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High-order accurate weighted essentially nonoscillatory (WENO) schemes have
recently been developed for finite difference and finite volume methods both in struc-
tured and in unstructured meshes. A key idea in WENO scheme is a linear combi-
nation of lower order fluxes or reconstructions to obtain a higher order approxima-
tion. The combination coefficients, also called linear weights, are determined by
local geometry of the mesh and order of accuracy and may become negative, such
as in the central WENO schemes using staggered meshes, high-order finite volume
WENO schemes in two space dimensions, and finite difference WENO approxima-
tions for second derivatives. WENO procedures cannot be applied directly to obtain
a stable scheme if negative linear weights are present. The previous strategy for han-
dling this difficulty is either by regrouping of stencils or by reducing the order of
accuracy to get rid of the negative linear weights. In this paper we present a sim-
ple and effective technique for handling negative linear weights without a need to
get rid of them. Test cases are shown to illustrate the stability and accuracy of this
approach. c© 2002 Elsevier Science
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1. INTRODUCTION

High-order accurate weighted essentially nonoscillatory (WENO) schemes have recently
been developed to solve a hyperbolic conservation law

ut +∇ · f (u)= 0. (1.1)
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The first WENO scheme was constructed in [19] for a third-order finite volume version
in one space dimension. In [10], third- and fifth-order finite difference WENO schemes
in multispace dimensions were constructed, with a general framework for the design of
the smoothness indicators and nonlinear weights. Later, second-, third-, and fourth-order
finite volume WENO schemes for 2D general triangulation were developed [4, 8]. Very
high-order finite difference WENO schemes (for orders between 7 and 13) were developed
in [1]. Central WENO schemes were developed in [12–14].

WENO schemes are designed based on the successful ENO schemes in [7, 24, 25]. Both
ENO and WENO use the idea of adaptive stencils in the reconstruction procedure based
on the local smoothness of the numerical solution to automatically achieve high-order
accuracy and nonoscillatory property near discontinuities. ENO uses just one (optimal in
some sense) out of many candidate stencils when doing the reconstruction; while WENO
uses a convex combination of all the candidate stencils, each being assigned a nonlinear
weight which depends on the local smoothness of the numerical solution based on that
stencil. WENO improves upon ENO in robustness, better smoothness of fluxes, better
steady-state convergence, better provable convergence properties, and more efficiency. For
a detailed review of ENO and WENO schemes, we refer to the lecture notes [22, 23].

WENO schemes have already been widely used in applications. Some of the examples
include dynamical response of a stellar atmosphere to pressure perturbations [3]; shock
vortex interactions and other gas dynamics problems [5, 6]; incompressible flow problems
[27]; Hamilton–Jacobi equations [9]; magneto-hydrodynamics [11]; underwater blast-wave
focusing [15]; the composite schemes and shallow water equations [16, 17]; real gas com-
putations [20]; wave propagation using Fey’s method of transport [21]; and so forth.

A key idea in WENO schemes is a linear combination of lower order fluxes or recon-
structions to obtain a higher order approximation. The combination coefficients, also called
linear weights, are determined by local geometry of the mesh and order of accuracy and
may become negative, such as in the central WENO schemes using staggered meshes, by
high-order finite volume WENO schemes in two space dimensions, and by finite difference
WENO approximations for second derivatives. WENO procedures cannot be applied di-
rectly to obtain a stable scheme if negative linear weights are present. The previous strategy
for handling this difficulty is either by regrouping of stencils (e.g., in [8]) or by reducing
the order of accuracy (e.g., in [12]) to get rid of the negative linear weights. In this paper,
we present a simple and effective technique for handling negative linear weights without a
need to get rid of them. Test cases will be shown to illustrate the stability and accuracy of
this approach.

We first summarize the general WENO reconstruction procedure, consisting of the fol-
lowing steps. We assume we have a given cell4 (which could be an interval in 1D, a
rectangle in a 2D tensor product mesh, or a triangle in a 2D unstructured mesh) and a fixed
point xG within or on one edge of the cell.

1. We identify several stencilsS j , j = 1, . . . ,q, such that4 belongs to each stencil. We
denote byT = ⋃q

j=1S j the larger stencil which contains all the cells from theq smaller
stencils.

