uh |Ij=v̄j+(x−xj) m 1vx, j,
v̄j+1−v̄j
Dj

,
v̄j−v̄j−1
Dj
2

where the minmod function m is defined as follows:

m(a1, a2, a3)=˛
s min
1 [ n [ 3

|an | if s=sign(a1)=sign(a2)=sign(a3)

0 otherwise
(2.9)

We use a less restrictive slope limiter, denoted by LP1
h , due to Osher [93],

which is defined as follows:

uh |Ij=v̄j+(x−xj) m 1vx, j,
v̄j+1−v̄j
Dj/2

,
v̄j−v̄j−1
Dj/2
2

which can be rewritten as follows:

u−j+1/2=v̄j+m ( v
−
j+1/2−v̄j, v̄j−v̄j−1, v̄j+1−v̄j) (2.10)

u+j−1/2=v̄j−m ( v̄j−v
+
j−1/2, v̄j−v̄j−1, v̄j+1−v̄j) (2.11)
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Fig. 2.1. Example of slope limiters: The MUSCL limiter (left) and the less restrictive LP1
h

limiter (right). Displayed are the local means of uh (thick line), the linear function uh in the
element of the middle before limiting (dotted line) and the resulting function after limiting
(solid line).

A comparison between the van Leer’s MUSCL slope limiter and the slope
limiter LP1

h is displayed in Fig. 2.1.
For general functions vh, we can define a generalized slope limiter LPh

in a very simple way. To do that, let us denote by v1h the L
2-projection of vh

into the space of piecewise-linear functions. We then define uh=LPh(vh)
on the interval Ij, as follows:

(i) Compute u−j+1/2 and u
+
j−1/2 by using (2.10) and (2.11),

(ii) If u−j+1/2=v−j+1/2 and u
+
j−1/2=v+j−1/2 set uh |Ij=vh |Ij ,

(iii) If not, take uh |Ij equal to LP
1
h(v

1
h).

Let us discuss some important points about this limiter:

• The above recipe is remarkably simple as it can be applied to any
type of approximate solution vh by using the minmod function m at most
three times per element.

• This generalized slope limiter can be efficiently parallelized since to
compute it on the element Ij, the only information needed which is not asso-
ciated with this element are the means on the two neighboring elements.

• For this generalized slope limiter, the sign conditions are satisfied for
small enough values of |d|. In fact, we have the following result.

Proposition 2.2 (The TVDM property). Suppose that for j=1,..., N

|d| 1 |f̂(a, · )|Lip
Dj+1

+
|f̂( · , b)|Lip
Dj
2 [ 1/2 (2.12)
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Then, if uh=LPhvh,

|w̄h |TV(0, 1) [ |ūh |TV(0, 1)

Proof. Since in our case, the coefficients Cj+1/2 and Dj−1/2 in (2.5) are
given by equations (2.7) and (2.8), we can clearly see condition (2.6) in
Harten’s Lemma is satisfied. This is a simple consequence of the mono-
tonicity of the flux f̂, the CFL condition (2.12), and the definition of the
limited quantities (2.10), (2.11). i

• If the function vh is linear, then uh=vh. However, if the function vh
is a parabola, we have that uh ] vh near the critical point of vh. This is an
indication that the high-order accuracy of the RKDG method is main-
tained away from critical points but might be lost near them; this is what
actually takes place in practice. Fortunately, it is possible to slightly modify
our generalized slope limiter in such a way that the degradation of the
accuracy at local extrema is avoided. To achieve this, we follow Shu [105]
and modify the definition of the generalized slope limiters by simply replac-
ing the minmod function m by the corrected minmod function ma j defined as
follows:

ma j(a1, a2, a3)=3
a1 if |a1 | [MD

2
j

m(a1, a2, a3) otherwise

whereM is, of course, an upper bound of the absolute value of the second-
order derivative of the solution at local extrema. In the case of the non-
linear conservation laws under consideration, it is easy to see that, if the
initial data is piecewise C2, we can take

M=C sup{|(u0)xx (y)|, y : (u0)x (y)=0}

where for a uniform mesh we could take C=2/3; see [48]. Fortunately, in
practice, the numerical results are not very sensitive to the choice of this
constant which can be taken fairly big without degrading the quality of the
results. For the above modified generalized slope limiter, which we denoted
by LPh, M, the TVDM property of Proposition 2.2 does not hold anymore.
Instead, the mapping uh W wh has total variation that can increase an
amount proportional to Dx —maxj Dj at each intermediate step.

Proposition 2.3 (The TVBM property). Suppose that for j=1,..., N

|d| 1 | f̂(a, · )|Lip
Dj+1

+
| f̂( · , b)|Lip
Dj
2 [ 1/2
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Then, if uh=LPh, Mvh, then

|w̄h |TV(0, 1) [ |ūh |TV(0, 1)+CM Dx

Note that the condition on d is independent of the form that the approxi-
mate solution has in space.

• Ideally, the parameter M should be estimated solely by using the
approximate solution. However, it is difficult to achieve a recipe good for
both smooth extrema and shocks. We should point out that this TVB
modification renders the scheme non self similar, as the spatial mesh size Dj
explicitly appears in the scheme and M certainly changes when x and t are
both scaled by the same constant. However, in practical calculations one
observes that this modification takes very little effect near the shock, and
ensures the limiter is not enacted near smooth extrema. Thus the resulting
scheme is basically the same as a self similar TVDM scheme except for the
recovery of the full order of accuracy near smooth extrema. This issue
brings us to the generalized slope limiter devised in 1994 by Biswas et al.
[26] which does not require any auxiliary parameter to be guessed. Unlike
the generalized slope limiter we have presented, there is no known stability
property for it; however, it performs very well and can be used for adapti-
vity purposes.

• We have used the total variation of the local means to devise our
generalized slope limiter but stability in the L.-norm of the means is also
enforced by this limiter; see [48] for details.

2.5. The Non-Linear Stability of the RKDG Method

Let us recall the complete RKDG method:

1. Set u0h=LPh, MPhu0;

2. For n=0,..., L−1:

(a) Set u (0)h =unh ;

(b) For i=1,...,K compute the intermediate functions:

u (i)h =LPh.M
1 C
i−1

l=0
ailw

il
h
2 , w il

h=u (l)h +
bil

ail
DtnLh(u

(l)
h )

(c) Set un+1h =uK
h .

For this method, we have the following stability result.
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Theorem 2.4 (TVDM-stability of the RKDG method). Let each time
step Dtn satisfy the following CFL condition:

max
il

:bil
ail
: Dtn 1 |f̂(a, · )|Lip

Dj+1
+
|f̂( · , b)|Lip
Dj
2 [ 1/2 (2.13)

Then we have

|ūnh |TV(0, 1) [ |u0 |TV(0, 1)+CMQ, -n=0,..., L

where L Dx [ Q.

Proof. From Proposition 2.3 with d=bil
ail
/Dtn and the CFL condition

(2.13), we have that

|w̄ il
h |TV(0, 1) [ |ū

(l)
h |TV(0, 1)+CM Dx

Now, we have

|ū (i)h |TV(0, 1)=: C
i−1

l=0
ailw̄

il
h
:
TV(0, 1)

[ C
i−1

l=0
ail |w̄

il
h |TV(0, 1), since ail \ 0

[ C
i−1

l=0
ail (|ū

(l)
h |TV(0, 1)+CM Dx),

by the above stability property

[ max
0 [ l [ i−1

|ū (l)h |TV(0, 1)+CM Dx, since C
i−1

l=0
ail=1

and, by induction,

|unh |TV(0, 1) [ |Phu0 |TV(0, 1)+CML Dx [ |u0 |TV(0, 1)+CMQ

since Ph is the L2-projection. This completes the proof. i

The above stability result, and its remarkably simple proof, require
several comments:
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• Note that for the linear case f(u)=cu, the CFL condition (2.13)
becomes

|c|
Dt
Dx

[ CFLTV —
1

2 max
bil

ail

In Table 2.3, we display these CFL numbers for the RKDG obtained by
using polynomials of degree k and the methods of order k+1 considered
in the Table 2.1 and compare them with the CFL numbers needed for
L2-stability. We can see that the restriction of the time step imposed by the
TVBM property is much weaker than that required to achieve L2-stability.
However, it is the condition for L2 stability that needs to be respected;
otherwise, the round-off errors would get amplified and the high-order
accuracy of the method would degenerate even though the RKDG method
remains TVBM-stable.

• In the proof of the above result, it can be clearly seen how the DG
space discretization, the RK time discretization and the generalized slope
limiter are inter-twined just in the right way to achieve non-linear stability.
This is why we must emphasize that although the DG space discretization
of this method is an essential distinctive feature, the other two ingredients
are of no less relevance.

• Indeed, both the DG space discretization and the slope limiter were
known to Chavent and Cockburn [34] who used piecewise-linear approx-
imations and the forward Euler time marching scheme and obtained a
stable first-order accurate in time method. It was the use of the special RK
time discretization that really allowed the RKDG method to become a
stable and high-order accurate in time method. We must say also that there
are anecdotal reports of other time discretizations that seem to work just
fine. However, the fact remains that only with this special class of TVD–
RK methods can the non-linear stability of the method actually be proven.

• Let us also stress the fact that the generalized slope limiter is likewise
an essential ingredient of the method without which its stability cannot be
guaranteed. Although our numerical experience indicates that second-order

Table 2.3. CFL Numbers for RKDG Methods of Order k+1

k 0 1 2

CFLTV 1 1/2 1/2
CFLL2 1 1/3 1/5
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RKDG methods using piecewise linear approximations seem to remain
stable, this is certainly not the case for higher order RKDG methods.
However, if it is known before hand that the exact solution is smooth, the
generalized slope limiters are not necessary. For a short essay in which the
role of the generalized slope limiter is argued to be indispensable for tran-
sient non-linear problems, see the work by Cockburn [39]; in which it is
shown that the limiter plays the role of the so-called shock-capturing terms
used in DG and streamline-diffusion methods.

• It is interesting to note that totally independently of the just described
development of the RKDG methods, other authors have studied methods
using DG space discretizations and RK time discretizations. Indeed, in 1989,
Allmaras [6] introduced a DG method for the transient and steady Euler
equations of gas dynamics an earlier version of which appeared in the 1987
paper by Allmaras and Giles [7]. He used piecewise-linear functions in space
and a three-stage second-order Runge–Kutta time stepping method. Later, in
1992, Halt [65] extended Allmaras’ work to higher degree polynomials and
to general unstructured grids in two- and three-space dimensions. His
numerical test cases include steady state test problems like the Ringleb flow,
2D airfoils and the 3D Onera M6 wing; see also the 1991 and 1992 papers by
Halt and Agarwall [66] and [67], respectively.

• It is not difficult to use Theorem 2.4 to conclude, by using a discrete
version of the Ascoli–Arzelá theorem, that from the sequence {ūh}Dx > 0, it is
possible to extract a subsequence strongly converging in L.(0, T; L1(0, 1))
to a limit ua. That this limit is a weak solution of the non-linear conserva-
tion law can be easily shown. However, while there is ample numerical
evidence that suggests that ua is actually the entropy solution, this fact
remains a very challenging theoretical open problem. There are no other
significant theoretical results about RKDG methods. Theoretical results
concerning other DG methods for the non-linear scalar hyperbolic conser-
vation laws are the 1995 convergence result of Jaffré et al. [73] for the so-
called shock-capturing DG methods, and the 1996 a posteriori and a priori
error estimates of Gremaud and Cockburn [40] for the same methods. These
methods can be proven convergent, but they are non self-similar in an essen-
tial way, that is, mesh size Dx-dependent terms are responsible for the control
of oscillations near shocks, hence their practical value is more limited.

2.6. Computational Results

In this subsection, we display the performance of the RKDG schemes
in two simple but typical test problems; the LPh, M generalized slope limiter
is used.
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The first test is the transport equation in (0, 2p)×(0, T) with periodic
boundary conditions:

ut+ux=0, u(x, 0)=31 for p/2 < x < 3p/2
0 otherwise

Our purpose is to show that (i) when the TVB constant M=0, the scheme
becomes TVDM for all polynomial degree approximations, and that (ii)
when M increases, the artificial diffusion induced by the limiter decreases
as the polynomial degree increases. This can actually be seen in Fig. 2.2; see
also Fig. 2.1 in Section 1. Note that for polynomials of degree 6, the
contact discontinuity is always captured with less than five elements, for
any value ofM, even at T=100p !

The second numerical experiment and its discussion is quoted almost
verbatim from [38]. We consider the standard Burgers equation in (0, 1)×
(0, T) with periodic boundary conditions:

ut+(u2/2)x=0, u(x, 0)=u0(x)=
1
4+

1
2 sin(p(2x−1))

Our purpose is to show that (i) when the constant M is properly chosen,
the RKDG method using polynomials of degree k is order k+1 in the
uniform norm away from the discontinuities, that (ii) the appearance of
discontinuities does not destroy the high-order accuracy of the method
away from them, that (iii) it is computationally more efficient to use high-
degree polynomial approximations, and that (iv) shocks are captured in a
few elements without production of spurious oscillations.

