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High-order accurate weighted essentially nonoscillatory (WENO) schemes have
recently been developed for finite difference and finite volume methods both in struc-
tured and in unstructured meshes. A key idea in WENO scheme is a linear combi-
nation of lower order fluxes or reconstructions to obtain a higher order approxima-
tion. The combination coefficients, also called linear weights, are determined by
local geometry of the mesh and order of accuracy and may become negative, such
as in the central WENO schemes using staggered meshes, high-order finite volume
WENO schemes in two space dimensions, and finite difference WENO approxima-
tions for second derivatives. WENO procedures cannot be applied directly to obtain
a stable scheme if negative linear weights are present. The previous strategy for han-
dling this difficulty is either by regrouping of stencils or by reducing the order of
accuracy to get rid of the negative linear weights. In this paper we present a sim-
ple and effective technique for handling negative linear weights without a need to
get rid of them. Test cases are shown to illustrate the stability and accuracy of this
approach. (© 2002 Elsevier Science

Key Words: Weighted essentially nonoscillatory; negative weights; stability;
high-order accuracy; shock calculation.

1. INTRODUCTION

High-order accurate weighted essentially nonoscillatory (WENQ) schemes have rece
been developed to solve a hyperbolic conservation law

u+Vv- fu=0. (1.2)
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The first WENO scheme was constructed in [19] for a third-order finite volume versi
in one space dimension. In [10], third- and fifth-order finite difference WENO schem
in multispace dimensions were constructed, with a general framework for the desigr
the smoothness indicators and nonlinear weights. Later, second-, third-, and fourth-o
finite volume WENO schemes for 2D general triangulation were developed [4, 8]. Ve
high-order finite difference WENO schemes (for orders between 7 and 13) were develo
in [1]. Central WENO schemes were developed in [12-14].

WENO schemes are designed based on the successful ENO schemes in [7, 24, 25].
ENO and WENO use the idea of adaptive stencils in the reconstruction procedure bz
on the local smoothness of the numerical solution to automatically achieve high-or
accuracy and nonoscillatory property near discontinuities. ENO uses just one (optime
some sense) out of many candidate stencils when doing the reconstruction; while WE
uses a convex combination of all the candidate stencils, each being assigned a nonl
weight which depends on the local smoothness of the numerical solution based on
stencil. WENO improves upon ENO in robustness, better smoothness of fluxes, be
steady-state convergence, better provable convergence properties, and more efficienc
a detailed review of ENO and WENO schemes, we refer to the lecture notes [22, 23].

WENO schemes have already been widely used in applications. Some of the exam
include dynamical response of a stellar atmosphere to pressure perturbations [3]; sl
vortex interactions and other gas dynamics problems [5, 6]; incompressible flow proble
[27]; Hamilton—Jacobi equations [9]; magneto-hydrodynamics [11]; underwater blast-we
focusing [15]; the composite schemes and shallow water equations [16, 17]; real gas c
putations [20]; wave propagation using Fey’s method of transport [21]; and so forth.

A key idea in WENO schemes is a linear combination of lower order fluxes or recc
structions to obtain a higher order approximation. The combination coefficients, also ca
linear weights, are determined by local geometry of the mesh and order of accuracy
may become negative, such as in the central WENO schemes using staggered mesh
high-order finite volume WENO schemes in two space dimensions, and by finite differer
WENO approximations for second derivatives. WENO procedures cannot be applied
rectly to obtain a stable scheme if negative linear weights are present. The previous stre
for handling this difficulty is either by regrouping of stencils (e.g., in [8]) or by reducin
the order of accuracy (e.g., in [12]) to get rid of the negative linear weights. In this pap
we present a simple and effective technique for handling negative linear weights withot
need to get rid of them. Test cases will be shown to illustrate the stability and accurac)
this approach.

We first summarize the general WENO reconstruction procedure, consisting of the
lowing steps. We assume we have a given eelfwhich could be an interval in 1D, a
rectangle in a 2D tensor product mesh, or a triangle in a 2D unstructured mesh) and a f
pointx® within or on one edge of the cell.

1. We identify several stenci§;, j =1, ..., g, such thai belongs to each stencil. We
denote byl = U?:l S; the larger stencil which contains all the cells from themaller
stencils.