2. We have a (relatively) lower order reconstruction or interpolation function (usually a
polynomial), denoted bypj (x), associated with each of the stencilsS j , for j = 1, . . . ,q.
We also have a (relatively) higher order reconstruction or interpolation function (again
usually a polynomial), denoted byQ(x), associated with the larger stencilT .
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3. We find the combination coefficients, also called linear weights, denoted byγ1, . . . , γq,
such that

Q(xG) =
q∑

j=1

γ j pj (x
G) (1.2)

for all possible given data in the stencils. These linear weights depend on the mesh geometry,
the pointxG, and the specific reconstruction or interpolation requirements, butnot on the
given solution data in the stencils.

4. We compute the smoothness indicator, denoted byβ j , for each stencilS j , which
measures how smooth the functionpj (x) is in the target cell4. The smaller this smoothness
indicatorβ j , the smoother the functionpj (x) is in the target cell. In all of the current WENO
schemes, we are using the smoothness indicator

β j =
∑

1≤|α|≤k

∫
4
|4|2|α|−1(Dα pj (x))

2 dx (1.3)

for j = 1, . . . ,q, wherek is the degree of the polynomialpj (x), |4| is the length of the
cell 4 in 1D, andDα = ∂α1

x1
∂α2

x2
· · · ∂αd

xd
and |α| = α1+ α2+ · · · + αd for the multi-index

α = (α1, α2, . . . , αd) in d space dimensions. The factor|4|2|α|−1 is different for 2D or 3D:
If |4| denotes the area of the cell4 in 2D and the volume of the cell4 in 3D, then the
factors are|4||α|−1 in 2D and|4| 23 |α|−1 in 3D, respectively. The purpose of this factor is to
bring the smoothness indicator invariant under spatial scaling.

5. We compute the nonlinear weights based on the smoothness indicators

ω j = ω̃ j∑
j ω̃ j

, ω̃ j = γ j

(ε + β j )2
, (1.4)

whereγ j are the linear weights determined in step 3 above, andε is a small number to avoid
the denominator to become 0. We are usingε = 10−6 in all the computations in this paper.
The final WENO approximation or reconstruction is then given by

R(xG) =
q∑

j=1

ω j pj (x
G). (1.5)

We remark that all the coefficients in the above steps which depend on the mesh but
not on the data of the numerical solution, such asγ j in (1.2), the linear coefficients in the
reconstructionspj (x) in step 2, and the quadratic coefficients in the smoothness indicators
β j in (1.3), should be computed and stored at the beginning of the code after the generation
of the mesh but before the time evolution starts.

We now use a simple example to illustrate the steps outlined above. We assume we are
given a uniform meshIi = (xi−1/2, xi+1/2) and cell averages of a functionu(x) in these
cells, denoted bȳui . We would like to find a fifth-order WENO reconstruction to the point
valueu(xi+1/2), based on a stencil of five cells{Ii−2, Ii−1, Ii , Ii+1Ii+2}, with the target cell
containing the pointxi+1/2 chosen as4 = Ii .
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In step 1 above, we could have the three stencils

S1 = {Ii−2, Ii−1, Ii }, S2 = {Ii−1, Ii , Ii+1}, S3 = {Ii , Ii+1, Ii+2},

which make up a larger stencil

T = {Ii−2, Ii−1, Ii , Ii+1, Ii+2}. (1.6)

In step 2 above we would have three polynomialspj (x) of degree of at most two, with
their cell averages agreeing with that of the functionu in the three cells in each stencil
S j . The higher order functionQ(x) is a polynomial of degree of at most four, with its cell
averages agreeing with that of the functionu in the five cells in the larger stencilT . The
three lower order approximations tou(xi+1/2), associated withpj (x), in terms of the given
cell averages ofu, are given by

p1
(
xi+1/2

) = 1

3
ūi−2− 7

6
ūi−1+ 11

6
ūi ,

p2
(
xi+1/2

) = −1

6
ūi−1+ 5

6
ūi + 1

3
ūi+1, (1.7)

p3
(
xi+1/2

) = 1

3
ūi + 5

6
ūi+1− 1

6
ūi+2.