The exact solution is smooth at T=0.05 and has a well developed
shock at T=0.4. In Tables 2.4 and 2.5, we show the effect of the parameter
M on the quality of the approximation for k=1 and k=2, respectively. It
can be seen that when the TVDM generalized slope limiter is used, i.e.,
when we take M=0, there is degradation of the accuracy of the scheme,
whereas when the TVBM generalized slope limiter is used with a properly
chosen constantM, i.e., whenM=20 \ 2p2, the scheme is uniformly high-
order accurate.

In Table 2.6, we display the history of convergence of the RKDG
method withM=20 away from the discontinuity. We see that, as claimed,
the presence of the shock does not degrade the accuracy of the method
away from it.

Next, we compare the efficiency of the RKDG schemes for k=1 and
k=2 for the case M=20 and T=0.05; the efficiency of a method is the
inverse of the product of the L1-error times the computational cost (CPU).
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Fig. 2.2. Transport equation: Comparison of the exact and the RKDG solutions at T=
100p with second order (P1, left) and seventh order (P6, right) RKDG methods with 40 ele-
ments. Exact solution (solid line) and numerical solution (dashed line and symbols, one point
per element). The auxiliary constantM is 0 (top), 10 (middle), and 50 (bottom).
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Table 2.4. Burgers Equation. Effect of the Generalized Slope Limiter ParameterM
for k=1 at T=0.05

L1(0, 1) L.(0, 1)

M 1/Dx 105 · error order 105 · error order

0 10 1286.23 — 3491.79 —
20 334.93 1.85 1129.21 1.63
40 85.32 1.97 449.29 1.33
80 21.64 1.98 137.30 1.71
160 5.49 1.98 45.10 1.61
320 1.37 2.00 14.79 1.61
640 0.34 2.01 4.85 1.60
1280 0.08 2.02 1.60 1.61

20 10 1073.58 — 2406.38 —
20 277.38 1.95 628.12 1.94
40 71.92 1.95 161.65 1.96
80 18.77 1.94 42.30 1.93
160 4.79 1.97 10.71 1.98
320 1.21 1.99 2.82 1.93
640 0.30 2.00 0.78 1.86
1280 0.08 2.00 0.21 1.90

The results, obtained on a Pentium II PC are displayed in Table 2.7. We
can see that the efficiency of the RKDG scheme with quadratic polyno-
mials is several times bigger than that of the RKDG scheme with linear
polynomials even for very small values of Dx. We can also see that the
efficiency ratio is proportional to (Dx)−1, which is expected for smooth

Table 2.5. Burgers Equation. Effect of the Generalized Slope Limiter ParameterM
for k=2 at T=0.05

L1(0, 1) L.(0, 1)

M 1/Dx 105 · error order 105 · error order

0 10 2066.13 — 16910.05 —
20 251.79 3.03 3014.64 2.49
40 42.52 2.57 1032.53 1.55
80 7.56 2.49 336.62 1.61

20 10 37.31 — 101.44 —
20 4.58 3.02 13.50 2.91
40 0.55 3.05 1.52 3.15
80 0.07 3.08 0.19 3.01
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Table 2.6. Burgers Equation. History of Convergence on W={x : |x− shock| \ 0.1}
forM=20 at T=0.4

L1(W) L.(W)

k 1/Dx 105 · error order 105 · error order

1 10 1477.16 — 17027.32 —
20 155.67 3.25 1088.55 3.97
40 38.35 2.02 247.35 2.14
80 9.70 1.98 65.30 1.92
160 2.44 1.99 17.35 1.91
320 0.61 1.99 4.48 1.95
640 0.15 2.00 1.14 1.98
1280 0.04 2.00 0.29 1.99

2 10 786.36 — 16413.79 —
20 5.52 7.16 86.01 7.58
40 0.36 3.94 15.49 2.47
80 0.06 2.48 0.54 4.84

solutions. This indicates that it is indeed more efficient to work with
RKDG methods using polynomials of higher degree.

Finally, we have shown in Fig. 1.1 in Section 1 that when shocks are
present, they can be captured in a few elements; in this case, the only shock
is captured in essentially two elements, as is expected of any high-resolution
method for strictly convex non-linearities. Note also that it is clear that the
approximation using quadratic elements is superior to the approximation
using linear elements. We also illustrate in Fig. 2.3 how the schemes follow
a shock when it goes through a single element.

Table 2.7. Burgers Equation. Ratio of Efficiencies of the RKDG Method (k=2)/(k=1)
forM=20 at T=0.05

L1(0, 1) L.(0, 1)

1/Dx efficiency ratio order efficiency ratio order

10 5.68 — 4.69 —
20 11.96 −1.07 31.02 −2.73
40 25.83 −1.11 70.90 −1.19
80 52.97 −1.04 148.42 −1.07
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Fig. 2.3. Burgers equation. Comparison of the exact and the approximate solutions obtained
with M=20, Dx=1/40 as the shock passes through one element. Exact solution (solid line),
piecewise linear elements (dotted line) and piecewise quadratic elements (dashed line). Top:
T=0.40, lower left: T=0.45, and lower right: T=0.50.

2.7. Extension to Bounded Domains

In all this section, we have only considered periodic boundary condi-
tions. To extend our results to the bounded domain case, see the formulation
of the corresponding initial-boundary value problem by Bardos et al. [17],
we proceed in three steps:

(i) To extend the DG space discretization, we simply have to
replace the numerical fluxes at the boundaries, namely,

f̂(uh(0−, t), uh(0+, t)) and f̂(uh(1−, t), uh(1+, t))

by

f̂(a(t), uh(0+, t)) and f̂(uh(1−, t), b(t))

respectively, where a(t) and b(t) are the boundary data.
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(ii) The TDV–RK time discretization has now to take into considera-
tion the boundary data; see the work by Shu [104] for details.

(iii) To extend the generalized slope limiter, we simply have to define
the quantities

ū0=2a(t)− ū1 and ūN+1=2b(t)− ūN

and proceed as usual.

3. MULTI-DIMENSIONAL HYPERBOLIC SYSTEMS

In this section, we consider the extension of the RKDG method to
multi-dimensional systems:

ut+N ·f(u)=0, in W×(0, T) (3.1)

u(x, 0)=u0(x), -x ¥ W (3.2)

For simplicity, we assume that W is the d-dimensional unit cube. The
RKDG method for multi-dimensional systems has the same structure it has
for one-dimensional scalar conservation laws; we only need to describe the
DG-space discretization and the generalized slope limiter LPh. After doing
that, we display the performance of the method on the Euler equations of
gas dynamics.

3.1. The Discontinuous Galerkin Space Discretization

To discretize the multi-dimensional system (3.1) in space, we simply
proceed component by component; thus, it is enough to show how to do
this for u being a scalar.

For this case, we seek an approximate solution uh whose restriction to
the element K of the triangulation Th of W is, for each value of the time
variable, in the local space U(K). Just as done in the one-dimensional case,
we take uh(0) — uh( · , 0) on the element K to be the L2-projection of the
data on U(K), i.e., for all vh ¥U(K),

F
K
uh(0) vh dx=F

K
u0vh dx (3.3)
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We now determine the approximate solution for t > 0 on each element K of
our triangulation by imposing that, for all vh ¥U(K),

F
K
(uh)t vh dx−F

K
f(uh) ·Nvh dx+F

“K
f·nK5 (uh) vh ds=0 (3.4)

where nK is the outward unit normal to the boundary of K.
To complete the definition of the DG space discretization, it only remains

to define the numerical flux f·nK5 . This is in effect just a one dimensional flux
we have discussed in the previous section, in the normal direction of the edge.
However, to explain it clearly, we need to introduce some notation. For two
adjacent elements K+ and K− of the triangulationTh and a point x of their
common boundary at which the vectors nK± are well defined, we set

u ±h (x)=lim
e a 0

uh(x− enK± )

and call these values the traces of uh from the interior of K ±. Now, just like
for the one-dimensional case, we take the numerical flux at x to be solely a
function of the traces u ±h (x), i.e.,

f·nK−5 (uh)(x)=f·nK−5 (u−h (x), u
+
h (x))

and require that it be consistent with the non-linearity f·nK− , which in this
case amounts to ask that f·nK−5 (a, a)=f(a) · nK− . Another criterion to
pick our numerical fluxes is that when a piecewise-constant approximation
is taken, the DG space discretization should give rise to a monotone finite
volume scheme. This is ensured if we ask that our numerical flux be con-
servative, i.e., that

f·nK−5 (u−h (x), u
+
h (x))+f·nK+5 (u+h (x), u

−
h (x))=0

and that the mapping aW f·nK−5 (a, · ) be non-decreasing. The main examples
of numerical fluxes satisfyingall the above requirementsare the following:

(i) The Godunov flux:

f·n5 G(a, b)=˛
min
a [ u [ b

f·n(u), if a [ b,

max
b [ u [ a

f·n(u), otherwise
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(ii) The Engquist–Osher flux:

f·n5 EO(a, b)=F
b

0
min(fŒ · n(s), 0) ds

+F
a

0
max(fŒ · n(s), 0) ds+f·n(0)

(iii) The Lax–Friedrichs flux:

f·n5 LF(a, b)=
1
2
(f(a)+f(b)) · n−

C
2
(b−a)

where C=maxinf u0(x) [ s [ sup u0(x) |n ·fŒ(s)|.

In other words, to define the multi-dimensional DG discretization, we can
use simple one-dimensional numerical fluxes.

Before discussing the DG discretization under consideration, we
introduce a notation which is a mixture of the traditional notation used in
hyperbolic conservation laws and that proposed in [29] for purely elliptic
problems. Thus, we define the mean values { · } and jumps [ · ] by

{uh} :=
1
2 (u

+
h+u

−
h ), [uh] :=u+h nK−+u−h nK+

we realize that we have the identity f·n5 LF=f̂LF · n where

f̂LF(u−h , u
+
h )={f(uh)}−

C
2
[uh]

The Godunov and the Engquist–Osher numerical fluxes do not satisfy a
similar identity.

Next, we discuss a few important points concerning this discretization:

• Just like in the one dimensional case, the mass matrix is block-
diagonal; the block associated with the element K is a square matrix of
order equal to the dimension of the local space U(K) and hence can be
easily inverted. Moreover, for a variety of elements and spaces U(K),
a basis can be found which is orthonormal in L2. This is the case, for
example, of rectangles and tensor product polynomials, in which case the
orthonormal basis is a properly scaled tensor product of Legendre poly-
nomials. Another remarkable example is that of simplexes and polynomials
of a given total degree, case for which there is an orthonormal basis; see
Dubiner [58], the work by Karniadakis and Sherwin [78] and Warburton
[113], and the recent implementation by Aizinger et al. [5].
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Thus, after performing the DG space discretization, and just like for
the one-dimensional case, the resulting equations can be rewritten in ODE
form as d

dt uh=Lh(uh) where Lh(uh) denotes the approximation to −N ·f(u)
provided by the DG method.

• In practice, the integrals appearing in the weak formulation (3.4)
need to be approximated by quadrature rules. It was proven in [41] that

||Lh(u)+N ·f(u)||L.(K) [ Chk+1 |f(u)|Wk+2,.(K)

if the quadrature rules over each of the faces of the border of the element K
are exact for polynomials of degree 2k+1, and if the one over the element
is exact for polynomials of degree 2k. In fact, these requirements are also
necessary, as we have verified numerically; moreover, the method is more
sensitive to the quality of the quadrature rules used on the boundary of the
elements than to that used in their interior.

Finally, let us point out that a quadrature-free version of the method
was devised by Atkins and Shu [12] which results in a very efficient
method for linear problems and certain nonlinear problems such as Euler
equations of gas dynamics where the nonlinearity in the flux is mainly low
order polynomials and perhaps one or two divisions of the components of
the independent variable u.

• When dealing with multi-dimensional hyperbolic systems, the local
Lax–Friedrichs numerical flux is a particularly convenient choice of
numerical flux because it can be easily applied to any non-linear hyperbolic
system, it is simple to compute, and yields good results. This numerical flux
is defined as follows. First, note that for multi-dimensional systems, u is a
vector-valued function and f(u) is a matrix whose rows will be denoted by
fj(u); as a consequence, f̂LLF is also a matrix whose jth. row is given by

f̂LLF
j (u−h , u

+
h )={fj(uh)}−

C
2
[(uh)j]

where C=C(K ±) is the larger one of the largest eigenvalue (in absolute
value) of “

“u f(u
±
h ) ·nK± . In practice, one could also determineC=C(K ±) to be

the larger one of the largest eigenvalue (in absolute value) of “
“u f(ūK± ) · nK±

where ūK± are themeans of the approximate solution uh in the elementsK ±.

• The DG space discretization can be applied to any high-order
hyperbolic equation by simply rewriting it as a first order system of equa-
tions. For example, the wave equation

utt−c2 Du=0
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which is a second-order hyperbolic equation, can be rewritten as follows:

Ut+N ·F(U)=0

where,

U=R
q1

q2

· · ·

qd

u

S , F(U)=− R
u 0 · · · 0

0 u · · · 0

· · · · · · · · · · · ·

0 0 · · · u

c2q1 c2q2 · · · c2qd

S
The DG space discretization can now be easily applied to this system.