2. We have a (relatively) lower order reconstruction or interpolation function (usually
polynomial), denoted by; (x), associated with each of the stendls for j = 1,...,q.
We also have a (relatively) higher order reconstruction or interpolation function (ag:
usually a polynomial), denoted 9 (x), associated with the larger stengil
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3. We find the combination coefficients, also called linear weights, denotad by, vy,
such that

q
Q%) =Y ¥ip(x® (1.2)

i=1

for all possible given datain the stencils. These linear weights depend on the mesh geormr
the pointx®, and the specific reconstruction or interpolation requirements)dtan the
given solution data in the stencils.

4. We compute the smoothness indicator, denote@;hyfor each stencilSj, which
measures how smooth the functipp(x) is in the target celh. The smaller this smoothness
indicatorgj, the smoother the functiom; (x) is in the target cell. In all of the current WENO
schemes, we are using the smoothness indicator

Bi= > [ IAP“H(D*p;x))*dx (1.3)

1<la|zk /2

for j =1,...,q, wherek is the degree of the polynomigl; (x), |A] is the length of the
cell A'in 1D, andD* = 952052 - - - 3¢ and|a| = a1 + a2 + - - - + ag for the multi-index
o = (a1, @z, . .., ag) in d space dimensions. The factadx|?*/~1 is different for 2D or 3D:
If |A| denotes the area of the cellin 2D and the volume of the celt in 3D, then the
factors ardA|”I=1in 2D and|A|3*-1in 3D, respectively. The purpose of this factor is to
bring the smoothness indicator invariant under spatial scaling.

5. We compute the nonlinear weights based on the smoothness indicators

@ . Vi

Sia0 DT e+ pp?

wj = (1.4)

wherey; are the linear weights determined in step 3 abovecdasd small number to avoid
the denominator to become 0. We are using 108 in all the computations in this paper.
The final WENO approximation or reconstruction is then given by

q
RX®) =) wjp;(x°). (1.5)

=1

We remark that all the coefficients in the above steps which depend on the mesh
not on the data of the numerical solution, suchyam (1.2), the linear coefficients in the
reconstructiong; (X) in step 2, and the quadratic coefficients in the smoothness indicatc
Bj in (1.3), should be computed and stored at the beginning of the code after the genere
of the mesh but before the time evolution starts.

We now use a simple example to illustrate the steps outlined above. We assume we
given a uniform mesh; = (X_1/2, Xi+1/2) and cell averages of a functiar(x) in these
cells, denoted by;. We would like to find a fifth-order WENO reconstruction to the point
valueu(x;+1/2), based on a stencil of five cell§_o, 1i_1, Ii, li+1li+2}, with the target cell
containing the poink; ;1,»> chosen ag\ = |;.
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In step 1 above, we could have the three stencils
S1={li—2, li—. li},  Se={li—a, i, lisal,  Ss={li, lita, lis2},
which make up a larger stencil
T ={li—2, li—1, li, liyg, lig2). (1.6)

In step 2 above we would have three polynomiajéx) of degree of at most two, with
their cell averages agreeing with that of the functiom the three cells in each stencil
S;. The higher order functio®@(x) is a polynomial of degree of at most four, with its cell
averages agreeing with that of the functioim the five cells in the larger stendl. The
three lower order approximationsgx; ;1,2), associated witlp; (x), in terms of the given
cell averages ofl, are given by

(Xis1/2) = li.-1g + g
P1(Xi+1/2) = gti-2— gUi-1+ g,
1_ 5_ 1_
pz(Xi+1/2) = _éui—l + éui + éui+1, (1.7)
(Xi12) = S+ 20 — o6
Ps(Xi+1/2) = Ui T gUi+1 — gUi+2.

The coefficients in front of tha could be derived by Lagrange polynomials or by solving
a small 3x 3 linear system, from the condition that the quadratic polynomij&k) has
the same cell averages as the givem the relevant stencil. See [22] for details. Each
of the pj(Xi+1,2) in (1.7) is a third-order approximation imXx;1/2). The higher order
approximation tai(x;;1/2), associated witlQ(x), is given by

1_ 13_ 47_ 9 _ 1_
QXit1/2) = 30t-2~ goli-1 T gt 5+t — 5pli+2: (1.8)
which is a fifth-order approximation t@(x; 1,2).

