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Abstract

In this paper we introduce a new class of ENO reconstruction procedures, the Power ENO methods, to design high-
order accurate shock capturing methods for hyperbolic conservation laws, based on an extended class of limiters,
improving the behavior near discontinuities with respect to the classical ENO methods. Power ENO methods are
defined as a correction of classical ENO methods [J. Comput. Phys. 71 (1987) 231], by applying the new limiters on
second-order differences or higher. The new class of limiters includes as a particular case the minmod limiter and the
harmonic limiter used for the design of the PHM methods [see SIAM J. Sci. Comput. 15 (1994) 892]. The main features
of these new ENO methods are the substantially reduced smearing near discontinuities and the good resolution of
corners and local extrema. We design a new fifth-order accurate Weighted Power ENO method that improves the
behavior of Jiang-Shu WENOS [J. Comput. Phys. 126 (1996) 202]. We present several one- and two-dimensional
numerical experiments for scalar and systems of conservation laws, including linear advections and one- and two-di-
mensional Riemann problems for the Euler equations of gas dynamics, comparing our methods with the classical and
weighted ENO methods, showing the advantages and disadvantages.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we shall consider numerical approximations to nonlinear conservation laws of the form:

ou < of;(u)
atl e = 1)
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where u is a m-dimensional vector of unknowns and f;(u) are d vector-valued functions called fluxes. We
assume strong hyperbolicity, i.e., the Jacobian matrices of the former system

_0of;(u)
A="ow )

locally diagonalize with real eigenvalues and a complete system of eigenvectors. The one-dimensional case
of the system will be in the form

u, + (f(w)), =0, 3)

X

with the initial value condition
u(x,0) = uy(x). (4)

Weak solutions of nonlinear conservation laws are piecewise smooth with jump discontinuities. High-
order accurate numerical approximations to these functions are such that they achieve high accuracy on
smooth regions and sharpen profiles of discontinuities, without spurious oscillations. Essentially non os-
cillatory (ENO), polynomial reconstruction procedures were designed to accomplish this purpose [4]. ENO
methods are high-order accurate on smooth regions and appear to be very robust on shocks. However,
several drawbacks became relevant after some experimentation with ENO methods took place, from which
we mention:

1. Loss of accuracy on smooth regions with specific input data [14].

2. Smearing of certain discontinuities [5].

3. Smoothing up of corners. (discontinuities of the first derivative) [10].
4. Too wide stencil to get high-order accuracy [5].

In order to overcome those difficulties (see [14]), several remedies were proposed. Shu [17] proposed a
more centered ENO selection to reduce the loss of accuracy. PHM methods were introduced to improve the
resolution of corners. WENO methods were designed to get optimal accuracy for a specific stencil, de-
generating to a classical ENO method at discontinuities.

In this paper we introduce a new class of parabolic ENO methods, we call the Power ENO methods,
based on a class of limiters that contains minmod and ENO limiters as a particular case, as well as the
limiters based on the harmonic mean, used to design the PHM methods and Harmonic ENO methods (see
[1,7,10,11]). We focus our study on ENO parabolas and we apply the limiters on neighboring second-order
differences in order to retain more information of fine scales. The main advantage of those methods with
respect to the classical ENO methods is the improved behavior near discontinuities. In particular, we
propose a new fifth-order accurate weighted ENO method with a better behavior near jumps and corners
than the Jiang and Shu WENOS5 described in [5]. A disadvantage of applying limiters on second-order
differences is that there is a loss of accuracy near smooth inflection points.

The paper is organized as follows: In Section 2 we describe and discuss the new family of limiters.
Section 3 is focused on our new Power ENO method, discussing the advantages and disadvantages,
compared to the parabolic ENO method. In particular, we discuss the third-order accurate Power ENO3
method. In Section 4, we propose a new fifth-order accurate Weighted Power ENO method, designed as
a convex combination of the three parabolas used to define the third-order accurate Power ENO
method, following a similar procedure to the one used by Jiang and Shu [5]. In Section 5, we test our
Power ENO and Weighted Power ENO methods on several one- and two-dimensional model problems,
for scalar and systems of conservation laws, and we compare them with ENO3 and WENOS5 schemes, to
analyze their ability in resolving shocks and complex flow problems. Finally, we draw our conclusions in
Section 6.
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2. An extended class of limiters

The ENO, minmod and harmonic limiters were introduced to control the behavior of reconstructions
around discontinuities, in order to avoid the Gibbs’ phenomena and over/under-shoots. We want to get
high-order accurate reconstruction methods without spurious oscillations near discontinuities. The limiters
are usually based on a mean of two nonnegative numbers. Indeed,

(sign(x) + sign(y))

minmod(x,y) = 3 min(|x/, [y]), (5)
mineno(x, y) = minsign(x, y) min(|x|, [y|), (6)
(sign(x) +sign(y)) 2/x[ly
harmod(x,y) = , 7
(x.7) 2 e 7
hareno(x, y) = minsign(x, y) 2Ux{ly] , (8)
x| + [v]

where sign(x) is the sign function, and

sign(x); x| <= |y],

minsign(x,y) = {sign(y); otherwise.