• Let us finally point out that since the wave equation can be rewritten as

qt−Nu=0

ut−c2N · q=0

the DG space discretization of the hyperbolic system for U can also be
rewritten in terms of (u, q) as follows: Find (uh, qh) such that its restriction
to the element K belongs to the local space U(K)×Ud(K) and is such that,
for all (vh, rh) ¥U(K)×Ud(K),

F
K
(qh)t · rh dx+F

K
uhN · rh dx−F

“K
ûhrh · nK ds=0

F
K
(uh)t vh dx+F

K
c2qh ·Nvh dx−F

“K
c2q5h · nKvh ds=0

where the numerical fluxes ûh and c2q5h can be easily written in terms of the
numerical flux F̂(Uh). For example, the Lax–Friedrichs flux for F̂(Uh) cor-
responds to

−ûh=−{uh}−
|c|
2
[qh], −c2q5h=−c2{qh}−

|c|
2
[uh]

where

{uh}=
1
2 (u

+
h+u

−
h ), [uh]=u+h nK−+u−h nK+

{qh}=
1
2 (q

+
h+q

−
h ), [qh]=q+h · nK−+q−h · nK+
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We have shown this to emphasize how easy is to discretize second-order
elliptic operators by means of a DG method. We shall meet these numeri-
cal fluxes again when we deal with DG discretizations of purely elliptic
equations in the next section.

3.2. The Generalized Slope Limiter LPh

When we dealt with the scalar one dimensional conservation law, the
role of the generalized slope limiter LPh was to enforce the TVBM prop-
erty of a typical Euler forward time step. In the case of multi-dimensional
scalar conservation laws, we cannot rely anymore on the TVBM property
of the Euler forward step because such a property has not been proven for
monotone schemes on general meshes; it has been proven only for mono-
tone schemes in non-uniform but Cartesian grids in 1983 by Sanders [102].
We can, instead, rely on a local maximum principle. Indeed, in [41]
Cockburn et al. constructed a generalized slope limiter that enforces a local
maximum principle without degrading the accuracy of the numerical
scheme; this property holds for approximate solutions of arbitrary shapes
and quite general meshes. See also the limiters introduced and studied by
Wierse [115].

After several years of numerical experimentation, the authors found a
very simple, practical and effective generalized slope limiter LPh, M which
gives very good numerical results; see [51]. Since, unfortunately, there is
no rigorous proof that the use of this limiter does enforce the stability of
the method, we should at least provide the heuristics behind its construc-
tion. Let vh be the function to which we are going to apply the limiter and
let uh be the result; let also v

1
h be its L

2-projection into the space of piece-
wise linear functions. Inspired by the construction of the one-dimensional
limiter described in Section 2, we first construct a slope limiter for piece-
wise linear functions, LP1

h, M. Then, we construct a limiter for general
function as follows:

(i) Detect the spurious oscillations in vh |K,

(ii) If there is no spurious oscillation, set uh |K=vh |K,

(iii) If not, take uh |K equal to LP
1
h, Mv

1
h .

It remains now to decide how to ‘‘detect the spurious oscillations.’’ To do
that, we assume that spurious oscillations are present in vh |K on the element
K only if they are present in v1h |K and by this we mean that v1h |K ]

LPh, Mv
1
h |K. Thus, our generalized slope limiter is defined on the element K

as follows:
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(i) Compute rh |K=LP
1
h, Mv

1
h |K,

(ii) If rh |K=v1h |K, set uh |K=vh |K,

(iii) If not, set uh |K=rh |K.

It only remains to define the slope limiter LP1
h, M. To construct it for

triangular elements, we proceed as follows; we quote almost verbatim the
work done on pp. 133–134 in [38]. Consider the triangles in Fig. 3.1,
where m1 is the mid-point of the edge on the boundary of K0 and bi
denotes the barycenter of the triangle Ki for i=0, 1, 2, 3. Since

m1−b0=a1(b1−b0)+a2(b2−b0)

for some nonnegative coefficients a1, a2 which depend only on m1 and the
geometry, we can write, for any linear function vh,

vh(m1)−vh(b0)=a1(vh(b1)−vh(b0))+a2(vh(b2)−vh(b0))

and since

v̄Ki=
1
|Ki |

F
Ki
vh=vh(bi), i=0, 1, 2, 3

we have that

ṽh(m1, K0) — vh(m1)− v̄K0=a1 (v̄K1 −v̄K0 )+a2 (v̄K2 −v̄K0 ) — Dv̄(m1, K0)

Fig. 3.1. Illustration of limiting.
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Now, we are ready to describe the slope limiting. Let us consider a
piecewise linear function vh, and let mi, i=1, 2, 3, be the three mid-points
of the edges of the triangle K0. We can then write, for (x, y) ¥K0,

vh(x, y)=C
3

i=1
vh(mi) ji(x, y)=v̄K0+C

3

i=1
ṽh(mi, K0) ji(x, y)

To compute LP1
hvh, we first compute the quantities

Di=ma(ṽh(mi, K0), n Dv̄(mi, K0))

where ma is the TVB modified minmod function (without its third argument)
and n is an auxiliary parameter which we took equal to 2 in the one-
dimensional case. Then, if ;3

i=1 Di=0, we simply set

LP1
h, Mvh(x, y)=v̄K0+C

3

i=1
Diji(x, y)

Note that if vh is a linear function, then ṽh(mi, K0)=Dv̄(mi, K0) and
Di=ṽh(mi, K0) provided n > 1; in this case we have LP

1
h(vh)=vh. This

ensures that there is no degradation of accuracy after the application of the
slope limiter away from critical points; when there are critical points, the
suitable choice of the parameter M, hidden in the definition of the TVB
modified minmod function, ensures the same effect.

If ;3
i=1 Di ] 0, we compute pos=;3

i=1 max(0, Di), neg=;3
i=1 max(0,

−Di), and set h+=min (1,
neg
pos), h

−=min (1, posneg).Then, we define

LPhvh(x, y)=v̄K0+C
3

i=1
D̂i ji(x, y)

where D̂i=h+max(0, Di)−h− max(0, −Di).
For systems, limiting in the local characteristic variables gives

remarkably superior results than doing it component-by-component. Thus,
to limit the vector ṽh(mi, K0) in the element K0, we proceed as follows:

• Find the matrix R and its inverse R−1, which diagonalizes the
Jacobian

J=
“

“u
f(v̄K0 ) ·

mi−b0
|mi−b0 |

that is, R−1JR=L, where L is a diagonal matrix containing the
eigenvalues of J. Notice that the columns of R are the right eigen-
vectors of J and the rows of R−1 are the left eigenvectors.
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• Transform ṽh(mi, K0) and Dv̄(mi, K0) to the characteristic fields.
This is achieved by left multiplying these vectors by R−1.

• Apply the scalar limiter to each of the components of the trans-
formed vectors.

• The result is transformed back to the original space by multiplying R
on the left.

3.3. Numerical Experiments

In what follows, we present some numerical results that display the
performance of the method especially when applied to the Euler equations
of gas dynamics. We show some numerical experiments with two objectives
in mind. The first is to show that the use of polynomials of high degree is
always beneficial. This is a well known fact that will be illustrated on the
classical rotating hill test problem for scalar conservation laws. To show
that this is also the case for solutions that display discontinuities, we con-
sider the double-Mach reflection problem and show that the use of high
degree polynomials not only does not degrade the approximation of strong
shocks but furthermore provides a better approximation to contact dis-
continuities. The second objective is to show that to deal with singularities
in the flow, we can use the typical finite element approach of adaptive
refinement. To show this, we consider the forward facing step problem
whose solution has a singularity right at the corner.

3.3.1. The Rotating Hill Problem

We display some of the numerical results reported in [5]. We consider
the ‘‘rotating hill’’ problem

ut−(2py u)x+(2px u)y=0

with a ‘‘Gaussian hill’’ as initial data. We use polynomials of degree k on
meshes of triangles. Given the mesh i, the mesh i+1 is obtained by divid-
ing each triangle into four congruent triangles. In Fig. 3.2, we compare the
linear solution on mesh 4, the quadratic solution on mesh 3, the cubic
solution on mesh 2 and the quartic solution on mesh 1. All solutions are at
T=1, which represents one full rotation of the hill. We have taken the
same temporal integration RK method and taken a small enough time step
so that (k+1)th order of accuracy in the L2-norm is achieved for k=1 to
k=6.
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Fig. 3.2. Rotating hill problem. Comparison of different degree polynomials on different
meshes.

In Fig. 3.3, we have plotted the L2-error at time T=1 versus the CPU
time for the four different meshes described above and for polynomials of
degree up to six. Each line corresponds to a different mesh, with the
symbols on each line representing the error for the six different approxi-
mating spaces. We easily observe that exponential convergence is achieved
and that it is always more efficient to use a coarser mesh with a higher
order polynomial approximation.

3.3.2. The Double-Mach Reflection Problem

The results we show next are from Cockburn and Shu [51]. In
Fig. 3.4, we display the contours of the density for different meshes for the
third order scheme with P2 elements. When comparing with the results
obtained with P1 elements (not shown here), we can observe a significant
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Fig. 3.3. Spectral convergence and comparison of L2-error versus CPU time for 4 successi-
vely refined meshes and polynomials of degree 1 to 6.

improvement in the approximation of the density near the contacts. Next,
we argue that the use of higher degree polynomials is more efficient. To
better appreciate the difference between the P1 and P2 results, we show a
‘‘blowed up’’ portion around the double Mach region in Fig. 1.3 in Sec-
tion 1. In Fig. 1.3, we can see that P2 with Dx=Dy= 1

240 has qualitatively
the same resolution as P1 with Dx=Dy= 1

480 , for the fine details of the
complicated structure in this region. P2 with Dx=Dy= 1

480 gives a much
better resolution for these structures than P1 with the same number of rec-
tangles. The conclusion here is that, if one is interested in the above men-
tioned fine structures, then one can use the third order scheme P2 with only
half the number of mesh points in each direction as in P1. This translates
into a reduction of a factor of 8 in space-time grid points for 2D time
dependent problems, and will more than off-set the increase of cost per
mesh point and the smaller CFL number by using the higher order P2

method. This saving will be even more significant for 3D.

3.3.3. The Forward-Facing Step Problem

Again, the results we show next are from Cockburn and Shu [51]. The
flow of a gas past a forward facing step is a problem studied extensively in
Woodward and Colella [116] and later by many others. The main diffi-
culty of this tests problem is the existence of a singularity in the solution
located exactly at the corner of the step. It is well known that this leads to
an erroneous entropy layer at the downstream bottom wall, as well as a
spurious Mach stem at the bottom wall.
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Fig. 3.4. Double Mach reflection problem. Third order P2 results. Density r. 30 equally
spaced contour lines from r=1.3965 to r=22.682. Mesh refinement study. From top to
bottom: Dx=Dy= 1

60 ,
1
120 ,

1
240 , and

1
480 .
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In Fig. 3.5, third orderP2 results using rectangle triangulation are shown,
for a grid refinement study using Dx=Dy= 1

40 , Dx=Dy=
1
80 , Dx=Dy=

1
160 , and Dx=Dy=

1
320 as mesh sizes. We can clearly see the improved

resolution (especially at the upper slip line from the triple point) and
decreased artifacts caused by the corner, with when the number of mesh
points increases.

Next, we show that this singularity can be resolved by simply refining
the grid around the corner and not by modifying our scheme near the
corner in any way, as suggested in [116] and done in many other papers.
We thus use our triangle code to locally refine near the corner progressi-
vely; we use the meshes displayed in Fig. 3.6. In Fig. 3.7, we plot the
density obtained by the P2 triangle code, with triangles (roughly the
resolution of Dx=Dy= 1

40 , except around the corner). We can see that,
with more triangles concentrated near the corner, the artifacts gradually
decrease. Results with P1 codes show a similar trend and hence is not
shown here.

3.4. Concluding Remarks

In this section, we have extended the RKDG methods to multidimen-
sional systems, and displayed the performance of the methods for the Euler
equations of gas dynamics. The flexibility of the RKDG method to handle
nontrivial geometries and to work with different elements has been displayed.
Moreover, it has been shown that the use of polynomials of high degree not
only does not degrade the resolution of strong shocks, but enhances the
resolution of the contact discontinuities and renders the scheme more effi-
cient on smooth regions.

Next, we extend the RKDGmethods to convection-dominated problems.
To do that, we start by considering the application of the DG space discretiza-
tion to elliptic operators.

4. THE LDG DISCRETIZATION FOR ELLIPTIC PROBLEMS

In this section, we consider the LDG space discretization for second-
order elliptic operators. This discretization technique is in the same spirit as
that of the DG space discretization used for multi-dimensional hyperbolic
systems which takes into account the elliptic nature of the operator in order
to significantly reduce the computational complexity of the method; it
achieves that by a suitable choice of the numerical fluxes.