In step 3 above, we would have

1 3 3

—, = -, = —. 1.9
10 Y2 5 V3 (1.9)

= 10

It can be readily verified, using (1.7) and (1.8), that
Q(Xi+1/2) = y1Pr(Xi+1/2) + v2P2(Xi+1/2) + v3P3(Xi+1/2)
for all possible given data;, j =i —2,i —1,i,i +1,i +2.

In step 4 above, we could easily work out from (1.3) the three smoothness indicat
given by

13 _ _ _ 1 _ _ _
B1= E(Ui—z — 201+ W)% + Z(Ui—z — 40;_1 + 30)?
13 _ _ 1 _ _
Bo = = (Ui_y — 20 + Ui11)? + = (Ui—1 — Ui11)? (1.10)
12 4
13

_ _ _ 1 _ _
Bz = E(Ui — 2041 + Ui2)? + Z(3Ui — AU 41 + Uig2)2
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FIG.1.1.

Reconstructions ta(x;+1,2). Solid lines: exact function; symbols: numerical approximations. Left:
fifth-order WENO. Right: fifth-order traditional.

We notice in particular that the linear weights y», y3 in step 3 above are all positive. In
such cases, the WENO reconstruction procedure outlined above and the scheme base
work very well. In Fig. 1.1, we plot the approximationu¢x) for a discontinuous function
u(x) = 2x for x < 0 andu(x) = —20 otherwise, by the fifth-order WENO reconstruction
on the left and by the fifth-order traditional reconstruction (1.8) on the right, with a me:
Xi = (i —0.4965 Ax with Ax = 0.02. We can clearly see that WENO avoids the overshoot
and undershoots near the discontinuity.

We now look at another simple example in which some of the linear weights in steg
above would become negative. We have exactly the same setting as above except tha
we seek the reconstruction not at the cell boundary but at the cell cenféhis is needed

by the central schemes with staggered grids [12]. Thus, step 1 would stay the same as al
step 2 would produce

pi(X) = —iﬁi—z + ilTi—l + EgLTi,
24 12 24
1_ 13_ 1_
P2(Xi) = —ogti-1 St~ Ui, (1.11)
23_ 1_ 1_
p3(X) = ﬂui + 1—2Ui+1 - ﬂuwz-

Each of these steps is a third-order reconstructiar(xg). The higher order reconstruction
to u(x;), associated witlQ(x), is given by

3 _ 29 _ 1067_ 29 _ 3 _
QX)) = M)Uifz - @Uifl + %Ui - @le + muwz, (1.12)

which is a fifth-order reconstruction tax; ). Step 3 would produce the following weights:

9 49 9

yl:_8707 72:%7 y3:_870
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FIG. 1.2. Reconstructions tai(x;). Solid lines: exact function; symbols: numerical approximations. Left:
fifth-order WENO. Right: fifth-order traditional.

Notice that two of them are negative. The smoothness indicators in step 4 will remain
same. This time, the WENO approximation, shown at the left of Fig. 1.2, is less satisfact
(in fact, even worse than a traditional fifth-order reconstruction shown on the right), beca
of the negative linear weights.

We remark that negative linear weights do not appear in finite difference WENO scher
in any spatial dimensions for conservation laws for any order of accuracy [1, 10], and t
do not appear in one-dimensional as well as some multidimensional finite volume WEI
schemes for conservation laws. Unfortunately, they do appear in some other cases, su
the central WENO schemes using staggered meshes we have seen above, high-order
volume schemes for two dimensions described in [8] and in this paper, and finite differe
WENO approximations for second derivatives.

Although the details of WENO schemes applied to the conservation law (1.1) can
found in the literature, e.g., [10, 22, 23], we still include a brief summary of all the steps
a WENO finite volume scheme applied to (1.1) in the one-dimensional scalar case for
positive wind casef’(u) > 0, for completeness. The algorithm consists of the followinc
steps:

1. Given the cell averagas for all cells I; for time leveln (starting from time level 0
which is the initial condition);

2. Reconstruct the point valuas+1/2 for all cell boundaries; 1/, using the reconstruc-
tion procedure detailed above. That is, we use (1.5) wjtbefined by (1.4), using; given
by (1.9) andg; given by (1.10). The superscript-" in u;,,, refers to the fact that the
reconstruction has a stencil (1.6) biased to the left relative to the locstigp. This is
upwinding according to the wind directioff(u) > 0.