These limiters are based on the min and harmonic mean, respectively, between two nonnegative
numbers.

We shall explore a wide class of averages, bounded above by the arithmetic mean, containing the
harmonic mean and the minimum as particular cases. Indeed, if x > 0 and y > 0, then, for a natural number
p, we define the power-p mean, power,(x,y) as:

(x+) <1 B ”). 9)

power,(x,y) = 7
The function power,(x,y) is homogeneous of degree 1 as a function of two variables. It is easy to see
that

xX—=y
xX+y

y—x
yt+x

1+]

ower = min
power,,(x, ) (x, ) g

+’y_x Pl]. (10)

In particular, if 0 < x < y then

— — pil-
1+<yx>+m+<yx> . (11)
y+x y+x
This is a truncated geometric series with ratio r = (y —x)/(y +x) > 0 and r < 1.

The infinite series converges to (x + y)/2. Then, the following inequalities are satisfied for any x > 0 and
y>0:

power,(x,y) = x

x+y
2

min(x, y) < power,(x, y) < power,(x, y) <

for 0 < p <gq.
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Moreover, for any x > 0 and y > 0, we have

power, (x,y) = min(x,y), (12)
2x

. (13)

x+y
The above identities are very useful to compute the discrepancy between the arithmetic mean and the
power-p means, in order to get simple expressions of the truncation errors, as we will see in the following
section.
The following proposition describes a necessary condition for an average to be useful to design limiters
in the reconstruction procedures that are piecewise smooth and its total variation in cells next to discon-
tinuities is bounded. This property is not satisfied for the arithmetic mean, nor the geometric mean.

power; (x,y) =

Proposition 1. If x(k) > 0 and y(h) > 0 are functions of the real parameter h > 0, such that x(h) = O(1) and
y(h) = O(1/h), then power,(x(h),y(h)) = O(1).

This assertion follows easily from the identity (11).
Next, we discuss the above-defined means in order to know its scope, when used in the design of limiters.
Thus, we can define the corresponding limiters:

(sign(x) + sign(y))
2

powermod,(x,y) = power (|x[, [y]), (14)

powereno ,(x, y) = minsign(x, y)power,(|x[, |[y]). (15)

The following identities show that minmod, ENO and harmonic limiters are particular cases of the
power-p limiters:

powermod, (x,y) = minmod(x, y), (16)

powereno, (x,y) = mineno(x, y). (17)

powermod, (x,y) = harmod(x, y), (18)

powereno, (x,y) = hareno(x, y). (19)
We use the example of a scalar conservation law to settle our notation and computational framework:

v+ f(v), =0, (20)

v(x, 1) = vp(x), (21)

where vy is a periodic or compactly supported piecewise smooth function.

We consider the following computational grid: x; = jh (h is the spatial step), ¢, = nAt, is the time dis-
cretization (At is the time step), /; = [x;_1,x;,1] is the spatial cell, where x =X +4 is the cell interface
and C} = [x;_y,x;] X [ty fys1] I8 the computational cell. Let v} be an approx1rnat10n of the mean value in /;,
(1/h) ﬁ:/ﬁf v(x, t,) dx, of the exact solution v(x, #,) of the initial value problem (20) and (21), obtained from a

finite volume scheme in conservation form:

U;I+1 = U;f h (fj+2 fj;l)a (22)
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where the numerical flux, f , 1s a function of k + / variables

f;+% = f(v;lfkﬁ»l? ceey U;+1)7 (23)
which is consistent with the flux of the Eq. (20),
flv,...,0) = f(v). 24

Following Harten [3], a consistent numerical scheme in conservation form (22) is TVD (total variation
diminishing), if

TV < TV, (25)

where TV(v") = 3, [v},; — v}| is the total variation of the discrete solution.