We begin by considering the boundary value problem for the Laplace
operator and by showing how to define the LDG discretization for this
model elliptic problem. Then, we consider a boundary value problem for
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Fig. 3.5. Forward facing step problem. Third order P2 results. Density r. 30 equally spaced
contour lines from r=0.090338 to r=6.2365. Mesh refinement study. From top to bottom:
Dx=Dy= 1

40 ,
1
80 ,

1
160 , and

1
320 .
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Fig. 3.6. Forward facing step problem. Detail of the triangulations associated with the dif-
ferent values of s. The parameter s is the ratio between the typical size of the triangles near
the corner and that elsewhere.
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Fig. 3.7. Forward facing step problem. Third order P2 results. Density r. 30 equally spaced
contour lines from r=0.090338 to r=6.2365. Triangle code. Progressive refinement near the
corner.
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the Stokes system and show how to discretize it with an LDG method;
here, our main purpose is to show how to deal with the incompressibility
condition. We conclude the section by briefly comparing the LDG methods
with stabilized mixed methods and with interior penalty methods.

4.1. The Laplacian

We begin by considering LDG methods for the classical model elliptic
problem:

−Du=f in W, u=gD on CD,
“u
“n
=gN ·n on CN

where W is a bounded domain of Rd and n is the outward unit normal to its
boundary CaD 2 CaN.

4.1.1. The LDG Method

Just as we did for the wave equation, we rewrite our elliptic model
problem as the following system of first-order equations:

q=Nu, −N ·q=f in W, u=gD on CD, q ·n=gN ·n on CN

Then, a general DG discretization is obtained as follows. The approximate
solution (qh, uh) on the element K is taken in the space Q(K)×U(K) and is
determined by imposing that for all (r, v) ¥ Q(K)×U(K),

F
K
qh · r dx=−F

K
uhN · r dx+F

“K
ûhr ·nK ds,

F
K
qh ·Nv dx=F

K
fv dx+F

“K
v q̂h ·nK ds

where ûh and q̂h are the numerical fluxes ûh and q̂h. These are defined as
follows. Inside the domain W, we take

q̂h={qh}+C11[uh]+C12[qh]

ûh={uh}−C12 · [uh]+C22[qh]

Runge–Kutta Discontinuous Galerkin Methods 221



and on its boundary, we take

qh5 :=3
q+h −C11(u

+
h −gD) n on CD

gN on CN

ûu :=3
gD on CD
u+h −C22(q

−
h −gN) ·n on CN

Several points have to be discussed about this method:

• Note how both the Dirichlet and Neumann boundary conditions are
imposed through a suitable definition of the numerical fluxes.

• Note that if C11=1/2, C12=0 and C22=1/2, we recover the Lax–
Friedrichs numerical flux that we used to discretize in space the wave
equation with the DG method. In the framework of the wave equation, the
role of the parameters C11 and C22, commonly thought of as inducing an
artificial viscosity, is to render the method stable; in the elliptic case under
consideration, they do have the same role. Moreover, for the method to be
well defined, we must have that C11 > 0 and C22 \ 0; the parameter C12 can
be arbitrary.

• The LDG method is a particular case of the above general DG
discretization technique for which the auxiliary parameter C22 is taken to
be equal to zero. This reduces the stability of the LDG method but allows
us to conveniently eliminate the auxiliary variable q from the equations in
an element-by-element fashion; this local solvability is what gives the name
to the LDG methods.

• The LDG method defines a unique solution under very mild com-
patibility condition on the local spaces U(K) and Q(K). In fact, it is
enough to have that NU(K) … Q(K).

• When U(K) is the space of polynomials of degree k \ 1 on each
element and Q(K)=Ud(K), Castillo et al. [32] proved that the rates of
convergence of the L2-norm of the error in u and q are of order k+1 and k,
respectively, when the parameter C11 is taken to be of order h−1 and the
parameters C12 are of order one. These orders of convergence were actually
observed in the numerical experiments carried out in [32] on both
structured and unstructured triangulations.

• When the parameter C11 is taken to be of order one only, it was
proved [32] that order of convergence of u is k+1/2 and that of q is k.
However, no degradation in the order of convergence from k+1 to k+1/2
was observed in the numerical experiments reported in [32]. Concerning
this point, it is interesting to recall that the order of convergence of u for
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the DGmethod for purely convective problems is k+1/2; this was proven in
1986 by Johnson and Pitkäranta [77] and was numerically confirmed in 1991
by Peterson [97]. Whether or not a similar phenomenon is actually taking
place for the LDGmethod in this elliptic case remains to be investigated.

• In Cartesian grids, Cockburn et al. [42] proved that for a special
choice of numerical fluxes (for which C11 is of order one and |C12 ·n|=
1/2), the orders of convergence are k+1 and k+1/2 for the L2-norm of
the error of u and q.

4.1.2. Numerical Results for the LDG Method

Next, we quote a couple of numerical experiments from [42]. We
solve the model problem in an L-shaped domain with Dirichlet boundary
conditions in two cases.

In the first case, the exact solution is a function u that belongs to
H s(W) only for s [ 5. We use five meshes obtained as follows. The 0th
mesh is an unstructured mesh of 22 elements; then the jth mesh is obtained
from the (j−1)th by refining each triangle into four congruent triangles. In
the jth columns of Table 4.1, we display the orders of convergence for the
L2-errors in u and in q estimated by using the (j−1)th and the jth meshes;
we can see that we obtain the orders of convergence of min{5, k+1} and
min{4, k}, respectively.

In the second case, we take the following exact solution u(r, h)=
rc sin(ch) where c=2/3, and solve for the corresponding Dirichlet
problem. For conforming finite element methods, it has been shown that
the orders of convergence in the H1 and L2 norms are 2

3− e and
4
3− e for all

e > 0, respectively. The numerical results for the LDG method on the
sequence of unstructured meshes described in the previous experiment are
reported in Table 4.2. They show that the orders of convergence are those
of the conforming case.

Table 4.1. Orders of Convergence for an H5-Solution on an L-Shaped Domain

k L2-error in the gradient q L2-error in the potential u

1 0.8494 0.8581 0.9148 0.9530 2.0435 1.9542 1.9552 1.9714
2 1.7966 1.8441 1.9136 1.9550 3.0471 2.9694 2.9740 2.9844
3 2.6595 2.8369 2.9260 2.9644 4.0360 3.9693 3.9831 3.9916
4 2.6559 3.7667 3.8908 3.9571 5.0226 4.8793 4.9274 4.9528
5 2.7630 3.7978 3.8723 3.8912 5.9726 4.8779 4.8875 4.8739
6 3.0742 3.9120 4.0307 4.1347 6.3544 4.9983 5.0609 5.0898
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Table 4.2. Orders of Convergence for a Non-Smooth Solution on an L-shaped Domain

k L2-error in the gradient q L2-error in the potential u

1 0.7818 0.6298 0.6420 0.6513 1.6098 1.5694 1.5793 1.5760
2 0.7794 0.6662 0.6665 0.6666 1.5610 1.5383 1.5014 1.4639
3 0.7362 0.6665 0.6666 0.6666 1.5015 1.4810 1.4449 1.4137
4 0.7139 0.6666 0.6666 0.6667 1.4715 1.4543 1.4215 1.3950
5 0.7016 0.6666 0.6666 0.6667 1.4535 1.4383 1.4083 1.3849
6 0.6941 0.6666 0.6666 0.6667 1.4408 1.4277 1.3998 1.3786

4.2. The Stokes System

Next, we consider the Stokes system, i.e.,

−Du+Np=f, N ·u=0 in W, u=gD on “W

where W is a bounded domain of Rd and the Dirichlet datum satisfies the
usual compatibility condition >W gD ·n ds=0, where n is the outward unit
normal to “W.

4.2.1. The LDG Method

To defined an LDG method for the Stokes system, we begin by
rewriting it as a first-order system,

si=Nui, −N ·si+“ip=fi, 1 [ i [ d, N ·u=0 in W

u=gD on “W

where ui denotes the ith component of the velocity u. Now, we discretize
the above equations by using the DG technique. We take the approximate
solution (sh, uh, ph) on the element K in the space S(K)d×U(K)d×P(K)
and we determine it by requesting that, for 1 [ i [ d, for all (y, v, w) ¥
S(K)×U(K)×P(K),

F
K
sih · y dx=−F

K
uihN · y dx+F

“K
ûs, ihy ·nK ds

F
K
(sih ·Nv−ph“iv) dx−F

“K
(ŝhi ·nKv− p̂hvnKi) ds

=F
K
fiv dx−F

K
uh ·Nq dx+F

“K
ûp, h ·nKq ds=0
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where the numerical fluxes are, on the interior of the domain,

ŝih={sih}+C11[uih]+C12[sih]

ûs, ih={uih}−C12 · [uih]

and, on the boundary,

ŝih=s+ih−C11(u
+
ih−gD, i) n, ûs, h=gD

The numerical fluxes associated with the incompressibility constraint,
ûp, h and p̂h, are defined by using an analogous recipe. In the interior of W,
we take

ûp, h={uh}−D11[ph]−D12[uh]

p̂h={ph}+D12 · [ph]

and on the boundary, we take

ûp, h=gD, p̂h=p+h

This completes the definition of the LDG method for the Stokes system.
Note that:

• Cockburn et al. [43] proved that the order of convergence of k is
obtained for the L2-norm of the error in p and si, and k+1 for the L2-norm
of the velocity provided polynomials of degree k are used to approximate the
pressure p, the stresses si, and the velocity u. These orders of convergence
were observed in numerical experiments.

• If polynomials of degree k−1 are used to approximate the pressure
p and the stress tensor si, it was proved [43] that the above mentioned
orders of convergence remain invariant. However, this method is less effi-
cient than the one obtained by using the same approximation spaces for all
the variables.

4.2.2. Numerical Results

Next, we quote some of the numerical experiments in [43]. Consider
the Stokes system with W=(−1, 1)2 and take the right-hand side f and the
Dirichlet boundary condition gD such that the exact solution is

u1(x, y)=−ex(y cos y+sin y), u2(x, y)=exy sin y

p(x, y)=2ex sin y
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Fig. 4.1. Comparison of mixed spaces for quadratic (P2) velocities.

We use uniform triangulations made of squares. The efficiency of LDG
methods obtained with several combinations of local spaces is compared in
Figs. 4.1 and 4.2. We can see that all these LDG discretizations converge
with the same order, as expected, and that, in most cases, it is more effi-
cient to use the same local approximating spaces for all quantities.

4.3. Relations with Other Methods

The LDG methods are closely related to interior penalty (IP) methods,
to stabilized mixed methods and to mortar methods. Next, we briefly
discuss the connection between these methods.

Fig. 4.2. Comparison of mixed spaces for biquadratic (Q2) velocities.
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• Interior penalty methods. Several IP methods were introduced and
studied in the late 70’s and early 80’s. Thus, we have the IP method studied
by Babu ška and Zlámal [14] in 1973 for fourth order problems, by
Douglas and Dupont [57] in 1976 for second order elliptic and parabolic
problems, by Baker [15] in 1977 also for fourth order problems, by
Wheeler [114] in 1978 for second order elliptic problems, by Douglas
et al. [56] in 1979 for non-linear hyperbolic equations, and by Arnold [9]
in 1982 for linear and non-linear elliptic and parabolic problems. In [11],
Arnold et al. showed that these IP methods and other DG methods for
elliptic equations can be recast in a single framework. These other methods
include the LDG method, the method of Baumann and Oden [22], the
variations of the original method of Bassi and Rebay [18] studied by
Brezzi et al. [29], and the variations of the method of Baumann and Oden
introduced and studied by Rivière et al. [100].

For the model problem of the Laplacian, they showed that all these
DG methods can be written as follows: (r, v) ¥ Q(K)×U(K),

F
K
qh · r dx=−F

K
uhN · r dx+F

“K
ûh, Kr ·nK ds

F
K
qh ·Nv dx=F

K
fv dx+F

“K
v q̂h, K ·nK ds

which, of course, can be completely determined by their numerical fluxes
ûh, K and q̂h, K. Note that in this formulation, the numerical fluxes can have
definitions that might depend on what side of the element boundaries we
are; this is the case for the numerical fluxes in u of the last four schemes in
Table 4.3 taken from [11]. In that table, the function a r([uh]) is a special
stabilization term introduced by Bassi and Rebay [21] and then identified

Table 4.3. Some DG Methods and Their Numerical Fluxes

Method q̂e, K ûh, K

Bassi–Rebay [18] {qh} {uh}
Brezzi et al. [30] {qh}−a r([uh]) {uh}
LDG [50] {qh}+C11[uh]−C12QqhR {uh}+C12 · [uh]
IP [57] {Nuh}+C11 [uh] {uh}
Bassi–Rebay [21] {Nuh}−a r([uh]) {uh}
Baumann–Oden [22] {Nuh} {uh}−nK · [uh]
NIPG [100] {Nuh}+C11[uh] {uh}−nK · [uh]
Babuška–Zlámal [14] C11[uh] uh |K
Brezzi et al. [29] −a r([uh]) uh |K
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and studied by Brezzi et al. [29]. In [10], they refined their initial study
and presented a much more complete study of these methods as well as a
new unified error analysis.