The coefficients in front of thēu could be derived by Lagrange polynomials or by solving
a small 3× 3 linear system, from the condition that the quadratic polynomialpj (x) has
the same cell averages as the givenū in the relevant stencil. See [22] for details. Each
of the pj (xi+1/2) in (1.7) is a third-order approximation tou(xi+1/2). The higher order
approximation tou(xi+1/2), associated withQ(x), is given by

Q(xi+1/2) = 1

30
ūi−2− 13

60
ūi−1+ 47

60
ūi + 9

20
ūi+1− 1

20
ūi+2, (1.8)

which is a fifth-order approximation tou(xi+1/2).
In step 3 above, we would have

γ1 = 1

10
, γ2 = 3

5
, γ3 = 3

10
. (1.9)

It can be readily verified, using (1.7) and (1.8), that

Q
(
xi+1/2

) = γ1p1
(
xi+1/2

)+ γ2p2
(
xi+1/2

)+ γ3p3
(
xi+1/2

)
for all possible given datāu j , j = i − 2, i − 1, i, i + 1, i + 2.

In step 4 above, we could easily work out from (1.3) the three smoothness indicators
given by

β1 = 13

12
(ūi−2− 2ūi−1+ ūi )

2+ 1

4
(ūi−2− 4ūi−1+ 3ūi )

2

β2 = 13

12
(ūi−1− 2ūi + ūi+1)

2+ 1

4
(ūi−1− ūi+1)

2 (1.10)

β3 = 13

12
(ūi − 2ūi+1+ ūi+2)

2+ 1

4
(3ūi − 4ūi+1+ ūi+2)

2.
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FIG. 1.1. Reconstructions tou(xi+1/2). Solid lines: exact function; symbols: numerical approximations. Left:
fifth-order WENO. Right: fifth-order traditional.

We notice in particular that the linear weightsγ1, γ2, γ3 in step 3 above are all positive. In
such cases, the WENO reconstruction procedure outlined above and the scheme based on it
work very well. In Fig. 1.1, we plot the approximation tou(x) for a discontinuous function
u(x) = 2x for x ≤ 0 andu(x) = −20 otherwise, by the fifth-order WENO reconstruction
on the left and by the fifth-order traditional reconstruction (1.8) on the right, with a mesh
xi = (i − 0.4965)1x with1x = 0.02. We can clearly see that WENO avoids the overshoots
and undershoots near the discontinuity.

We now look at another simple example in which some of the linear weights in step 3
above would become negative. We have exactly the same setting as above except that now
we seek the reconstruction not at the cell boundary but at the cell centerxi . This is needed
by the central schemes with staggered grids [12]. Thus, step 1 would stay the same as above;
step 2 would produce

p1(xi ) = − 1

24
ūi−2+ 1

12
ūi−1+ 23

24
ūi ,

p2(xi ) = − 1

24
ūi−1+ 13

12
ūi − 1

24
ūi+1, (1.11)

p3(xi ) = 23

24
ūi + 1

12
ūi+1− 1

24
ūi+2.

Each of these steps is a third-order reconstruction tou(xi ). The higher order reconstruction
to u(xi ), associated withQ(x), is given by

Q(xi ) = 3

640
ūi−2− 29

480
ūi−1+ 1067

960
ūi − 29

480
ūi+1+ 3

640
ūi+2, (1.12)

which is a fifth-order reconstruction tou(xi ). Step 3 would produce the following weights:

γ1 = − 9

80
, γ2 = 49

40
, γ3 = − 9

80
.
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FIG. 1.2. Reconstructions tou(xi ). Solid lines: exact function; symbols: numerical approximations. Left:
fifth-order WENO. Right: fifth-order traditional.

Notice that two of them are negative. The smoothness indicators in step 4 will remain the
same. This time, the WENO approximation, shown at the left of Fig. 1.2, is less satisfactory
(in fact, even worse than a traditional fifth-order reconstruction shown on the right), because
of the negative linear weights.

We remark that negative linear weights do not appear in finite difference WENO schemes
in any spatial dimensions for conservation laws for any order of accuracy [1, 10], and they
do not appear in one-dimensional as well as some multidimensional finite volume WENO
schemes for conservation laws. Unfortunately, they do appear in some other cases, such as
the central WENO schemes using staggered meshes we have seen above, high-order finite
volume schemes for two dimensions described in [8] and in this paper, and finite difference
WENO approximations for second derivatives.