Next, we will analyze our limiters in terms of the classical flux limiter schemes which are TVD. We will
focus our attention on the one-dimensional linear advection with constant wave speed a > 0:

v, +av, =0, (26)

and, we consider a flux limiter scheme based on the Lax—Wendroff scheme applied to the above equation as
the scheme in conservation form defined from the following numerical flux:

- n a u 7
fj+% =av; + B (1 =)W, =)y, (27)
where ¢; represents the flux limiter, i.e., it is a function ¢, = ¢(0;), with
v =
0, =——" (28)
Vit =Y

and v = a(At/h). If ¢(0) is bounded, ¢(1) = 1 and it is Lipschitz continuous at 6 = 1, then, the scheme is
second-order accurate in space and time, except at local extrema where it degenerates to first order, (see
[8,13]). For the sake of simplicity in our discussion on TVD property we assume that

¢(6) =0 if 6<0. (29)
From a theorem by Harten (see [3]) if a flux limiter function ¢ satisfies:
¢(0)
0< o <2 and 0<¢(0)<2 for all 0, (30)

then, the scheme (27) is TVD. If we define a flux limiter function from a limiter as
¢’ (0) = powermod, (1, 0), (31)

we have that ¢” satisfies (29). The following lemma follows easily from the definition of the powermod,
limiters:

Proposition 2.

()g@gp and 0< PP (0)<p for all 0.

Thus, for p = 1,2, the ¢ function defines a TVD scheme, under the CFL restriction |v| < 1. On the other
hand, for p > 2, it is not true that the flux limiter Lax—Wendroff scheme described above is TVD, under the



S. Serna, A. Marquina | Journal of Computational Physics 194 (2004) 632-658 637

3 T T T T T

0 - I I I I I
0 0.5 1 1.5 2 25 3

Fig. 1. TVD region and ¢°(0).

same CFL restriction (see Fig. 1). In fact, for p = 3, we have the restriction % < v < %, which is not useful.
Thus, for p > 2 the powermod, and powereno,, limiters should not be used for the schemes described above.
This behavior can be observed in Fig. 1, where we represent ¢ (6) over the second-order TVD region (see
[8] for details on TVD regions).

However, for methods of order of accuracy larger than two (and then, excluding Lax—Wendroff), sec-
ond-order differences need to be limited like in ENO methods. When limiting second-order differences,
small scales may be destroyed by using a very strong limiter like the one used for ENO methods. The
“smearing effect” of ENO methods of order larger than 2 is, in part, due to the above reason. Here, we
propose the powereno limiters for p > 2 to be applied to the second-order differences in order to retain
(along the evolution) more information of fine scales.

In this paper we focus our study on the Power limiters for p = 3, based on the Power; mean, since it
behaves essentially nonoscillatory near discontinuities (see Proposition 3), and it allows simple expressions
of the local truncation errors when used as a limiter of second-order differences.

Formally, Power; mean can be written in the more convenient form:

X2+ + 2 max(x,y))2

Power;(x,y) = min(x, y) )

3. Piecewise polynomial reconstructions: Power ENO methods

We will use the notation introduced at the end of the above section.

For our purposes, a reconstruction procedure is an algorithm to obtain point values at the cell interfaces
from cell averages and their differences corresponding to a set of discrete variables or fluxes, up to a degree
of accuracy.
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We want to reconstruct a function u(x) from its mean values given at cells:
1[5+
v; = z u(x) dx (33)

such that u is a piecewise smooth function associated to the spatial grid defined above, i.e., u restricted to
each cell /; is smooth, and, therefore, possible jump discontinuities are located at cell interfaces. We denote
by r; :=u|l;, i.e., the restriction of u to ;. Following (see [10, Definition 2.2, p. 897]), we say that a re-
construction procedure is local total variation bounded if TV (r;) = O(h), for all j, where TV denotes the
total variation of the function 7;.

Our grid data are:
o (i) for every j the mean value of u(x) in ;, v; is given to satisfy (33).
e (i) for every j, d;.1 is given by the undivided first-order difference:

dj) = Vjs1 — U;. (34)
All the polynomial reconstruction methods analyzed in this paper have the same stencil as the classical

ENO3 method and based on parabolas of the form:

S

pi(x) =a;+ (x —x;) |b; + >

(x —x)) (35)

defined on /;, where a;, b; and c; are determinated from the grid data.
We use the following notations:

d.i+d._1
dj _ N 3 J 2’ (36)
Dj=d; —d; (37)

The classical ENO3 method is based on a selection procedure that chooses one parabola from three
candidates:

_ o Dia x—x Diw Dj(x—x
Pl =00, [df_ﬁ g (5] (38)
- D] xij D] xij
P =0yt {dﬁ > (5 (39)
_ . D x—x D Dpi (x =%
pj+l(x) =Uj— 24 + h |:dj+%_ 2 + 2 ( h ) ) (40)

which correspond to the left-, central- and right-hand side choice, respectively. The ENO3 selection pro-
cedure to get the ENO parabola for the computational cell C; = [xj_%,xj 11] reads as follows:
if |d]_%| < ‘d/+%| then )
if |D;1| < D] then
pj-1(x)
else
pi(x)
end
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else
if |D;| < |Dj;1| then
pi(x)
else
P (x)
end
end
To explore new ways to design ENO methods such that we get better behavior near discontinuities, we
make to play in our study two new parabolas instead of the left and right choices used in ENO3. We
construct these new parabolas using an intermediate value between two neighboring second-order differ-
ences:

M~7l X —X; M% M~7l X —X;
Py ===+ h]{df%—'_ 7t £2< hj)} (41)
M+% X —X; M+% M~+l X —X;
Pial) = v = 57+ {d/‘%_ R £2< A j)} (42)
where M; ; := mean(D;- 1,D;) and M, i1y == mean(D;, D;.1), where “mean” is an intermediate value that

eventually may be a limiter.