Using an approach similar to the one introduced [11], a general
theory of DG methods could be constructed for the Stokes. Let us just
point out that here it is pertinent to distinguish between methods that
impose the incompressibility condition weakly, like the LDG method we
have presented here and methods that impose it pointwisely, like the 1990
method of Baker et al. [16] who use an IP discretization technique to
achieve that goal.

• Stabilized mixed methods. Note that the above formulation for the
Laplacian, based on the numerical fluxes, leads naturally to a mixed for-
mulation. It is not very difficult to see that a suitable definition of the
numerical fluxes induces a stabilization of the method which is associated
with the jumps of the approximate solution across the element boundaries.
For a discussion of the relation between LDG methods and stabilized
mixed methods for the Stokes system, see [43].

• Mortar methods. The mortar methods, introduced in the papers by
Bernardi et al. [25] and by Bernardi et al. [23, 24], were devised to allow
the use of conforming methods in domains that were meshed independently
of each other. The lack of continuity of the approximations across the
boundaries of those domains is suitably controlled by the introduction of
Lagrange multipliers which are now part of the unknowns. The DG
methods can be considered to be mortar methods on each element for
which the Lagrange multipliers, which are nothing but the numerical
fluxes, are a given functions of the unknowns inside the elements. In [103],
Schwab establishes an elegant link between mortar and DG methods.

4.4. Solvers

Solvers specifically designed for the linear system of equations given by
DG methods have started to be developed. For the time-dependent compres-
sible Navier–Stokes, Bassi and Rebay [20] experimented with the precondi-
tioned GMRES and found that the simple block-Jacobi preconditioning was
the most efficient. Recently, Feng and Karakashian [60] studied a domain
decomposition preconditioner for DG approximations for purely elliptic
problems. The condition number of their non-overlapping preconditioner
grows linearly with the number of degrees of freedom in each subdomain.
Later, Lasser and Toselli [81] found an overlapping domain decomposition
method for DG methods for linear advection-diffusion problems whose
condition number is independent of the number of degrees of freedom and
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the number of subdomains. Another significant result has been recently
obtained by Gopalakrishnan and Kanshat [62] who devised a multigrid
method for solving the matrix equation of the IP method for elliptic
problems. They proved that it convergences in a fixed number of iterations;
they have also devised a method for the steady-state convection-diffusion
problem which converges with a fixed number of iterations independently
of the size of the convection coefficients.

4.5. Concluding Remarks

We have shown how to apply the LDG space discretization to second
order elliptic model operators and how this is recast into the same form as
the DG space discretization for multi-dimensional hyperbolic systems
taking into consideration the elliptic nature of the operator for the choice
of the numerical fluxes. We are now ready to continue our presentation of
the RKDG method for convection-dominated problems. However, we
want to stress that the application of LDG methods to linear elasticity, to
the biharmonic equation, and to other elliptic problems constitute topics
that are currently being vigorously studied.

5. CONVECTION-DIFFUSION EQUATIONS

In this section, we consider the solution of convection dominated
convection diffusion equations using the RKDG method. The discussion
will concentrate on the DG spatial discretization (method of lines) which
we illustrate on a periodic boundary conditions setting; boundary condi-
tions can be treated similar to the case of elliptic equations in the previous
section.

5.1. A Simple Example and Basic Ideas

First, we would like to motivate the key ideas and to indicate a ‘‘pitfall’’
due to the presence of second order derivative diffusion terms, through the
following initial value problem for the simple heat equation:

ut−uxx=0 in (0, 2p)×(0, T), u(x, 0)=sin(x) -x ¥ (0, 2p)

with periodic boundary conditions; we follow Shu [107].
It seems that the most natural way of extending the DG spatial

discretization (2.3) would be simply to replace the flux f(u) by −ux and
then proceed in a straightforward way. Thus, we take the restriction of
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uh( · , t) to each element Ij in the local space U(Ij), which we take to be
polynomials of degree at most k, and define uh( · , t) by asking that for all
vh ¥U(Ij),

F
Ij
(uh(x, t))t vh(x) dx+F

Ij
(uh(x, t))x (vh(x))x dx−(uh)x5 ( · , t) vh :

xj+1/2

xj−1/2

=0

(5.1)

where, for the lack of up-winding mechanism in a heat equation one
naturally takes a central numerical flux

(uh)x5 (xj+1/2, t)=
1
2 ((uh)x(x

−
j+1/2, t)+(uh)x (x

+
j+1/2, t))

We remark that, in an actual computation, the scheme takes the
simple form

d
dt
(uh)j+

1
D2j
(A(uh)j−1+B(uh)j+C(uh)j+1)=0 (5.2)

where (uh)j is a small vector of length k+1 containing the coefficients of
the solution uh in the local basis inside the element Ij, and A, B, C are
(k+1)×(k+1) constant matrices which can be computed once and for
all and stored at the beginning of the code. Time discretization can be
achieved by the same TVD Runge–Kutta methods discussed in Section 2.2.

We compute with the scheme (5.1) and show in Table 5.1 the L2 and
L. errors and numerically observed orders of accuracy for the two cases
k=1 and 2 (piecewise linear and piecewise quadratic cases) to T=0.8.
Clearly there is an order one error for both cases which does not decrease
with a mesh refinement! We plot the solutions with 160 cells in Fig. 5.1 and
can clearly see that the computed solutions have completely incorrect
amplitudes, i.e. the scheme is not consistent.

Table 5.1. L2 and L. Errors and Orders of Accuracy for the Inconsistent Discontinuous
Galerkin Method (5.1) Applied to the Heat Equation ut=uxx with Initial Condition

u(x, 0)=sin(x), T=0.8. Third Order Runge–Kutta in Time

k=1 k=2

h L2 error order L. error order L2 error order L. error order

2p/20 1.78E-01 — 2.58E-01 — 1.85E-01 — 2.72E-01 —
2p/40 1.76E-01 0.016 2.50E-01 0.025 1.78E-01 0.049 2.55E-01 0.089
2p/80 1.75E-01 0.004 2.48E-01 0.012 1.77E-01 0.013 2.51E-01 0.025
2p/160 1.75E-01 0.001 2.48E-01 0.003 1.76E-01 0.003 2.50E-01 0.007
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Fig. 5.1. The inconsistent discontinuous Galerkin method (6.1) applied to the heat equation
ut=uxx with an initial condition u(x, 0)=sin(x). T=0.8. 160 cells. Third order Runge–Kutta
in time. Solid line: the exact solution; dashed line and squares symbols: the computed solution
at the cell centers. Left: k=1; Right: k=2.

This is a very subtle case of inconsistency: the exact solution of our
model problem does satisfy the scheme (5.1) exactly. Hence one might base
the judgment on one’s experience with finite difference methods and
conclude that the method is consistent. However, those familiar with non-
conforming approximations of elliptic problems would remember that a
similar type of inconsistency was present in one of the first papers on the
subject, namely, the 1973 paper by Babuška and Zlámal [14]; such a
‘‘variational crime,’’ see also Strang and Fix [110], could be controlled by
the introduction of a term whose role was to ‘‘recover’’ the continuity of
the approximation.

It is actually very dangerous that the scheme (5.1) produces a stable
but completely incorrect solution. If one was in a hurry and did not want
to do the ground work of either a theoretical proof of convergence or a
testing of the method on the simple heat equation first which has a known
exact solution, but rather went to solve the complicated Navier–Stokes
equations and produced beautiful color pictures, one would not be able to
tell that the result is actually wrong. In fact, the inconsistent scheme (5.1)
has been used in the literature for discretizing the viscous terms in the
Navier–Stokes equations.

On the other hand, if we rewrite the heat equation ut=uxx as a first
order system

ut−qx=0, q−ux=0 (5.3)

we can then formally use the same discontinuous Galerkin method as in Sec-
tion 2 for the convection equation to solve (5.3), resulting in the following
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scheme: find uh, qh, whose restriction to each element Ij are, for each t,
elements of the local space U(Ij), which we again take to be polynomials of
degree at most k, such that for all vh, wh ¥U(Ij),

F
Ij
(uh(x, t))t vh(x) dx+F

Ij
qh(x, t)(vh(x))x dx− q̂h( · , t) vh :

xj+1/2

xj−1/2

=0

F
Ij
qh(x, t) wh(x) dx+F

Ij
uh(x, t)(wh(x))x dx− ûh( · , t) wh :

xj+1/2

xj−1/2

=0

(5.4)

where, again for the lack of up-winding mechanism in a heat equation, one
naturally first tries the central numerical fluxes:

ûh(xj+1/2, t)=
1
2 (uh(x

−
j+1/2, t)+uh(x

+
j+1/2, t))

q̂h(xj+1/2, t)=
1
2 (qh(x

−
j+1/2, t)+qh(x

+
j+1/2, t))

(5.5)

We emphasize that the above formulation of the discontinuous
Galerkin scheme is only formally similar to that of the convection equation
in Section 2. In fact, there is no time derivative in the second equation in
(5.3) and it is not a hyperbolic problem even though it is written into a
system form with only first derivatives. If we view the scheme (5.4) as a
mixed finite element method then it lacks the usual sophisticated matching
of the two solution spaces for uh and qh (the same space is used for both of
them). ‘‘Common sense’’ in traditional finite elements would hint that
scheme (5.4) has no chance to work. However, in 1997 Bassi and Rebay
[18] were brave enough to try this method on the viscous terms in the
Navier–Stokes equations and seemed to have obtained very good results.
Motivated by their work, in 1998 Cockburn and Shu [50] analyzed this
method and obtained conditions on the choice of the numerical fluxes
ûh(xj+1/2, t) and q̂h(xj+1/2, t) which guarantee stability, convergence and a
sub-optimal error estimate of order k for piecewise polynomials of degree
k. It turns out that the central numerical fluxes (5.5) used by Bassi and
Rebay [18] do satisfy these conditions.

However, there are two problems associated with the choice of the
central numerical fluxes in (5.5):

(i) It spreads to five cells when a local basis is chosen for uh in the
element Ij. After qh is eliminated the scheme becomes

d
dt
(uh)j+

1
D2j
(A(uh)j−2+B(uh)j−1+C(uh)j

+D(uh)j+1+E(uh)j+2)=0
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where (uh)j is a small vector of length k+1 containing the coeffi-
cients of the solution uh in the local basis inside the element Ij,
and A, B, C D, E are (k+1)×(k+1) constant matrices which
can be computed once and for all and stored at the beginning of
the code. The stencil here is wider than that in (5.2).

(ii) The order of accuracy is one order lower for odd k. That is, for
odd k the proof of the sub-optimal error estimate of order k is
actually sharp.

Both problems can be cured by a suitable choice of the numerical
fluxes, proposed in Cockburn and Shu [50]:

ûh(xj+1/2, t)=uh(x
−
j+1/2, t), q̂h(xj+1/2, t)=qh(x

+
j+1/2, t) (5.6)

that is, we alternatively take the left and right limits for the numerical
fluxes in uh and qh (we could of course also take the pair uh(x

+
j+1/2, t) and

qh(x
−
j+1/2, t) as the fluxes). Notice that the evaluation of (5.6) is simpler

than that of the central fluxes in (5.5). Moreover, since the auxiliary vari-
able qh can be readily eliminated element-by-element, the actual scheme for
uh takes the form of (5.2) (of course with different constant matrices A, B
and C) when a local basis is chosen. Hence the computational cost and
storage requirement of scheme (5.4) with the numerical fluxes (5.6) is the
same as that of the inconsistent scheme (5.1), even though we now have
nominally an additional auxiliary variable qh!

To illustrate the convergence properties of the scheme, we show in
Table 5.2 the L2 and L. errors and numerically observed orders of accuracy,

Table 5.2. L2 and L. Errors and Orders of Accuracy for the Local Discontinuous Galerkin
Method (5.4) with Fluxes (5.6) Applied to the Heat Equation ut=uxx with an
Initial Condition u(x, 0)=sin(x), T=0.8. Third Order Runge–Kutta in Time

k=1 k=2

h L2 error order L. error order L2 error order L. error order

2p/20, u 1.92E-03 — 7.34E-03 — 4.87E-05 — 2.30E-04 —
2p/20, q 1.93E-03 — 7.33E-03 — 4.87E-05 — 2.30E-04 —
2p/40, u 4.81E-04 2.00 1.84E-03 1.99 6.08E-06 3.00 2.90E-05 2.99
2p/40, q 4.81E-04 2.00 1.84E-03 1.99 6.08E-06 3.00 2.90E-05 2.99
2p/80, u 1.20E-04 2.00 4.62E-04 2.00 7.60E-07 3.00 3.63E-06 3.00
2p/80, q 1.20E-04 2.00 4.62E-04 2.00 7.60E-07 3.00 3.63E-06 3.00
2p/160, u 3.00E-05 2.00 1.15E-04 2.00 9.50E-08 3.00 4.53E-07 3.00
2p/160, q 3.00E-05 2.00 1.15E-04 2.00 9.50E-08 3.00 4.53E-07 3.00
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for both uh and qh, for the two cases k=1 and 2 (piecewise linear and
piecewise quadratic cases) to T=0.8. Clearly (k+1)th order of accuracy is
achieved for both odd and even k and also the same order of accuracy is
achieved for qh which approximates ux; this orders of convergence have
recently been proven by Castillo et al. [33]. We thus obtain the advantage of
mixed finite element methods in approximating the derivatives of the exact
solution to the same order of accuracy as the solution themselves, without
additional storage or computational costs for the auxiliary variable qh.