Although the details of WENO schemes applied to the conservation law (1.1) can be
found in the literature, e.g., [10, 22, 23], we still include a brief summary of all the steps of
a WENO finite volume scheme applied to (1.1) in the one-dimensional scalar case for the
positive wind casef ′(u) ≥ 0, for completeness. The algorithm consists of the following
steps:

1. Given the cell averages̄ui for all cells Ii for time leveln (starting from time level 0
which is the initial condition);

2. Reconstruct the point valuesu−i+1/2 for all cell boundariesxi+1/2 using the reconstruc-
tion procedure detailed above. That is, we use (1.5) withω j defined by (1.4), usingγ j given
by (1.9) andβ j given by (1.10). The superscript “−” in u−i+1/2 refers to the fact that the
reconstruction has a stencil (1.6) biased to the left relative to the locationxi+1/2. This is
upwinding according to the wind directionf ′(u) ≥ 0.

3. Form the residue for time leveln in the method-of-lines ODE

dūi

dt
= 1

1x

(
f
(
u−i+1/2

)− f
(
u−i−1/2

))
,

and move to time leveln+ 1 by a high-order TVD Runge–Kutta method [24].
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FIG. 1.3. 2D Burgers’ equation. Left: nonuniform triangular mesh used in the computation. Right: fourth-order
WENO result att = 0.473, CFL= 0.2, without any special treatment for the negative linear weights.

If f ′(u) could change sign, then bothu−i+1/2 andu+i+1/2, which has a stencil biased to the
right, must be computed in the second step, and a monotone flux (an approximate Riemann
solver in the system case)̂f (u−i+1/2, u

+
i+1/2) would replacef (u−i+1/2) in the third step. For

details, see, e.g., [10, 22, 23].
For all the calculations reported in this paper, we have taken a CFL number equal to

0.6 for the rectangular codes and 0.5 for the triangular codes, unless otherwise indicated.
Usually, WENO schemes with third-order TVD Runge–Kutta methods [24] are stable for
CFL numbers below 0.8 for the structured mesh, and below 0.6 for the triangular mesh.

While on approximation alone the appearance of negative linear weights might be
annoying but perhaps not fatal (Fig. 1.2); in solving a PDE, the result might be more
serious. As an example, in Fig. 1.3 we show the results of using a fourth-order finite vol-
ume WENO scheme [8] on a nonuniform triangular mesh shown at the left, which has been
chosen to yield significant negative linear weights, for solving the two-dimensional Burgers
equation,

ut +
(

u2

2

)
x

+
(

u2

2

)
y

= 0, (1.13)

in the domain [−2, 2]× [−2, 2] with an initial conditionu0(x, y) = 0.3+ 0.7 sin(π2 (x +
y))and periodic boundary conditions. We can see that serious oscillation appears at the point
(−1.08,−0.67) near the shock in the numerical solution once the shock has developed. The
oscillation eventually leads to instability and blowing up of the numerical solution for this
example. In fact, in all the test cases involving negative linear weights and discontinuous
solutions presented in this paper, WENO schemes without special treatment to the negative
weights are unstable (the numerical solution blows up and the code stops). The figures of
such unstable cases are similar to Fig. 1.3 and hence are not shown.

The main purpose of this paper is to develop a simple and effective technique for handling
negative linear weights without a need to get rid of them. Test cases will be shown to illustrate
the stability and accuracy of this approach.
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2. A SPLITTING TECHNIQUE

We now introduce a splitting technique to treat the negative weights. It is very simple,
involves little additional cost, yet is quite effective. The WENO procedure outlined in the
previous section is only modified in step 5 in the following way:

5′ If min(γ1, . . . , γq) ≥ 0 proceed as before. Otherwise, we split the linear weights into
two parts: positive and negative. Define

γ̃+i =
1

2
(γi + θ |γi |), γ̃−i = γ̃+i − γi , i = 1, . . . ,q (2.1)

where we takeθ = 3 in all the numerical tests. We then scale them by

σ± =
q∑

j=1

γ̃±j ; γ±i = γ̃±i /σ±, i = 1, . . . ,q. (2.2)

We now have two split polynomials

Q±(xG) =
q∑

j=1

γ±j pj (x
G), (2.3)

which satisfy

Q(xG) = σ+Q+(xG)− σ−Q−(xG). (2.4)

We can then define the nonlinear weights (1.4) for the positive and negative groupsγ±j
separately, denoted byω±j , based on the same smoothness indicatorβ j . We will then define
the WENO approximationR±(xG) separately by (1.5), usingω±j , and form the final WENO
approximation by

R(xG) = σ+R+(xG)− σ−R−(xG).