Next, we introduce the third-order accurate Power ENO method. We will use the powereno; or
powermod, limiters (the limiters based on the mean power;), computed at two neighboring second-order
differences, at the place of the mean M, mentioned above. For the sake of simplicity, we refer to those
limiters as powereno and powermod avoiding the subindex.

We will use the following three parabolas:

P. oy P.. P . .

P gy T Jo o i (X T
pj;%(x) =1 24 h |:dl% + 2 + 2 ( h ):| ) (43)

D, x—x; D; rx—x;

p) =0 -3+ 57 o+ 2 (5], @)

P —x; P Pix—x;

P Jt+5 X X Jt5 5 X X
Pyl¥) =v =55+ = j[dﬁ%_ 22+ 2 ( h j)} (43)
which correspond to the left-, central- and right-hand side choice, respectively and P, 1= = powereno(D,_1, D;)

and P, = powereno(D;, D;;). Powermod limiter might be used instead, being less oscﬂlatory, but we did not
find sighiﬁcant computational differences.

Then, the Power-ENO3 method is defined choosing one of the above parabolas following the selection
procedure of the classical ENO3 method. If we use the powereno, limiter instead of powereno, we recover
the ENO3 method.

In [10], it was shown that ENO3 method is local total variation bounded. Following analogous argument
it is easy to show that:

Proposition 3. The Power ENO3 method is local total variation bounded, i.e., TV (r) = O(h), where r; is the
reconstruction for the cell C; and h is the spatial step.
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4. A fifth-order accurate Weighted Power ENO method

In order to show the prospective interest of our Power ENO method, we shall construct a new weighted
ENO method as a convex combination of the three parabolas (43)—(45) used for our Power-ENO3 method.
Then, in order to compute the optimal linear weights for this method we need to know simple expressions
of the truncation errors for the above mentioned parabolas. We can obtain simple expressions using the
arithmetic mean, instead of our nonlinear limiter.

Proposition 4. If we use the arithmetic mean A, i.e., A(x,y) :== 3%, for the parabolas (41) and (42), then, we
have the following truncation error expressions at the right interface Xjy1

AN\ " 256 (h\*u® S
;fj“_%(xj+12)—u——4(§) F—FT(E) 24 +O(h ), (46)

64 (h\*u®)

Proof. The Taylor expansion of u(x) is

2 3 4
) = o) 4 ) ) ) S ) B ) B D o)
Then, by computing (33) we get the Taylor expansions of the cell averages:
1\’ (',
L ) e " I i (iv) (4 6
oy =)+ (5) ) + 135 (5 ) w9 + 00, 9)

We want to obtam the Taylor expansions, located at the right interface x +1 thus, for simplicity we
denote by u, o, u", u"”, u'™), u™, the values of those functions evaluated at X

h ) h 214” h 3u/// h 4u(iv) S
u(xj)—u—zu +<§> 7—<§> < T\3) = +O(h),

, ok
u™ (x;) = u®™ — Eu(V) +O(1?).
Therefore, the Taylor expansion of v; at x 1l will be

h, 4(h\u AN u" 16 (h\*u® 5

The corresponding expressions for v, v;_1,0;1> and v;_,, are obtained in a similar way and read as
follows:
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h, 4(h\ u A\ " 16 (h\*u® S
=ut~id+-(z) =+2(3z) —+= (= h
Vpr = U+ U +3<2> >+ (2) 6+5<2> 24+O( )s

ho, 28 (h\ u h

2 2 3.m 4
vj+2=u+3ﬁu’+—8(ﬁ) u_+30(ﬁ> 1%—% 96(

=
|
|

4 (i) .
) o),

2 3\2

ho, 76 (h\ u' A\ u” 3376 (h\*u) 5
b2 = g +?(5) 7‘130(5) ?*T(i) 24 T O0)
Thus, after a straightforward computation, we obtain
64 (h\*u®™ .
P == (3) 55 + 000 (50)

L.e., pj,1 is fourth-order accurate at x;,1, and

AN w256 B\t u®
lf;‘;<xf+;>:“—4<§) Z*?(a) 25 O, (51)

We need to use other limiters, at the place of the arithmetic mean, to get total variation stable recon-
structions, in a way that, the truncation error expressions above are valid up to the highest possible order.