3. Form the residue for time levalin the method-of-lines ODE

du; 1
d_tl = Ax (f(uiy2) = F(us2))

and move to time levet + 1 by a high-order TVD Runge—Kutta method [24].
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FIG.1.3. 2D Burgers’ equation. Left: nonuniform triangular mesh used in the computation. Right: fourth-ord
WENO result at = 0.473, CFL= 0.2, without any special treatment for the negative linear weights.

If f’(u) could change sign, then bady, ; , andu;’,; ,, which has a stencil biased to the
right, must be computed in the second step, and a monotone flux (an approximate Rien
solver in the system casef)(ui;l/z, U 1/2) would replacef (u; 4 ,) in the third step. For
details, see, e.g., [10, 22, 23].

For all the calculations reported in this paper, we have taken a CFL number equa
0.6 for the rectangular codes and 0.5 for the triangular codes, unless otherwise indice
Usually, WENO schemes with third-order TVD Runge—Kutta methods [24] are stable f
CFL numbers below 0.8 for the structured mesh, and below 0.6 for the triangular mesh

While on approximation alone the appearance of negative linear weights might
annoying but perhaps not fatal (Fig. 1.2); in solving a PDE, the result might be mc
serious. As an example, in Fig. 1.3 we show the results of using a fourth-order finite v
ume WENO scheme [8] on a nonuniform triangular mesh shown at the left, which has b
chosen to yield significant negative linear weights, for solving the two-dimensional Burge

equation,
2 2
ut+<“> +<“) _o, (113)
2/, 2),

in the domain {2, 2] x [—2, 2] with an initial conditionug(x, y) = 0.3+ 0.7 sin(5 (X +
y)) and periodic boundary conditions. We can see that serious oscillation appears atthey
(—1.08, —0.67) near the shock in the numerical solution once the shock has developed."
oscillation eventually leads to instability and blowing up of the numerical solution for th
example. In fact, in all the test cases involving negative linear weights and discontinu
solutions presented in this paper, WENO schemes without special treatment to the neg
weights are unstable (the numerical solution blows up and the code stops). The figure
such unstable cases are similar to Fig. 1.3 and hence are not shown.

The main purpose of this paper is to develop a simple and effective technique for hand
negative linear weights without a need to getrid of them. Test cases will be shown toillustr
the stability and accuracy of this approach.
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2. ASPLITTING TECHNIQUE

We now introduce a splitting technique to treat the negative weights. It is very simp
involves little additional cost, yet is quite effective. The WENO procedure outlined in tt
previous section is only modified in step 5 in the following way:

5 1fmin(y, ..., ¥g) = 0 proceed as before. Otherwise, we split the linear weights in
two parts: positive and negative. Define

. 1 o . ,
J/|+=E(VI+0|VI|), V. =‘yi+_ (K} |=la'°"q (21)

where we tak® = 3 in all the numerical tests. We then scale them by
q
ot =Y "7 W=t i=1....q (2.2)
We now have two split polynomials

q
Q*(x®) =D ¥ (x°). (2.3)

=1

which satisfy
Q(x®) =¥ Q" (x®) —o~ Q" (x®). (2.4)

We can then define the nonlinear weights (1.4) for the positive and negative grﬁups
separately, denoted lay", based on the same smoothness indicétowe will then define
the WENO approximatioR* (x®) separately by (1.5), using, and form the final WENO
approximation by

R(x®) = 6 "Rt (x®) — 6 "R~ (x°).

We remark that the key idea of this decomposition is to make sure that every stencil h
significant representation in both the positive and the negative weight groups. Within e
group, the WENO idea of redistributing the weights subject to a fixed sum according
the smoothness of the approximation is still followed as before. While in the unsplit ca
the nonlinear weights may become extremely large or small in magnitudes because o
lack of convexity, the split positive and negative nonlinear weights stay bounded as tl
separately sum to fixed constants of the linear weights. Moreover, it is expected that
distribution of the magnitudes of nonlinear weights in each of the positive and negat
group follows the smoothness of the solution, as every stencil has its “fair share” in e:
of the positive and negative linear weight groups. We have performed extensive humel
experiments about many plausible approaches of splitting, and those used here have
found to be the most robust.