We remark that the key idea of this decomposition is to make sure that every stencil has a
significant representation in both the positive and the negative weight groups. Within each
group, the WENO idea of redistributing the weights subject to a fixed sum according to
the smoothness of the approximation is still followed as before. While in the unsplit case,
the nonlinear weights may become extremely large or small in magnitudes because of the
lack of convexity, the split positive and negative nonlinear weights stay bounded as they
separately sum to fixed constants of the linear weights. Moreover, it is expected that the
distribution of the magnitudes of nonlinear weights in each of the positive and negative
group follows the smoothness of the solution, as every stencil has its “fair share” in each
of the positive and negative linear weight groups. We have performed extensive numerical
experiments about many plausible approaches of splitting, and those used here have been
found to be the most robust.

For the simple example of fifth-order WENO reconstruction tou(xi ), the split linear
weights corresponding to (2.1) are, before the scaling,

γ̃+1 =
9

80
, γ̃−1 =

9

40
, γ̃+2 =

49

20
, γ̃−2 =

49

40
, γ̃+3 =

9

80
, γ̃−3 =

9

40
.
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FIG. 2.1. WENO approximations with the splitting treatment for negative linear weights. Left: approximation
to u(xi ). Right: Burgers equation, solution att = 5/π2, CFL= 0.2.

We notice that, as the most expensive part of the WENO procedure, namely the com-
putation of the smoothness indicators (1.3), has not changed, the extra cost of this posi-
tive/negative weight splitting is very small.

However, this simple and inexpensive change makes a big difference to the computations.
In Fig. 2.1, we show the result of the two previous unsatisfactory cases—the fifth-order
WENO reconstruction tou(xi ) in Fig. 1.2 left, and the approximation to the Burgers equation
in Fig. 1.3 right—now using WENO schemes with this splitting treatment. We can see clearly
that the results are now as good as one would get from WENO schemes having only positive
linear weights.

It is easy to prove that the splitting maintains the accuracy of the approximation in smooth
regions. We will demonstrate this fact in the following sections. We will also demonstrate the
effectiveness of this simple splitting technique through a few selected numerical examples
in the next sections. The main WENO schemes we will consider are fifth-order finite volume
WENO schemes on Cartesian meshes, and the third- and fourth-order finite volume WENO
schemes on triangular meshes. In both cases, negative linear weights appear regularly.

The calculations are performed on SUN Ultra workstations and also on the IBM SP
parallel computer at TCASCV of Brown University. The parallel efficiency of the method
is excellent (more than 90%).

3. 2D FINITE VOLUME WENO SCHEMES ON CARTESIAN MESHES

3.1. The Schemes

We describe two different ways to construct fifth-order finite volume WENO schemes
on Cartesian meshes. Compared with finite difference WENO methods [10], finite volume
methods have the advantage of an applicability of using arbitrary nonuniform meshes, at
the price of increased computational cost [2].

We define the cell

Ii, j ≡
[
xi− 1

2
, xi+ 1

2

]× [yj− 1
2
, yj+ 1

2

]
(3.1)

for i = 1, . . . ,m, j = 1, . . . ,n, whereIi, j needs not be uniform or smooth varying.
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The three-point Gaussian quadrature rule is used at each cell edge when evaluating the
numerical flux in order to maintain fifth-order accuracy. Let(xG, yG) denote one of the
Gaussian quadrature points at the cell boundary ofIi, j given by0 ≡ {x = xi− 1

2
, yj− 1

2
≤

y ≤ yj+ 1
2
}. There are two ways to perform a WENO reconstruction at the point(xG, yG).