Another possible modification to the inconsistent scheme (5.1) is given
by Baumann and Oden [22]; see also Oden et al. [92]. Basically, extra
boundary terms were added to the element boundaries such that, when one
takes v=u and sums over all cells, the boundary contribution disappears
and one gets a nice L2 norm stability control. The scheme now becomes:
find uh whose restriction to each element Ij is, for each t, an element of the
local space U(Ij), which we again take to be polynomials of degree at most
k, such that for all vh ¥U(Ij),

F
Ij
(uh(x, t))t vh(x) dx+F

Ij
(uh(x, t))x (vh(x))x dx−(uh)x5 ( · , t) vh :

xj+1/2

xj−1/2

− 1
2 (vh)x (x

−
j+1/2)[uh](xj+1/2, t)−

1
2 (vh)x (x

+
j−1/2)[uh](xj−1/2, t)=0

(5.7)

where

[w] — w+−w−

denotes the jump of the function w at the interface and, again for the lack
of upwinding mechanism in a heat equation, one naturally takes a central
numerical flux

(uh)x5 (xj+1/2, t)=
1
2 ((uh)x)(x

−
j+1/2, t)+(uh)x(x

+
j+1/2, t))

For coding purposes, the equation (5.7) is the most convenient form;
however it might be more illustrative if we rewrite (5.7) into a global form:
find uh whose restriction to each element Ij is, for each t, an element of the
local space U(Ij), such that, for all vh whose restriction to each element Ij is
an element of U(Ij),

F
2p

0
(uh(x, t))t vh(x) dx+C

N

j=1

1F
Ij
(uh(x, t))x (vh(x))x dx

+(uh)x5 (xj+1/2, t)[vh](xj+1/2)−(vh)x5 (xj+1/2)[uh](xj+1/2, t)2=0 (5.8)
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where the numerical flux for (vh)x is also a central flux

(vh)x5 (xj+1/2)=
1
2 ((vh)x (x

−
j+1/2)+(vh)x (x

+
j+1/2))

The anti-symmetric nature of the boundary terms (which disappear when
one takes vh=uh) is clearly seen in the global formulation (5.8).

We remark that once again we recover exactly the scheme in the form
of (5.2) (of course with different constant matrices A, B and C) when a
local basis is chosen. Hence the computational cost and storage require-
ment of scheme (5.7) is the same as that of the inconsistent scheme (5.1) or
as that of the LDG method (5.4)–(5.6). There is no saving in the computa-
tional cost here over the method (5.4)–(5.6) even though the latter has
nominally an additional auxiliary variable qh. This statement is valid when
a linear PDE is solved. For nonlinear problems the computational cost of
the Baumann–Oden method (5.7) may be smaller than that of the LDG
method (5.4)–(5.6).

To illustrate the performance of this method, we show in Table 5.3 the
L2 and L. errors and numerically observed orders of accuracy, for the two
cases k=1 and 2 (piecewise linear and piecewise quadratic cases) to T=
0.8. Clearly (k+1)th order of accuracy is achieved for the odd k=1 and
kth order of accuracy is achieved for the even k=2. Comparing with the
results in Table 5.2 of the local discontinuous Galerkin method, we can see
that, for the same mesh, the Baumann–Oden method (5.7) has larger errors
than the local discontinuous Galerkin method (5.4)–(5.6) even for odd k
where both are accurate of order k+1.

5.2. The LDG Methods for the Scalar One-Dimensional Case

We now turn our attention to more details about the LDG method,
following the approach of Cockburn and Shu [50]. In this subsection, we

Table 5.3. L2 and L. Errors and Orders of Accuracy for the Baumann–Oden Discontinuous
Galerkin Method (5.7) Applied to the Heat Equation ut=uxx with an Initial Condition

u(x, 0)=sin(x), T=0.8. Third Order Runge–Kutta in Time

k=1 k=2

h L2 error order L. error order L2 error order L. error order

2p/20 6.40E-03 — 1.25E-02 — 4.00E-03 — 5.64E-03 —
2p/40 1.60E-03 2.00 3.14E-03 2.00 1.03E-03 1.95 1.46E-03 1.95
2p/80 4.00E-04 2.00 7.85E-04 2.00 2.61E-04 1.99 3.68E-04 1.99
2p/160 9.99E-05 2.00 1.96E-04 2.00 6.53E-05 2.00 9.23E-05 2.00
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present and analyze the LDG methods for the following nonlinear model
problem:

ut+f(u)x−(a(u) ux)x=0, in (0, 1)×(0, T)

u(x, 0)=u0(x) -x ¥ (0, 1)

where a(u) \ 0, with periodic boundary conditions.

5.2.1. General Formulation and Main Properties

To define the LDG method, we set b(u)=`a(u), introduce the new
variable q=b(u) ux, and rewrite our model problem as follows:

ut+f(u)x−(b(u) q)x=0 in (0, 1)×(0, T)

q−g(u)x=0 in (0, 1)×(0, T)

u(x, 0)=u0(x) -x ¥ (0, 1)

where g(u)=>u b(s) ds. The LDG method for the above system is now
obtained by simply discretizing the above system with the Discontinuous
Galerkin method as follows.

As usual, for each time t, we take the restriction to the generic element
Ij of the approximate solution (uh( · , t), qh( · , t)) in the space U(Ij)×U(Ij).
The initial data uh( · , 0) on Ij is taken to be the L2-projection of u0 into
U(Ij), and for t > 0 the approximate solution is determined by requesting
that, for all vh and rh ¥U(Ij),

F
Ij
(uh(x, t))t vh(x) dx−F

Ij
f(uh)(x, t)(vh)x (x) dx+f̂(uh)( · , t) vh :

xj+1/2

xj−1/2

+F
Ij
b(uh(x, t)) qh(t, x)(vh)x (x) dx−bq5 h( · , t) vh :

xj+1/2

xj−1/2

=0,

F
Ij
qh(x, t) rh(x) dx+F

Ij
g(uh)(x, t)(rh)x (x) dx− ĝh( · , t) rh :

xj+1/2

xj−1/2

=0

The key to the success of the LDG method is the choice of the numerical
fluxes. The numerical flux f̂(uh) is taken exactly as in the case of the scalar
hyperbolic conservation of Section 2; in this way, the scheme remains
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stable in the extreme case in which a — 0. The numerical fluxes associated
to the term modeling the diffusion are the following:

bq5 h=
[g(uh)]
[uh]

{qh}+C11[uh]+C12[qh], ĝ(uh)={g(uh)}−C12[uh]

with C11 \ 0. This completes the definition of the LDG space discretization.
Let us emphasize the following points:

• The above numerical fluxes were devised specifically to ensure that the
numerical scheme satisfies a discrete version of the the classical ‘‘energy’’
stability.More precisely, with the above numerical fluxes we get [50] that

ET(uh, qh) [
1
2 ||u0 ||

2
L2(0, 1)

where the ‘‘energy’’ ET is given by

ET(uh, qh)=
1
2 ||uh(T)||

2
L2(0, 1)+||qh ||

2
L2((0, 1)×(0, T))+F

T

0
C

1 [ j [N
{C11[uh]2}j+1/2 dt

and C11=C11+
1

[uh]2
>u

+
h
u−h
(f(s)−f̂(u−h , u

+
h )) ds.

This justifies the introduction of the function b(u)=`a(u) and the
definition q=b(u) ux which thus allows to obtain boundedness of the
scheme for the non-linear problem.

Finally, note that this boundedness result assumes that we are per-
forming the integration exactly. In practice, when strong non-linearities are
present, high-order quadrature rules might be mandatory in order to
maintain the boundedness of the scheme. An example of this situation can
be found in the work of Lomtev et al. [91] who showed that, in order to
produce high-quality approximations, over-integration of one or even two
extra degrees of accuracy is necessary when steep gradients on the approx-
imate solution appear near the boundary.

• In the linear case fŒ — c and a( · ) — a, if we use polynomials of
degree k, it was proven [50] that, if the exact solution is smooth enough,
then

ET(u−uh, ux−qh) [ Chk

where if a=0, the constant C is of order h1/2. This error estimate gives a
sub-optimal order of convergence, but it is sharp for the LDG methods.
Indeed, Bassi et al. [21] report an order of convergence of order k+1 for
even values of k and of order k for odd values of k for a steady state,

Runge–Kutta Discontinuous Galerkin Methods 237



purely elliptic problem for uniform grids and for c identically zero. The
numerical results for a purely parabolic problem displayed in [50] support
the same conclusions.

• On the other hand, for the special numerical flux (5.6), c > 0, and
quite general boundary conditions, Castillo [31] and Cockburn et al. [33]
showed that the order of convergence in the L2-norm of both u−uh and
ux−qh is k+1; the h-version was studied in [31] while the hp-version of
this method was studied in [33].

5.3. The LDG Methods for the Multi-Dimensional Case

In this subsection, we consider the LDG methods for the following
convection-diffusion model problem

ut+N · ( f(u)−a(u) Nu)=0 in (0, 1)d×(0, T)

u(x, 0)=u0(x) -x ¥ (0, 1)d

with periodic boundary conditions. Essentially, the one-dimensional case
and the multi-dimensional case can be studied in exactly the same way.
However, there are two important differences that deserve explicit discus-
sion. The first is the treatment of the matrix a which is assumed to be
symmetric, semi-positive definite and the introduction of the auxiliary vari-
able q; and the second is the treatment of arbitrary meshes.

To define the LDG method, we first notice that, since the matrix a(u)
is assumed to be symmetric and semi-positive definite, there exists a sym-
metric matrix b(u) such that a=b2. This allows us to introduce the
auxiliary variable q=b Nu, and rewrite the model problem as follows:

ut+N ·f(u)−N · (b(u) q)=0 in (0, 1)d×(0, T)

qi=N ·gi(u) in (0, 1)d×(0, T), 1 [ i [ d

u(x, 0)=u0(x) -x ¥ (0, 1)d

where qi is the ith component of the vector q, and gi(u) is the vector whose
jth component is >u bji(s) ds. The LDG method is now obtained by discre-
tizing the above equations by the Discontinuous Galerkin method.

Let Th be a triangulation of the domain (0, 1)d. We seek an approxi-
mation (uh, qh) such that for each time t, its restriction to the element
K ¥Th is in the space U(K)×Qd(K). We take the restriction of uh( · , 0) to
K to be the L2 projection of u0 into U(K) and determine the approximate
solution for t > 0 by imposing that, for vh ¥U(K) and rh ¥ Q(K):
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F
K
(uh)t vh dx−F

K
f(uh) ·Nvh dx+F

“K
f·n“K5 (uh) vh ds

+F
K
b(uh) qh ·Nvh dx−F

“K
bq5 h · n“Kvh ds=0

F
K
qi, hrh dx+F

K
gi, h ·Nrh dx−F

“K
ĝi h · n“Krh ds=0

Finally, just like in the one-dimensional case, we take f·n“K5 as we did in
the purely convective case and

bq5 h=C
d

i=1

[gi, h]
[uh]

{qi, h}+C11[uh]+C
d

i=1
C1i[qi, h], ĝ(uh)={gih}−C1i[uh]

For this method, we have properties similar to those obtained in the one-
dimensional case:

• Energy stability:

ET(uh, qh) [
1
2 ||u0 ||

2
L2(0, 1)

where the ‘‘energy’’ ET is given by

ET(uh, qh)=
1
2 ||uh(T)||

2
L2(0, 1)+||qh ||

2
L2((0, 1)×(0, T))+F

T

0
C

1 [ j [N
{C11[uh]2}j+1/2 dt

and C11=C11+
1

[uh]2
>u

+
h
u −h
(f(s)−f̂(u−h , u

+
h )) ds.

• In the linear case fŒ — c and a( · ) — a, if we use polynomials of degree
k, it was proven [50] that, if the exact solution is smooth enough, then

ET(u−uh, ux−qh) [ Chk

where if a=0, the constant C is of order h1/2.

5.4. A Remark and Extension to Multi-Dimensional Systems

The main advantage of these methods is their extremely high
parallelizability and their high-order accuracy which render them suitable
for computations of convection-dominated flows. Indeed, although the
LDG method have a large amount of degrees of freedom per element, and
hence more computations per element are necessary, its extremely local
domain of dependency allows a very efficient parallelization that by far
compensates for the extra amount of local computations.
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The LDG methods for multi-dimensional systems, like for example the
compressible Navier–Stokes equations and the equations of the hydrody-
namic model for semiconductor device simulation, can be easily defined
by simply applying the procedure described for the multi-dimensional
scalar case to each component of u. In practice, especially for viscous terms
which are not symmetric but still semi-positive definite, such as for the
compressible Navier–Stokes equations, we can use q=(“x1u,..., “xdu) as the
auxiliary variables. Although with this choice, the L2-stability result will
not be available theoretically, this would not cause any problem in practi-
cal implementations, and does not seem to affect the excellent stability of
the method in actual calculations.