For the simple example of fifth-order WENO reconstructioruts; ), the split linear
weights corresponding to (2.1) are, before the scaling,

9 9

o 49 49
80 't T a0’

~+ ~__7
2 = a0

Vi =
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FIG.2.1. WENO approximations with the splitting treatment for negative linear weights. Left: approximatio
to u(x). Right: Burgers equation, solutiontat= 5/72, CFL = 0.2.

We notice that, as the most expensive part of the WENO procedure, namely the c
putation of the smoothness indicators (1.3), has not changed, the extra cost of this
tive/negative weight splitting is very small.

However, this simple and inexpensive change makes a big difference to the computati
In Fig. 2.1, we show the result of the two previous unsatisfactory cases—the fifth-or
WENO reconstructionta(x;) in Fig. 1.2 left, and the approximation to the Burgers equatiotr
in Fig. 1.3 right—now using WENO schemes with this splitting treatment. We can see clea
that the results are now as good as one would get from WENO schemes having only pos
linear weights.

Itis easy to prove that the splitting maintains the accuracy of the approximation in smo
regions. We will demonstrate this fact in the following sections. We will also demonstrate t
effectiveness of this simple splitting technique through a few selected numerical examj
in the next sections. The main WENO schemes we will consider are fifth-order finite volur
WENO schemes on Cartesian meshes, and the third- and fourth-order finite volume WE
schemes on triangular meshes. In both cases, negative linear weights appear regularly

The calculations are performed on SUN Ultra workstations and also on the IBM ¢
parallel computer at TCASCV of Brown University. The parallel efficiency of the metho
is excellent (more than 90%).

3. 2D FINITE VOLUME WENO SCHEMES ON CARTESIAN MESHES

3.1. The Schemes

We describe two different ways to construct fifth-order finite volume WENO schem
on Cartesian meshes. Compared with finite difference WENO methods [10], finite volul
methods have the advantage of an applicability of using arbitrary nonuniform meshes
the price of increased computational cost [2].

We define the cell

= Dog %] x [Yiog Vi) (3.1)

fori=1,....,m, j =1, ...,n, wherel; ; needs not be uniform or smooth varying.
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The three-point Gaussian quadrature rule is used at each cell edge when evaluatin
numerical flux in order to maintain fifth-order accuracy. l(e¥, y©) denote one of the
Gaussian quadrature points at the cell boundary pfgiven byI" = {x = X1, Y1 <
Y = VYjg1 }. There are two ways to perform a WENO reconstruction at the pjmﬁ'uyé).

Genuine 2D

The first WENO reconstruction is genuine 2D finite volume using®cells. We can see
that there are a total of nine stencfis; (s,t = —1, 0, 1). Each stencilSs; contains 3x 3
cells centered arounid,s j++. On each stencil we can construcQg polynomial (tensor
product of second-order polynomialsxrandy) satisfying the cell average condition (i.e.,
its cell average in each cell inside the stencil equals to the given value). Let

1

which contains 5< 5 cells centered aroung ;. On7 we can construct &* polynomial
satisfying the cell average condition. The WENO reconstruction is then performed accorc
to the steps outlined in Sections 1 and 2.

We now make the following remarks:

1. By using a Lagrange interpolation basis, we can easily find the unique linear weig|

2. Even for a uniform mesh, a negative linear weight appears for the middle Gauss
point (x€, y®) = i_1. Yp)- Such an appearance of negative linear weights has also be
observed in the central WENO schemes [12]; see the examples in Sections 1 and 2.

3. By Taylor expansions, we can prove that the smoothness indicators yield a unifc
fifth-order accuracy in smooth regions. See [10] for the method of proof.