Genuine 2D

The first WENO reconstruction is genuine 2D finite volume using 5× 5 cells. We can see
that there are a total of nine stencilsSs,t (s, t = −1, 0, 1). Each stencilSs,t contains 3× 3
cells centered aroundIi+s, j+t . On each stencil we can construct aQ2 polynomial (tensor
product of second-order polynomials inx andy) satisfying the cell average condition (i.e.,
its cell average in each cell inside the stencil equals to the given value). Let

T =
1⋃

s,t=−1

Ss,t,

which contains 5× 5 cells centered aroundIi, j . OnT we can construct aQ4 polynomial
satisfying the cell average condition. The WENO reconstruction is then performed according
to the steps outlined in Sections 1 and 2.

We now make the following remarks:

1. By using a Lagrange interpolation basis, we can easily find the unique linear weights.
2. Even for a uniform mesh, a negative linear weight appears for the middle Gaussian

point (xG, yG) = (xi− 1
2
, yj ). Such an appearance of negative linear weights has also been

observed in the central WENO schemes [12]; see the examples in Sections 1 and 2.
3. By Taylor expansions, we can prove that the smoothness indicators yield a uniform

fifth-order accuracy in smooth regions. See [10] for the method of proof.

Dimension by Dimension

The second WENO reconstruction exploits the tensor product nature of the interpolation
we use. This WENO procedure is performed in a dimension by dimension fashion. The
WENO schemes applied in [5, 6] belong to this class. Consider the point(xG, yG) as above.
First, we perform a one-dimensional WENO reconstruction in they-direction, in order
to get the one-dimensional cell averages (in thex-direction)w(•, yG). Then we perform
another one-dimensional WENO reconstruction tow in thex-direction, to obtain the final
reconstructed point value at(xG, yG).

We make the following remarks:

1. For a scalar equation, the underlying linear reconstructions of the above two versions
are equivalent. For nonlinear WENO reconstructions, they are not equivalent. Both of them
are fifth-order accurate but the actual errors on the same mesh may be different; see Table 3.1
below.

2. For systems of conservation laws, such as the Euler equations of gas dynamics, both
versions of the WENO reconstruction should be performed in local characteristic fields, for
genuinely high-order (order 5 in this paper) versions. For lower order schemes, especially
with a centered formulation [12] but also with some upwind versions [18], the reconstruction
can be performed directly on each component.
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TABLE 3.1

2D Vortex Evolution

Genuine FV Dim-by-dim

N 1x L∞ error Order L∞ error Order

20 6.71E-1 4.38E-2 5.26E-2
40 3.77E-1 3.10E-3 4.59 5.66E-3 3.86
80 2.01E-1 1.20E-4 5.15 3.96E-4 4.22

160 1.00E-1 4.39E-6 4.76 7.96E-6 5.62
320 5.00E-2 1.88E-7 4.53 2.90E-7 4.77

3. The dimension by dimension version of the WENO reconstruction is less expensive
and requires smaller memory than the genuine two-dimensional version. The CPU time
saving is about a factor of 4 for the Euler equations in our implementation. The computed
results are mostly similar from both versions.

In the following, we will give numerical examples computed by the above WENO
schemes. The splitting technique has been used in all the computations when negative linear
weights appear. We will show the results for both smooth and discontinuous problems.

3.2. 2D Vortex Evolution

First, we check the accuracy of the WENO schemes constructed above. The two-
dimensional vortex evolution problem [8, 22] is used as a test problem.

We solve the Euler equations for compressible flow in 2D

Ut + f (U )x + g(U )y = 0, (3.2)

where

U = (ρ, ρu, ρv, E)T ,

f (U ) = (ρu, ρu2+ p, ρuv, u(E + p))T ,

g(U ) = (ρv, ρuv, ρv2+ p, v(E + p))T .