5.5. Incompressible Navier–Stokes Equations

For the two dimensional incompressible Navier–Stokes equations in a
vorticity-stream function formulation, Liu and Shu [88, 89] developed a
numerical method based on a DG and LDG discretization for the vorticity
equation including the viscous terms, a standard Poisson solver using con-
tinuous finite elements for the streamfunction, and a TVD Runge–Kutta
time discretization. There is a natural matching between the two finite
element spaces, since the normal component of the velocity field is contin-
uous across element boundaries. This allows for a correct upwinding gluing
in the discontinuous Galerkin framework, while still maintaining total
energy conservation with no numerical dissipation and total enstrophy
stability. In [88], a proof is given for L2 stability, both in the total ens-
trophy (L2-norm of the vorticity) and in the total energy (L2-norm of the
velocity), which does not depend on the regularity of the exact solutions.
For smooth solutions error estimates are also obtained in [88]. Schemes
with provable L2-stability for both total energy and total enstrophy are
very rare. Liu and Xin [90] used this nice stability property to show that
the method in [88] converges with a vortex sheet initial data having only
positive vorticity.

We present here one numerical example, taken from [89], a double
shear layer problem. This is a popular benchmark problem for numerical
methods of incompressible flows. The method in [88] is able to capture
features of the solution with high gradients in a nice way. A higher order
method is doing better in this respect than a lower order one. In Fig. 5.2,
the simulation result with a uniform rectangular mesh of 256×256 cells
with a piecewise quadratic method up to T=8 is shown at the left for a
very thin shear layer with a high Reynolds number Re=70000/2p. We
notice that the numerical method is still stable in this case. A time history
for energy and enstrophy shows that the physical viscosity is still dominating
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Fig. 5.2. Contour of vorticity w at T=8. 30 equally spaced contour lines between w=
−14.5 and w=14.5. Thin shear layer corresponding to r=p/100. Re=70000/2p. 256×256
cells with P2/Q2 scheme (left). As a comparison, we also plot the result of 256×256 cells with
P1/Q1 scheme computation with Re=20000/2p (right).

the numerics at such high Reynolds numbers, according to the decay of
energy and enstrophy. This indicates that the built-in numerical viscosity of
the methods is very small. For comparison, at the right of Fig. 5.2 the
result of piecewise linear method for the same mesh is shown for a much
lower Reynolds number Re=20000/2p.

6. HAMILTON–JACOBI AND NON-LINEAR SECOND-ORDER
PARABOLIC EQUATIONS

In this section, we discuss the RKDG method for solving the following
Hamilton–Jacobi (HJ) equations

jt+H(Nj)=0, j(x, 0)=j0(x) (6.1)

We also discuss RKDG methods for non-linear parabolic equations with
viscosity solutions,

jt+F(Dj, D2j)=0, j(x, 0)=j0(x) (6.2)

The weak solutions of the above problems are usually Lipschitz continuous
but may have discontinuous derivatives, regardless of the smoothness of
the initial condition j0(x). The non-uniqueness of such solutions also
necessitates the definition of viscosity solutions to single out a unique,
practically relevant solution; see Crandall and Lions [53].
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We will mainly follow the 1999 paper by Hu and Shu [72], and the
2000 papers by Lepsky et al. [82] and Hu et al. [71]. We begin by con-
sidering the Hamilton–Jacobi equation. In many applications, practitioners
are interested in solving (6.1) on an arbitrary triangulation in multiple
space dimensions; there are several numerical schemes for this situation.
Indeed, first order monotone type finite volume schemes and their second
order extensions were studied by Abgrall in [1]. A second order ENO
(essentially non-oscillatory) type finite volume scheme was developed by
Lafon and Osher in [80]; see also the work of Augoula and Abgrall in
[13]. However, higher order finite volume schemes face the problem of
reconstruction on arbitrary triangulation, which is quite complicated.

It is well known that the Hamilton–Jacobi equation (6.1) is closely
related to a conservation law (2.1), in fact in one space dimension d=1 they
are equivalent if one takes j=ux. It is thus not surprising that many success-
ful numerical methods for the Hamilton–Jacobi equation (6.1) are adapted
from those for the conservation law. Such examples include the high order
finite difference ENO methods in Osher and Sethian [94], Osher and Shu
[95], and WENO methods in Jiang and Peng [75]. However, it seems that
such an adaptation is more difficult for unstructured meshes, especially for
finite element methods which are usually based on integration by parts. The
RKDGmethod we will discuss below is such an adaptation.

6.1. One Space Dimension

In one space dimension (6.1) becomes

jt+H(jx)=0, j(x, 0)=j0(x) (6.3)

This is a relatively easy case because (6.3) is equivalent to the conservation
law

ut+H(u)x=0, u(x, 0)=u0(x) (6.4)

if we identify u=jx. If we take the local spaceU(Ij) to be the set of all poly-
nomials of degree at most k and denote it by Pk(Ij), then a kth order discon-
tinuous Galerkin scheme for (6.3) can be defined as follows: find jh, whose
restriction to x ¥ Ij for each t is inPk(Ij), such that for all vh ¥ Pk−1(Ij),

F
Ij
(jh(x, t))xt vh(x) dx−F

Ij
H((jh(x, t))x) vh(x) dx

+Ĥ((jh( · , t))x) vh :
xj+1/2

xj−1/2

=0 (6.5)
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Here the numerical flux

Ĥ((jh(xj+1/2, t))x)=Ĥ((jh(x
−
j+1/2, t))x, (jh(x

+
j+1/2, t)x) (6.6)

is again a monotone flux, i.e., Ĥ is non-decreasing in the first argument and
non-increasing in the second, is Lipschitz continuous in both arguments, and
is consistent, i.e., Ĥ(u, u)=H(u). We will mainly use the simple (local)
Lax–Friedrichs flux

Ĥ(u−, u+)=H 1u
−+u+

2
2−1

2
a (u+−u−) (6.7)

where a=maxu |HŒ(u)| with the maximum taken over the range covered by
u− and u+. For other monotone fluxes, e.g., the Godunov flux, see Sec-
tion 2.1. Notice that the method described above is exactly the discontinu-
ous Galerkin method for the conservation law equation (6.4) satisfied by
the derivative u=jx. This only determines jh for each element up to a
constant, since it is only a scheme for jx. The missing constant can be
obtained in one of the following two ways:

(i) By requiring that the residue has zero mean in each element Ij,
i.e.,

F
Ij
((jh(x, t))t+H((jh(x, t))x)) dx=0 (6.8)

(ii) By using (6.8) to update only one (or a few) elements, e.g., the
left-most element I1, then use

jh(xj, t)=jh(x1, t)+F
xj

x1
(jh(x, t))x dx (6.9)

to determine the missing constant for the cell Ij.

We remark that, in the second approach, the recovered values of jh are
dependent upon the choice of the starting point x1. However this difference
is on the level of the truncation errors and does not affect the order of
accuracy. Both approaches are used in our numerical experiments. They
perform similarly for smooth problems, with the first approach giving
slightly better results. However, it is our numerical experience that, when
there are singularities in the derivatives, the first approach will often
produce dents and bumps when the integral path in time passes through
the singularities at some earlier time. The philosophy of using the second
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approach is that one could update only a few elements whose time integral
paths do not cross derivative singularities.

Concerning the stability of the method proposed above, using the cell
entropy inequality (which implies L2 stability) for the method of lines DG
method for scalar nonlinear conservation laws in Jiang and Shu [74], we
can easily obtain a uniform total variation bound for the numerical solu-
tion jh, see [72] for details. This is actually a rather strong stability result,
as it applies even if the derivative of the solution jx develops discontinu-
ities, no limiter has been added to the numerical scheme, and the scheme
can be of arbitrary high order in accuracy. It also implies convergence of at
least a subsequence of the numerical solution jh when hQ 0. However, this
stability result is not strong enough to imply that the limit solution is the
viscosity solution of (6.3).

Time discretization of (6.4) is again by the TVD Runge–Kutta
methods discussed in Section 2.2.

6.2. Multiple Space Dimensions

Next we will discuss the case of multiple space dimensions, using the
two-dimensional case to illustrate the ideas; the algorithm in more spatial
dimensions is similar. This time, the scalar Hamilton–Jacobi equation

jt+H(jx1 , jx2 )=0, j(x, 0)=j0(x) (6.10)

is in some sense equivalent to the following system of conservation laws

ut+H(u, v)x1=0, vt+H(u, v)x2=0, (u(x, 0), v(x, 0))=(u0(x), v0(x))
(6.11)

if we identify

(u, v)=Nj (6.12)

For example, a vanishing viscosity solution of (6.10) corresponds, via
(6.12), to a vanishing viscosity solution of (6.11), and vice versa [76].
However, (6.11) is not a strictly hyperbolic system, which may cause
problems in its numerical solution if we treat u and v as independent
variables. Instead, we would like to still use jh as our solution variable
(a polynomial) and take its derivatives as uh and vh. This is the main thrust
of the discontinuous Galerkin method developed in [72] and later in [82]
and [71] for solving multi-dimensional Hamilton–Jacobi equations.
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The solution procedure, for a DG spatial discretization and Euler
forward time stepping (TVD Runge–Kutta time stepping is just a combi-
nation of several Euler forward steps), consists of the following:

• Use the DG discretization for the hyperbolic system (6.11) with a
local Lax–Friedrichs flux (see Section 3), taking (uh, vh) at time level n by
(6.12), and take a forward Euler time step to get a provisional value of
(uh, vh) at time level n+1;

• Determine Njh at time level n+1 by a least square procedure:

||Njh−(uh, vh)||L2(K)= min
kh ¥ P

k(K)
||Nkh−(uh, vh)||L2(K) (6.13)

• The missing constant can again be obtained in one of the following
two ways:

(i) By requiring that the residue has zero mean in each element K,
i.e.,

F
K
((jh(x, t))t+H(Njh(x, t))) dx=0 (6.14)

(ii) By using (7.14) to update only one (or a few) elements, e.g., the
corner element(s), then use

jh(B, t)=jh(A, t)+F
B

A
(jh)x1 dx1+(jh)x2 dx2 (6.15)

to determine the missing constant. The path should be taken to
avoid crossing a derivative discontinuity, if possible.

We remark again that, in the second approach, the recovered values of
jh are dependent upon the choice of the starting point A as well as the
integration path. However this difference is on the level of truncation
errors and does not affect the order of accuracy. It is important here that
jh is a single function and uh and vh are just its derivatives. Otherwise the
second approach would be questionable in effectively recovering jh.

It can be proven [82] that the least square procedure (6.13) maintains
the mean values of u and v (i.e., the mean value of (jh)x1 equals that of u
and the the mean value of (jh)x2 equals that of v) and does not increase the
L2-norm of Njh (i.e., the L2-norm of Njh is no bigger than the sum of the
L2-norms of u and v). Thus it does not destroy the nice stability property of
the RKDG method.
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6.3. The Non-Linear Second-Order Parabolic Problem

The extension of the RKDG method for Hamilton–Jacobi equations
to non-linear second-order parabolic equations is analogous to the exten-
sion of the RKDG method for hyperbolic systems to convection-diffusion
systems.

So, if we are to discretize

jt+F(jx, jy, jxx, jxy, jyy)=0, j(x, 0)=j0(x)

we simply write a problem for (u, v, p, q, r)=(jx, jy, jxx, jxy, jyy), namely,

ut+F(u, v, p, q, r)x=0, vt+H(u, v, p, q, r)y=0,

p−ux=0, q−uy=0, r−vy=0,

u(x, y, 0)=(j0)x (x, y), v(x, y, 0)=(j0)y (x, y)

Now, we simply apply the RKDG method to the above problem to
produce an approximation (uh, vh, ph, qh, rh) to (u, v, p, q, r). Then, we
define the approximation jh to j by solving the problem as was done for
the Hamilton–Jacobi equations.

6.4. Numerical Examples

We will show two numerical examples here to illustrate the RKDG
method for two dimensional Hamilton–Jacobi equations. More examples
can be found in [72], [82] and [71].

The first example is the problem of a propagating surface on the unit
disk:

˛jt−(1− eK)`1+j
2
x1+j

2
x2=0

j(x, 0)=sin 1p(x
2
1+x

2
2)

2
2 (6.16)

where K is the mean curvature defined by

K=−
jx1x1 (1+j

2
x2 )−2jx1x2jx1jx2+jx2x2 (1+j

2
x1 )

(1+j2x1+j
2
x2 )

3
2

(6.17)

and e is a small constant, subject to a Neumann type boundary condition
Nj=0.
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This problem (defined on a rectangle rather than on a circle) was
studied in [94] by using a finite difference ENO schemes. It is difficult to
use rectangular meshes when the domain is a circle. Instead, we use the
triangulation shown in Fig. 6.1. Notice that the mesh has been refined near
the center of the domain where the solution develops discontinuous deri-
vatives (for the e=0 case). There are 1792 triangles and 922 nodes in this
triangulation. The solution with e=0 is displayed in Fig. 6.2, and that with
e=0.1 is displayed in Fig. 6.3. Notice that the solution at t=0 is shifted
downward by 0.2 to show the detail of the solution at later time.