We apply our limiters on neighboring second-order central differences. Thus, if x and y are neighboring
second-order central differences computed on a smooth region, we have that x = O(h?), y = O(h*) and
x —y = O(A?) and, therefore,

Proposition 5.

X+y
2

— power,(x,y) = O(h"*?).

Proof. It follows easily from

P

x+y X—=y
R power,(x, y) = = O(h*'7). (52)

x+y

xX—y
x+y

ISE

p7x+y
2

Thus, the next theorem follows from Proposition 5.

Theorem 1. The following statements are true:

1. The truncation error expressions of the arithmetic mean are valid up to third-order terms for the harmod
and hareno limiters (the power, limiters with p = 2).

2. The truncation error expressions of the arithmetic mean are valid up to fourth-order terms for the powermod
and powereno limiters.

From Proposition 4 and Theorem 1, the following truncation error expressions at the right interface are
valid:
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A\ w256 (h\*u®
Pt —u=—4(3) T+ 75 (3) o

A\ u" 64 (h\u™ 5
Pj(¥;+%)—”4<2> 6_5<2> 5 T o),

64 (h\* u
Pl —u= -5 <§> T O(h%).

Thus, from the above expressions we can reach fifth-order accuracy at smooth regions, obtaining the
optimal degree of accuracy, using an analogous procedure to the one used in [5] (see also [9]).

Indeed, in this case the optimal linear weights C; to get this accuracy are uniquely defined, at the right
interface, as the convex combination:

Wo 'Pf,%(xﬂ%) +wi 'pj(xj+%) +wy 'pﬁ%(xﬂ%)’ (53)

where
Ol
Wy =———
oy + o + 0
for k =0,1,2, and
Ci

sy a

(54)

where Cy = 0.2, C; = 0.2 and C, = 0.6 are the optimal weights (we remind that the corresponding linear
optimal weights for the WENOS method are Cy = 0.1, C; = 0.3 and C, = 0.6, see [5]).

Now, we use the L2-norm of the derivatives of the polynomials involved (formula originally proposed by
Jiang and Shu, see [5]), to get the smoothness indicators, that reach the optimal degree of accuracy, for this
case. We obtain the following expressions:

13 2 1 2

5=+ 2. 9
13 1

I8, = 12 (vjo1 — 2v; + U_/+1)2 T (01— U./+1)27 (57)
13 2 1 2

5. 3 (0) om0’ 60

where P is the powereno or powermod limiter, computed for the two neighboring second-order differences.
Thus, the resulting method is a fifth-order accurate Weighted Power ENO method, we will call Weighted
Power-ENOS.
We can compare with the indicators obtained for the Jiang—-Shu WENOS5 method (see [5]):

2 2
ISOWENOS = %(U/*2 - 21)/’*‘ + vj) + é_lt(vj*Z - 41)]'*1 + 3Uf) ’

2 2
__ 13 1
IS1yen0s = B(071 = 205+ v541) " + 501 —0501)7,
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2 2
ISZWENOS = %(UJ - ZUJ'H + Uj+2) + zlt(3vj - 4vj+1 + vj+2) ’

and we remark that the central one is exactly the same.
The Taylor expansions of (56)—(58) in smooth regions are:

1S = B(u'1?)’ + 32u'h — u" W + ") + O(°),

ISl _ %(u//hZ)z +%(2u'h +%umh3)2 + O(h6),

IS2 — %(u//hZ)Z _"_%(2“% _ u//hz _|_%u///h3)2 + O(/’lﬁ),

and, therefore, we have the same advantages than the ones obtained for the Jiang-Shu WENOS method.

We compare the behavior of the smoothness measurement for our Weighted Power-ENOS and the Ji-
ang—Shu WENOS in smooth regions and near critical points (jump discontinuities, discontinuities in de-
rivative, etc.). First, we compute the weights wy, w; and w, for the following function (proposed by Jiang

and Shu [5]), at all right interfaces x;,1, x; = jh, h = %
u(x, 0) = sin 27x, 0<x<0.5,
11 =sin2mx, 05 <x<1.

We display the weights wy and w, in Fig. 2 for both methods. We observe that for the smooth region, both
measurements behave similarly, that is, they achieve the optimal weights for fifth-order accuracy. Both
methods degenerate to the corresponding digital ENO method (ENO3 or Power ENO3) at the points of
discontinuity. However, at the points next to the discontinuity, our method get optimal weights of accuracy
and the WENOS weights degenerates to third-order accuracy.

Secondly, we compute the weights wy, w; and w, for the function, u, defined on [—1, 1], with two dis-
continuities in the first derivative, at all right interfaces x,,1, with x; = —1 4 jh and h = ;:

u(x,0) = { Sin (T3°),  —0.6<x<0.6,
e ) otherwise.