Dimension by Dimension

The second WENO reconstruction exploits the tensor product nature of the interpola
we use. This WENO procedure is performed in a dimension by dimension fashion. 1
WENO schemes applied in [5, 6] belong to this class. Consider the pdiny©) as above.
First, we perform a one-dimensional WENO reconstruction inytkdirection, in order
to get the one-dimensional cell averages (inxhdirection) w(e, y©). Then we perform
another one-dimensional WENO reconstructiomtm the x-direction, to obtain the final
reconstructed point value &t®, y©).

We make the following remarks:

1. For a scalar equation, the underlying linear reconstructions of the above two versi
are equivalent. For nonlinear WENO reconstructions, they are not equivalent. Both of th
are fifth-order accurate but the actual errors on the same mesh may be different; see Tab
below.

2. For systems of conservation laws, such as the Euler equations of gas dynamics,
versions of the WENO reconstruction should be performed in local characteristic fields,
genuinely high-order (order 5 in this paper) versions. For lower order schemes, espec
with a centered formulation [12] but also with some upwind versions [18], the reconstructi
can be performed directly on each component.
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TABLE 3.1
2D Vortex Evolution

Genuine FV Dim-by-dim
N AX L> error Order L error Order
20 6.71E-1 4.38E-2 5.26E-2
40 3.77E-1 3.10E-3 4.59 5.66E-3 3.86
80 2.01E-1 1.20E-4 5.15 3.96E-4 4.22
160 1.00E-1 4.39E-6 4.76 7.96E-6 5.62
320 5.00E-2 1.88E-7 4.53 2.90E-7 4.77

3. The dimension by dimension version of the WENO reconstruction is less expens
and requires smaller memory than the genuine two-dimensional version. The CPU ti
saving is about a factor of 4 for the Euler equations in our implementation. The compu
results are mostly similar from both versions.

In the following, we will give numerical examples computed by the above WENC(
schemes. The splitting technique has been used in all the computations when negative |
weights appear. We will show the results for both smooth and discontinuous problems.

3.2. 2D Vortex Evolution

First, we check the accuracy of the WENO schemes constructed above. The t
dimensional vortex evolution problem [8, 22] is used as a test problem.
We solve the Euler equations for compressible flow in 2D

U+ fU)x+9U)y =0, (3.2)

where

U = (p, pu, pv, E)7,
f(U) = (pu, pu® + p, puv, U(E + )T,
g(U) = (pv, puv, pv° + p, v(E + p))'.

Herep is the density(u, v) is the velocity,E is the total energyp is the pressure, related
to the total energy b = 25 + To(U? +v?) with y = 1.4.

The setup of the problem is as follows: The mean flowis 1, p =1, (u,v) = (1, 1),
and the computational domain is [00] x [0, 10]. We add, to the mean flow, an isentropic
vortex (perturbations ifu, v) and the temperaturé = 5, no perturbation in the entropy

=2,

oY

_ (y — 1)€zel—r2

§S=0,
8ym?

(du, 8v) = %ewl—f“(—y, X, 6T =

where(X, ¥) = (x — 5,y — 5), 12 = X2 + y?, and the vortex strength= 5.
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We use nonuniform meshes which are obtained by an independent random shifting of
point from a uniform mesh in each direction within 30% of the mesh sizes. The soluti
is computed up td = 2. Table 3.1 shows the> errors ofp. We can see that both the
genuine two-dimensional finite volume WENO scheme and the dimension by dimens
finite volume WENO scheme can achieve the desired order of accuracy while the geni
two-dimensional scheme gives smaller errors for the same mesh.

3.3. Obligue Shock Tubes

The purpose of this test is to see the capability of the rectangular WENO scheme
resolving waves that are oblique to the computational meshes. For details of the probl
we refer to [10]. The 2D Sod’s shock tube problem is solved where the initial jump mak
an angled against thex axis. We take our computational domain to bedPx [0, 1] and
the initial jump starting atx, y) = (2.25, 0) and making @ = 7 angle with thex axis.
The solution is computed up to= 1.2 on a 96x 16 uniform mesh. In Fig. 3.1 we plot
the density contours computed by the above two WENO schemes and the density ci
the bottom of the computational domain. We can see that both schemes perform eqt
well in resolving the waves. The genuine two-dimensional scheme gives a slightly be
resolution in the contact discontinuity and the rarefaction wave.