Next we present a problem from computer vision [101]:

3jt+I(x)`1+j2x1+j2x2 −1=0, −1 < x1 < 1, −1 < x2 < 1
j(x, 0)=0

(6.18)

with j=0 as the boundary condition. The steady state solution of this
problem is the shape lighted by a source located at infinity with vertical
direction. The solution is not unique if there are points at which I(x)=1.
Conditions must be prescribed at such points. Since our method is a finite
element method, we need to prescribe suitable conditions at the corre-
sponding elements. We take

I(x)=1/`1+(1− |x1 |)2+(1−|x2 |)2

The exact steady solution is j(x,.)=(1− |x1 |)(1− |x2 |). We use a uniform
rectangular mesh of 40×40 elements and impose the exact boundary con-
ditions for u=jx1 , v=jx2 from the above exact steady solution, and take
the exact value at one point (the lower left corner) to recover jh. The
results for P2 and P3 are presented in Fig. 6.4, while Fig. 6.5 contains the
history of iterations to the steady state, indicating a nice convergence to
machine zero of the numerical residue.

7. ONGOING WORK AND OPEN PROBLEMS

In this section, we bring to the attention of the reader some of the
problems which we feel would be interesting to consider to further develop
the RKDG methods.

7.1. Generalized Slope Limiters

As we have seen, an important component of the RKDG method for
transient non-linear hyperbolic systems is the generalized slope limiter.
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Fig. 6.1. Triangulation for the propagating surfaces on a disk.

Fig. 6.2. Propagating surfaces on a disk, triangular mesh, e=0.
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Fig. 6.3. Propagating surfaces on a disk, triangular mesh, e=0.1.

Although we have shown a generalized slope limiter that works very well,
further research on limiters is very desirable.

First of all, let us emphasize that the limiter is not necessary for linear
problems, but is indispensable for non-linear problems. This has been
shown in the short essay by Cockburn [39] for non-linear scalar conserva-
tion laws, where it is pointed out that the limiter plays a role similar to that
played by the shock-capturing terms of the streamline-diffusion method.

Further research is needed to find an efficient way to estimate the
parameter M by means of which the limiter LPh, M maintains the accuracy
of the scheme at critical points. An ideal solution would be if this could be

Fig. 6.4. Computer vision problem.
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Fig. 6.5. Computer vision problem, history of iterations.

achieved in terms of the approximate solution only, and if this could be
easily applied to general hyperbolic systems.

Another challenging problem is how to devise a limiter that is free from
such a parameter. The limiter of Biswas et al. [26] has such a property.
However, no stability results have been proven for this limiter and it only
works in Cartesian grids with tensor product polynomial approximations.

7.2. Time-Stepping Techniques

In order to be able to perform adaptivity while maintaining the high
parallelizability of the DG methods, new high-order accurate time-stepping
methods would have to be created which could use different time steps at
different locations. The space-time DG methods could be used to this
effect, but they tend to be rather difficult to code.

Another possibility is to extend to high-order accurate schemes the
approach used in 1995 by Dawson [54] to devise a first-order accurate,
conservative variable time-stepping scheme; a significant achievement in this
direction is the recent paper by Dawson and Kirby [55] who discovered
how to obtain second-order accurate schemes of this type.

Non-conservative time-stepping methods can also lead to efficient time
discretizations, but one has to be very careful to exert a tight control on the
loss of mass, especially near the discontinuities; an example of this tech-
nique is the local time stepping introduced in 1997 by Flaherty et al. [61].

7.3. Enhanced Accuracy by Post-Processing

It is advantageous to know how to locally post-process the approxi-
mate solution in order to obtain a better approximation; this is particularly
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true in the framework of a posteriori error estimation and adaptive algo-
rithms. For DG methods, this has been done, so far, in two different ways:
By finding super-convergence points and by a local convolution.

In 1994, Biswas et al. [26] gathered numerical evidence that, when
rectangular elements are used, the approximate solution of the DG method
super-converges at the Gauss-Radau points. This fact was exploited for
adaptivity purposes then and recently proven by Adjerid et al. [4]; see also
the papers by Adjerid, Aiffa and Flaherty [3] and [2]. Further under-
standing of this phenomena is very important.

Also recently, Cockburn et al. [47] showed that under some circum-
stances, it is possible to locally post-process the approximate solution of
linear hyperbolic systems given by the DG space approximation and
recover an order of accuracy of 2k+1 instead of the expected order of
k+1/2. The idea is based on a technique introduced by Bramble and
Schatz [28] in the framework of finite element methods for linear elliptic
problems and it requires locally uniform grids.

Let us illustrate the above result by showing some numerical results
reported in [47]. We consider the model problem:

ut+ux=0, in (0, 1)×(0, T), u(x, 0)=sin(2px), for x ¥ (0, 1)

subject to periodic boundary conditions. We denote by uh the approximate
solution obtained by using the DG method with piecewise polynomials of
degree k over uniform grids of spacing h. We also consider the post-pro-
cessed approximation ua

h=Kk
h a uh, where the convolution kernel K

k
h is a

linear combination of B-splines that has support in [−h(k−1/2), h(k+1/2)]
and reproduces polynomials of degree 2k+1 by convolution.

In Fig. 7.1 we display, for T=0.1 and h=1/10 and h=1/20, the
errors xW u(T, x)−uh(T, x) and xW u(T, x)−ua

h (T, x) for k=1 and in
Fig. 7.2 for k=2. Note how the oscillations in the error xW u(T, x)−
uh(T, x) typical of finite element methods are remarkably reduced after the
post-processing. Finally, in Table 7.1, we can see that the post-processed
approximate solution converges with order 2k+1, as claimed.

7.4. Application to Non-Convection-Diffusion Problems

So far, the main application of RKDG methods has been to compres-
sible fluid flow, but there are many other problems on which a DG method
could be very advantageous. For example, when applied to linear problems
like Maxwell’s equations, the mass matrix can be made to be the identity
regardless of the polynomial degree and, moreover, the slope limiter often
does not need to be used to guarantee stability. Also, applications of DG
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Fig. 7.1. The errors u−uh (solid line) and u−u
a
h (dots) at T=0.1 for h=1/10 (left) and

h=1/20 (right). The function u is the smooth exact solution, uh is the approximation given by
the DG method with polynomials of degree one, and ua

h is the post-processed solution.

methods to other situations like wave propagation phenomena in general,
linear and non-linear solid mechanics, and non-linear equations like the
Korteweg-de-Vries equations, just to name a few, has only began.

7.5. Relation of the LDG Method with Other Methods

A deep study of the relation of the DG methods to already existing
methods could prove to be very illuminating not only from a theoretical point
of view but also from a practical point of view since then it would be known
for what situations it is more advantageous to use one method or the other.
A first effort in this direction has been done by Arnold et al. [11] who estab-
lished a unified framework to study and compare the LDG method and
almost all other DG methods for elliptic problems. This theoretical study
should be followed by amost needed computational study.

Fig. 7.2. The errors u−uh (solid line) and u−u
a
h (dots) at T=0.1 for h=1/10 (left) and

h=1/20 (right). The function u is the smooth exact solution, uh is the approximation given by
the DG method with polynomials of degree two, and ua

h is the post-processed solution.
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Table 7.1. ut+ux=0, Smooth Solution

Before postprocessing After postprocessing

mesh L2 error order L. error order L2 error order L. error order

P1

10 3.29E-02 — 5.81E-02 — 3.01E-02 — 4.22E-02 —
20 5.63E-03 2.55 1.06E-02 2.45 3.84E-03 2.97 5.44E-03 2.96
40 1.16E-03 2.28 2.89E-03 1.88 4.79E-04 3.00 6.78E-04 3.01
80 2.72E-04 2.09 8.08E-04 1.84 5.97E-05 3.00 8.45E-05 3.00
160 6.68E-05 2.03 2.13E-04 1.93 7.45E-06 3.00 1.05E-05 3.00
320 1.66E-05 2.01 5.45E-05 1.96 9.30E-07 3.00 1.32E-06 3.00

P2

10 8.63E-04 — 2.86E-03 — 2.52E-04 — 3.57E-04
20 1.07E-04 3.01 3.69E-04 2.95 5.96E-06 5.40 8.41E-06 5.41
40 1.34E-05 3.00 4.63E-05 3.00 1.53E-07 5.29 2.16E-07 5.28
80 1.67E-06 3.00 5.78E-06 3.00 4.22E-09 5.18 5.97E-09 5.18
160 2.09E-07 3.00 7.23E-07 3.00 1.27E-10 5.06 1.80E-10 5.06

P3

10 3.30E-05 — 9.59E-05 — 1.64E-05 — 2.31E-05 —
20 2.06E-06 4.00 6.07E-06 3.98 7.07E-08 7.85 1.00E-07 7.85
40 1.29E-07 4.00 3.80E-07 4.00 2.91E-10 7.92 4.15E-10 7.91
50 5.29E-08 4.00 1.56E-07 4.00 5.03E-11 7.87 7.24E-11 7.83

P4

10 1.02E-06 — 2.30E-06 — 1.98E-06 — 2.81E-06 —
20 3.21E-08 5.00 7.30E-08 4.98 2.20E-09 9.82 3.11E-09 9.82
30 4.23E-09 5.00 9.66E-09 4.99 4.34E-11 9.68 6.66E-11 9.48

It would also be very interesting to understand how to couple DG
methods with other methods. This is of great practical interest since in
many practical situations, already existing methods (and codes!) work just
fine in some parts of the domain but not in others where the use of a DG
method could be indispensable. For example, in the framework of CFD,
the practitioner might want to use the LDG only in a region in which the
convection has a strong effect and use elsewhere another method that
works well when diffusion dominates.

A significant effort in this direction has been recently done by Perugia
and Schötzau [96] who showed how to couple the LDG method with the
classical conforming finite element method for the model elliptic problem
of the Laplacian operator. Their motivation comes from a problem involv-
ing rotating electrical machines which are triangulated independently of
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each other; see [8] for details. In this instance, the LDG is used to deal
with the hanging nodes that naturally arise in this problem.

The coupling is done as follows. The LDG method is applied on the
domain WLDG and the conforming method on WC=W0WaLDG. The coupling
takes place at the common boundary of WLDG and WC which we denote
by C. To define the LDG on WLDG, the boundary C is considered to be a
Dirichlet boundary on which the data is the value given by the trace of the
conforming approximation on C. To define the conforming method on WC,
the boundary C is now considered to be a Neumann boundary on which
data is given by the corresponding numerical flux of the LDG method.

Perugia and Schötzau [96] proved that when elements of degree k are
used on each variable, optimal orders of convergence are achieved. Next,
we display some of their numerical results. In Fig. 7.3, we show the grids
used in the experiments; note that the domain WLDG contains all the
hanging nodes and shrinks towards them as the meshes are refined. In
Table 7.2 we can see that the error in the energy semi-norm, namely,
{||q−qh ||

2
W+;edges e >e C11[u−uh]2}1/2, and the L2-norm of u−uh converge

with optimal order, as expected. This shows that the coupling of the LDG
and the conforming method can be successfully carried out.

7.6. Efficient Steady State Solvers

One problem with following physical time to reach steady states for
convection dominated convection diffusion problems using RKDGmethods
is that the CFL condition for L2-stability severely restricts the allowable

Fig. 7.3. Grids used in the numerical experiments: non–nested grids with hanging nodes on
the line y=0 (bottom). The domain WLDG is shadowed.
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Table 7.2. Errors and Orders of Convergence for the Coupling of the LDG and the
Conforming Finite Element Method

Energy-seminorm L2-norm of u

reduction in h error order error order

— 4.7506e-1 — 6.5124e-2 −
2.0 2.5514e-1 1.8620 1.7317e-2 3.7607
2.0 1.3239e-1 1.9272 4.5057e-3 3.8434
2.0 6.7376e-2 1.9649 1.1496e-3 3.9194

time step Dt, making the marching in time rather slow. Various precondition-
ing andmultigrid techniques would seem desirable here. A challenge is that one
would not want to give up the extremely local property of the method which is
responsible for its high parallel efficiency. Such techniques could also be useful
for time dependent calculations through the introduction of a pseudo time.

To end this paper, let us emphasize that there are many aspects con-
cerning the development of DG methods that we have not touched upon
this review. Maybe the most important is the issue of adaptivity and
parallelizability; see, for example, the papers on the subject that have
appeared in [45]. As we have argued, the DG methods are ideally suited
for adaptivity and parallelizability and might be the methods of choice for
the use of adaptive strategies combined with load balancing techniques, not
only in computational fluid dynamics but in a wide variety of problems of
practical interest.
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