5

We display the weights w; and w, in Fig. 3 for both methods. We observe that our method only degenerates
to the digital Power ENO3 at one point to resolve each critical point, while WENOS degenerates to third
order at two points next to each critical point.

Next, we focus our attention on testing the accuracy of our Weighted Power-ENOS5 method on the linear
advection initial value problem:

u; +u, =0, (59)
u(x,0) = 1(1 + sin(2mx)). (60)

We have implemented a third-order Runge—Kutta method [18] integration in time using a time step
At ~ (Ax)*? so that we reach fifth-order accuracy in time.

The use of nonsmooth limiters as, in our case, the powereno limiter, makes the numerical conver-
gence noisier. The nonsmooth behavior of powereno limiter follows easily from (32) written in terms of
the max and min functions. From the Taylor expansions discussed above it follows that when the
second-order differences does not change sign the powereno is enough smooth to reach optimal ac-
curacy, but at the smooth inflection points, the lack of regularity of the limiter makes our scheme less
accurate.
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Fig. 2. A comparison of smoothness measurements for a jump discontinuity: Weighted Power-ENOS (top) and WENOS (bottom).

We display in Tables 1 and 2 the L, and L., absolute errors and numerical orders, respectively, computed
for both methods. We observe for the Weighted Power ENO method that there is a loss of accuracy (still
present when refining the grid), as it can be seen at the table of absolute errors. This is due to numerical
degeneration occurring near inflection points.

In order to check numerically this claim we display in Table 3, the corresponding L; and L., errors
removing a small neighborhood of the inflection points for different grids. We obtain in this case similar
Liand L, errors to the corresponding values for the Jiang-Shu WENOS5 method.
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Fig. 3. A comparison of smoothness measurements for two discontinuities in derivative: Weighted Power-ENOS (top) and WENOS5

(bottom).

5. Numerical experiments

We start our calculations with the linear advection of signals. We will consider the following

problems:
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Table 1
Absolute errors for Weighted Power ENOS5 and WENOS methods
N L-error L. -error
Weighted Power-ENOS5 WENOS5 WPower-ENOS5 WENOS5
80 1.75 x 1073 7.17 x 1077 1.53 x 107 1.37 x 107¢
160 9.40 x 1077 224 x 1078 9.58 x 10°¢ 4.18 x 1078
320 3.09 x 1078 7.08 x 10710 6.27 x 1077 1.23 x 107°
640 1.40 x 107° 229 x 1071 6.86 x 1078 4.02 x 10711
1280 5.01 x 1071 7.03 x 10713 2.67 x 107° 1.06 x 10712
Table 2
Numerical orders for Weighted Power-ENOS5 and WENOS methods
N L-order L..-order
WPower-ENOS WENOS5 WPower-ENOS WENOS
160 - - - -
320 4.22 4.99 3.86 5.04
640 497 4.99 4.46 5.08
1280 4.80 5.01 4.68 5.04
Table 3
Absolute errors for Weighted Power ENO5 and WENOS, excluding inflection points
N Li-error L..-error
WPower-ENOS5 WENOS WPower-ENOS5 WENOS5
80 4.17 x 107¢ 8.76 x 1077 1.62 x 107> 1.35x 10°¢
160 9.85x 1078 2.72 x 1078 6.88 x 1077 4.18 x 1078
320 2.00 x 1071° 8.27 x 10710 9.84 x 10710 1.23 x 107°
640 6.89 x 10712 2.46 x 107! 4.81 x 10711 4.01 x 1071

5.1. Example 1: Linear advection

We solve the linear equation
ut+ux:07 a<x<b7

with u(x,0) = uy(x) periodic in [a, b], for the cases:

5.1.1. Example 1.1
[a,b] =[0,1] and

wiy = {1 035<x<065,
710, otherwise.

5.1.2. Example 1.2
[a,b] = [-1,1] and

_ fsin(n=5%3), —03<x<0.3,
to(x) = {(), otherwise.
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All the calculations were performed using the upwind method and the Shu-Osher third-order Runge-Kutta
integration in time (see [18]), with a grid of 100 points, A¢/# = 0.5, and total time of two periods.

In Fig. 4, we display the numerical approximation of Section 5.1.1 using the ENO3 and Power-ENO3
methods represented with ‘+” and ‘0’ signs, respectively. We observe an improved behavior near disconti-
nuities for our Power-ENO3 method. The same calculations were done for Section 5.1.2, and we observe in
Fig. 5 better resolution of corners for our Power-ENO3 method.

The above experiments show that the influence of the end points of the stencil is weaker for our
PowerENO3 method thanks to the effect of the limiter.