3.4. A Mach 3 Wind Tunnel with a Step

This model problem is originally from [26]. The setup of the problem is as follows: Th
wind tunnel is 1 length unit wide and 3 length units long. The step is 0.2 length units hi
and is located 0.6 length units from the left-hand end of the tunnel. The problemi is initializ
by a right-going Mach 3 flow. Reflective boundary conditions are applied along the w
of the tunnel, and inflow/outflow boundary conditions are applied at the entrance/exit. T
corner of the step is a singular point, and we treat it the same way as in [26], whict
based on the assumption of a nearly steady flow in the region near the corner. We s
the density contours at time= 4 in Fig. 3.2. Only the results from the dimension by
dimension WENO scheme are shown. Uniform meshesot= Ay = & & -1 1 are
used.

3.5. Double Mach Reflection

This problem is also originally from [26]. The computational domain for this probler
is chosen to be [4] x [0, 1]. The reflecting wall lies at the bottom, starting from= %
Initially a right-moving Mach 10 shock is positionedat= %, y = 0 and makes a 6@ngle
with the x axis. For the bottom boundary, the exact postshock condition is imposed for
partfromx = Otox = % and a reflective boundary condition is used for the rest. At the to
boundary, the flow values are set to describe the exact motion of a Mach 10 shock.
compute the solution up to= 0.2. Figures 3.3 and 3.4 show the equally spaced 30 densi
contours from 1.5 to 22.7 computed by the genuine two-dimensional and the dimensior
dimension WENO schemes. We use uniform meshes with= Ay = Z—}m, 4—;0. We can
see that the results from both schemes are comparable.
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FIG.3.1. Oblique Sod’s problem. Densigy. Top: contour, genuine two-dimensional WENO; middle: contour,
dimension by dimension WENO; bottom: cut at the bottom of the computational domain, the solid line is the ex
solution, the triangles are the genuine two-dimensional WENO results, and the circles are the dimensiol
dimension WENO results.
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1 F

FIG.3.2. Forward step problemyx = Ay = &, & = = from top to bottom. Thirty contours from 0.12
to 6.41, dimension by dimension WENO.

4. 2D FINITE VOLUME WENO SCHEMES ON TRIANGULAR MESHES

Both third- and fourth-order finite volume WENO schemes on triangular meshes h:
been constructed in [8]. The optional linear weights in such schemes are not unique. Tl
are then chosen to avoid negative weights whenever possible, and if that fails, a grou
(of stencils) technique is used in [8], which works fairly well in the third-order case wit
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FIG. 3.3. Double Mach reflectionAx = Ay = Tio (top and lower left) andé—0 (middle and lower right).
Genuine two-dimensional WENO. Blow-up regions at the bottom for details.

quite general triangulation but can yield positive weights for the fourth-order case only w
fairly uniform triangulation. In this section, we do not seek positive linear weights as in [€
but rather use the splitting technique to treat the negative linear weights when they apy
For scalar equations, the scheme is stable in all runs. For systems of conservation |
there are still occasional cases of overshoot and instability; the reason seems to be re
to characteristic decompositions and is still being investigated.

4.1. Accuracy Check for a Smooth Problem

We solve the 2D Burgers equation (1.13) with the same initial and boundary conditions
before using the fourth-order finite volume WENO scheme [8]. The solution is comput
up tot = %? when no shock has appeared. The meshes used are (1) uniform me:s
with equilateral triangulation and (2) random triangulation. For the uniform meshes
do not seek positive weights as was done in [8], rather we use the splitting techni
to treat the negative linear weights when they appear. Table 4.1 indicates that clos
fourth-order accuracy can be achieved. For the nonuniform mesh, the measurem@nt of
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FIG. 3.4. Double Mach reflectionAx = Ay = 2%10 (top and lower left) andj% (middle and lower right).
Dimension by dimension WENO. Blow-up regions at the bottom for details.

errors looks suboptimal, which might be the result of difficulty in defining the order kL
refinement (the fine mesh is less logically related to the coarse mesh than in the unif
case), and afailure for a cancellation of errors through flux differences as in the uniformm

case.