In Fig. 6, we display the numerical approximation of Section 5.1.1 using WENOS and WPower-ENO5
methods represented with ‘“+” and ‘o’ signs, respectively. We observe the better behavior of our WPower-
ENOS near discontinuities. The same calculation was done for the Section 5.1.2 using both fifth-order
accurate reconstruction procedures as displayed in Fig. 7. Here, the better behavior is justified since two
reasons, namely: the narrower band of degeneration of accuracy for our method (see Figs. 2 and 3), and the
better behavior near discontinuities inherited from the same feature observed for our PowerENO3 method.

Next, we perform numerical tests with Euler equations of gas dynamics. Let us consider first the one-
dimensional Euler equations of gas dynamics
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Fig. 4. ENO3 “+” and PowerENO3 “0”.
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u=(p,M,E)", f(u)=wvu+ (0,P,vP), (61)

where p, v, M = pv, E and P are the density, velocity, moment, energy and pressure, respectively,
and

pv*

2 k)
where ¢ is the specific internal energy and the system is closed with the equation of state (EOS), for ideal
gases, which is written as P = (y — 1)pe, being 7y the adiabatic exponent. We have used the value y = 1.4 in
all our numerical tests.

We compare, for the Euler equations, the behavior of the fifth-order accurate reconstruction procedures
under study WENOS5 and WPower-ENO5. We will use Marquina’s Flux Formula (MFF) by default [1]
and, in some cases, Roe-Fix scheme (RF) [18].

The calculations were done using fifth-order accurate spatial reconstruction procedures applied to each
characteristic flux obtained from physical fluxes by local linearizations computed at the interfaces fol-
lowing the so-called Shu-Osher “flux formulation™ [18]. Indeed, if g is the characteristic flux, we re-

E = pe+ (62)

X1
construct ¢ in cell [x; 1, x; 1] such that g(u(x;)) =1 x:f g(&)d¢ as explained in Section 2. Let us remark
that ‘ ’

gu(w), == (63)

in this case. We compute g by approximating the primitive function G(x) = j:f B g(&)d¢ using polynomial
approximation/interpolation, and then, taking the derivative. 2

We use the third-order accurate Shu—Osher Runge-Kutta method [18] to evolve in time.

We consider the following Riemann problems:

5.2. Example 2: One-dimensional Riemann problems

o (x) = (pr,vn, PL),  —5<x<0,
! (s Uro Pr), 0<x<S5.
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5.2.1. The Sod’s problem [19]
(,DL,UL7PL) = (17 1a 1)7

(og,vr, Pr) = (0.125,0,0.1).
5.2.2. Lax’s problem [6]

(pr,vL, PL) = (0.445,0.698,3.528),

(pr,vr, PR) = (0.5,0,0.571).

The computations for both cases were done using 200 equal spaced grid points with a constant ratio
At/h = 0.2 until time 2 for the Sod’s Tube and A¢/h = 0.1 until time 1.3 for the Lax’s Tube. The solid lines
represent the exact solution evaluated in 5000 points, see [16].

4.6

44

4.2

3.8

3.6

3.4
-0.

25

4.2

4.1

3.9
3.8+

3.7

3.6

3.55L . . 1 1 1 35 I i I i I
-26 -24 -22 -2 -1.8 -1.6 -1.4 0 0.2 0.4 0.6 0.8 1

Fig. 12. zoomed regions of density profile, WENOS5 “+”’, WPower-ENOS and “o0”.
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In Figs. 8 and 9, we display the numerical results of the density profile. The better behavior near dis-
continuities for our WPower-ENOS5 method is more conspicuous for the Lax’s Tube experiment (see
zoomed regions at the bottom of Fig. 9).

In order to appreciate the behavior of the fifth-order Weighted ENO reconstruction methods with re-
spect to the classical fifth-order ENO method, we have also computed both Riemann problems using Roe—
Fix scheme. Indeed, we have implemented WENOS5-RF, WPower-ENOS5-RF and the classical ENOS5-RF
schemes using the Shu—Osher flux formulation.

In Figs. 10 and 11, we observe that WPower-ENOS5-RF scheme resolves better the contact discontinuity
than ENOS-RF and WENOS-RF schemes.

In what follows, we only use Marquina’s Flux Formula as approximate Riemann solver.

5.3. Example 3: One-dimensional shock entropy wave interaction

Next, we consider a moving Mach 3 shock interacting with sine waves in density, used as a benchmark in
Shu-Osher ([18], see also [12]).

n=400

0 T I m n n 1 1 1 1 0 T I m n n ! 1 1 1

0 0.1 02 03 04 05 06 07 08 09 1 0 0.1 02 03 04 05 06 07 08 09 1

Fig. 13. WENOS left pictures with 400 and 800 points, WPower-ENOS right pictures with 400 and 800 points.
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We consider the initial data:

uo(x) = (pr,oL, PL),  —5<x < —4,
’ (prsUR, Pr), —4<x<5

(pL,vL, P) = (3.85714,2.62936, 10.33333) and (pg, vr, Pr) = (1 + 0.2sin(5x), 0, 1).