TABLE 4.1
2D Burgers Equation: Accuracy Check

Uniform mesh

Nonuniform mesh

AX L*> error Order AX L*> error Order
2.57E-1 6.22E-4 2.67E-1 2.11E-3
1.29E-1 4.61E-5 3.75 1.26E-1 2.35E-4 2.92
6.43E-2 2.18E-6 4.40 6.32E-2 2.90E-5 3.03
3.21E-2 1.38E-7 3.98 3.34E-2 2.61E-6 3.78
1.61E-2 6.93E-9 4.32 1.66E-2 2.71E-7 3.24
8.08E-3 6.70E-10 3.40 7.44E-3 1.57E-8 3.55
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FIG. 4.1. 2D Buckley—Leverett equation: the mesh.

4.2. Discontinuous Problem 1: Scalar Equation in 2D

Having shown the stable results with the splitting treatment of negative linear weigl
for a fourth-order finite volume WENO scheme for the Burgers equation in Section 2, \
now test the fourth-order WENO scheme on the Buckley—Leverett problem whose flu
nonconvex,

u2
u2 4 0.25(1 — u)?’

f(u) = g(u) =0,

with the initial datau = 1when—% < X < 0andu = Oelsewhere. The solutionis computed
up tot = 0.4. The exact solution is a shock—rarefaction—contact discontinuity mixture. T
mesh we use here is a nonuniform triangulation, shown in Fig. 4.1. Figure 4.2 shows 1
the waves have been resolved very well.

4.3. Discontinuous Problem 2: System of Equations in 2D

We consider the 2D Euler equations in the domaif,[1] x [0, 0.2]. The Sod and Lax
shock tube initial data is set in thedirection, and periodic boundary condition is applied
in the y-direction. We use the fourth-order finite volume scheme on triangular meshes
solve the above problem. The mesh we use here is uniform. But we do not seek pos
weights as was done in [8], rather we use the splitting technique in Section 2 to treat

08

06|

04

02}

o

-1 -0.5

0
X

FIG. 4.2. 2D Buckley—Leverett equation at= 0.4, with splitting. Left: the solution surface; Right: the cut
aty = 0.1 (solid line. exact solution, symbols: numerical solution).



TREATING NEGATIVE WEIGHTS IN WENO SCHEMES 125

08

06

04
08

o
Q

02+

n . s N
- 05 0 05 1 - ] 05 1
X X

FIG. 4.3. Density plot, Left: Sod problem, Right: Lax problem, with splitting. Roughly 100 points in the
x-direction.

negative linear weights when they appear. In fact, we set deliberately certain linear wei
to be negative to test the splitting technique. Figure 4.3 shows the numerical results of
Sod and Lax problems.

It seems that there are still oscillations and instability for some nonuniform triangul
meshes for the fourth-order WENO schemes applied to Euler equations. For example
double Mach reflection problem with a highly nonuniform mesh would become unstal
at some cells near the shock front. As the method works well for the same meshes
a scalar equation, the problem might be from the characteristic decompositions. Wher
print out the nonlinear positive and negative weights in the cells immediately before 1
solution becomes unstable, we found out that, although they stay nicely bounded, they
somewhat “misaligned” so the effect of their difference may put a monotone profile intc
nonmonotone one. This could be explained by a hypothetical example of a transition fro
to 0. Suppose we rewrite this as a difference of a positive group which is a transition fror
to 0, and a negative group which is from 1 to 0. Suppose also that there is only one transi
point in each group. Suppose the positive group has the transition 2, 0.1, 0, and the n
tive group has the transition 1, 0.9, 0, then each of them is a nice monotone transition
their transition point is misaligned, hence their difference is a transitier0B, 0, which
has a huge undershoot. In most cases, such misalignments are rare in WENO schem
cause both the positive and the negative nonlinear weights are obtained with the s
smoothness indicator. However, it seems that for some of the triangular mesh sys
cases such misalignment does occur. We are still investigating possible remedies for
problem.

5. CONCLUDING REMARKS

We have devised and tested a simple splitting technique to treat the negative lir
weights in WENO schemes. This technique involves very little additional CPU time a
gives good results in most numerical tests. The only case in which it still yields oscil
tions and instability is when a fourth-order finite volume WENO method is used on sot
nonuniform triangular meshes for Euler equations, the reason of which, presumably rel:
to characteristic decompositions, is still under investigation.
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