The numerical results of the density profile are displayed in Fig. 12. Solid line correspond to the nu-
merical solution by WENOS5 with 1600 points, that can be seen as the “exact” solution. We compute the
numerical approximation for 400 points at time = 1.8 and A¢/h = 0.1 for WENOS5 and WPower-ENOS5, “+’
and ‘o’ signs, respectively. We observe in Fig. 12 that fine structure in the density profile makes our
WPower-ENOS method to perform better than the WENOS one. This feature is a consequence of the fact
that the WPower-ENOS5 method is more compressive (it produces more total variation in cell) than
WENOS method. On the other hand, we observe again a reduced smearing near shocks (see zoomed re-
gions at the bottom of Fig. 12).
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Fig. 14. WENOS (left), WPower-ENOS5 (right).
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5.4. Example 4: Two interacting blast waves

This experiment was originally proposed as a benchmark by Woodward and Colella [20]

(pLsvn,PL),  0<x<0.1,
uo(x) = < (pm, om; Pu), 0.1 <x < 0.9,
(pr,0R, Pr), 09<x<1.

(pL, v, P) = (1,0,10%), (py, om, Pv) = (1,0,1072) and (pg, vr, Pr) = (1,0, 10%).

We display in Fig. 13 the density component computed with 400 and 800 grid points (top and bottom,
respectively). We evolved until time 0.038 with Az/# = 0.01 for WENOS (left) and WPower-ENOS (right).

We observe that the local extrema are better resolved for our WPower-ENOS method. We did com-
putations with different number of grid points and we observe good convergence rate to the “exact” so-
lution (computed by WENOS with 2000 points).

Finally, we will present two numerical experiments for the two-dimensional Euler equations for gas
dynamics.
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Fig. 17. Adiabatic constant P/p’, WENO5 (top) and WPower-ENOS5 (bottom).
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5.5. Example 5: Two-dimensional Riemann problem

A two-dimensional Riemman problem consists in an initial data defined as constants states on each of
the four quadrants. We consider the four contacts Riemann problem defined in [15] and we evolve this
initial data until time 1.6, with a CFL factor of 0.8 for a grid of 400 x 400 points for WENOS5 and WPower-
ENOS methods. We observe a better resolved vortex at the top for our WPower-ENOS method at Fig. 14.

Also, we displayed at Fig. 15 a x-section, that traverses the vortex, showing the better resolution of the
contact discontinuities of our WPower-ENOS method versus WENOS method (see the fine structure of the
vortex region at the bottom of the figure).

5.6. Example 6: Mach 3 wind tunnel with a step

This test problem, introduced by Emery [2], has been carefully analyzed in [1,20]. The problem is ini-
tialized by a uniform Mach 3 flow in a tunnel containing a step. The tunnel is 1 length unit wide and 3 length
units long. The step is 0.2 length units high and is located 0.6 units from the left-hand end of the tunnel.

Inflow boundary conditions are applied at the left-hand end and outflow boundary conditions are ap-
plied at the right-hand end of the computational domain. Reflective boundary conditions are applied along
the walls of the tunnel. We use at the corner of the step the boundary entropy and enthalpy corrections
discussed in detail in [1]. We use this example to test the robustness of our method in presence of reflective
boundary conditions.

We evolve the initial data until time 4 for a grid of 240 x 80 grid points with a CFL factor of 0.8 . We
display the contour lines of the density profiles in Fig. 16, and the adiabatic constant profiles in Fig. 17. We
observe good resolution and location of the strong reflective waves appearing in this test and we have
slightly better resolution at the contact line for our scheme.

In Fig. 18, we display sections of the density component. The left picture is the x-section at x = 0.8,
where we observe better resolution of the weak contact for our WPower-ENOS method.

6. Conclusions

We have introduced an extended class of limiters that includes the ENO limiters as particular case. These
limiters are used to design total variation stable polynomial reconstructions when applied to second-order
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differences. In this paper, we have proposed a new weighted ENO method, based on the extended limiters,
that reaches optimal accuracy on smooth regions and improves the behavior of WENO methods near
discontinuities. We presented several one- and two-dimensional numerical experiments for scalar and
systems of conservation laws to show the evidence of the above features.

We remark that in numerical experiments where fine structures appear to be important (e.g., vortex
regions), the Weighted Power ENO method shows substantial improvements in resolving fine scales, in
spite of the improvements observed in standard numerical tests might seem to be minor.
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