Hereρ is the density,(u, v) is the velocity,E is the total energy,p is the pressure, related
to the total energy byE = p

γ − 1 + 1
2ρ(u

2+ v2) with γ = 1.4.
The setup of the problem is as follows: The mean flow isρ = 1, p = 1, (u, v) = (1, 1),

and the computational domain is [0, 10]× [0, 10]. We add, to the mean flow, an isentropic
vortex (perturbations in(u, v) and the temperatureT = p

ρ
, no perturbation in the entropy

S= p
ργ
),

(δu, δv) = ε

2π
e0.5(1−r 2)(−ȳ, x̄), δT = − (γ − 1)ε2

8γπ2
e1−r 2

, δS= 0,

where(x̄, ȳ) = (x − 5, y− 5), r 2 = x̄2+ ȳ2, and the vortex strengthε = 5.
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We use nonuniform meshes which are obtained by an independent random shifting of each
point from a uniform mesh in each direction within 30% of the mesh sizes. The solution
is computed up tot = 2. Table 3.1 shows theL∞ errors ofρ. We can see that both the
genuine two-dimensional finite volume WENO scheme and the dimension by dimension
finite volume WENO scheme can achieve the desired order of accuracy while the genuine
two-dimensional scheme gives smaller errors for the same mesh.

3.3. Oblique Shock Tubes

The purpose of this test is to see the capability of the rectangular WENO schemes in
resolving waves that are oblique to the computational meshes. For details of the problem,
we refer to [10]. The 2D Sod’s shock tube problem is solved where the initial jump makes
an angleθ against thex axis. We take our computational domain to be [0, 6]× [0, 1] and
the initial jump starting at(x, y) = (2.25, 0) and making aθ = π

4 angle with thex axis.
The solution is computed up tot = 1.2 on a 96× 16 uniform mesh. In Fig. 3.1 we plot
the density contours computed by the above two WENO schemes and the density cut at
the bottom of the computational domain. We can see that both schemes perform equally
well in resolving the waves. The genuine two-dimensional scheme gives a slightly better
resolution in the contact discontinuity and the rarefaction wave.

3.4. A Mach 3 Wind Tunnel with a Step

This model problem is originally from [26]. The setup of the problem is as follows: The
wind tunnel is 1 length unit wide and 3 length units long. The step is 0.2 length units high
and is located 0.6 length units from the left-hand end of the tunnel. The problem is initialized
by a right-going Mach 3 flow. Reflective boundary conditions are applied along the wall
of the tunnel, and inflow/outflow boundary conditions are applied at the entrance/exit. The
corner of the step is a singular point, and we treat it the same way as in [26], which is
based on the assumption of a nearly steady flow in the region near the corner. We show
the density contours at timet = 4 in Fig. 3.2. Only the results from the dimension by
dimension WENO scheme are shown. Uniform meshes of1x = 1y = 1

40,
1
80,

1
160,

1
320 are

used.

3.5. Double Mach Reflection

This problem is also originally from [26]. The computational domain for this problem
is chosen to be [0, 4]× [0, 1]. The reflecting wall lies at the bottom, starting fromx = 1

6.
Initially a right-moving Mach 10 shock is positioned atx = 1

6, y = 0 and makes a 60◦ angle
with thex axis. For the bottom boundary, the exact postshock condition is imposed for the
part fromx = 0 tox = 1

6, and a reflective boundary condition is used for the rest. At the top
boundary, the flow values are set to describe the exact motion of a Mach 10 shock. We
compute the solution up tot = 0.2. Figures 3.3 and 3.4 show the equally spaced 30 density
contours from 1.5 to 22.7 computed by the genuine two-dimensional and the dimension by
dimension WENO schemes. We use uniform meshes with1x = 1y = 1

240,
1

480. We can
see that the results from both schemes are comparable.
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FIG. 3.1. Oblique Sod’s problem. Densityρ. Top: contour, genuine two-dimensional WENO; middle: contour,
dimension by dimension WENO; bottom: cut at the bottom of the computational domain, the solid line is the exact
solution, the triangles are the genuine two-dimensional WENO results, and the circles are the dimension by
dimension WENO results.
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FIG. 3.2. Forward step problem,1x = 1y = 1
40
, 1

80
, 1

160
, 1

320
from top to bottom. Thirty contours from 0.12

to 6.41, dimension by dimension WENO.

4. 2D FINITE VOLUME WENO SCHEMES ON TRIANGULAR MESHES

Both third- and fourth-order finite volume WENO schemes on triangular meshes have
been constructed in [8]. The optional linear weights in such schemes are not unique. These
are then chosen to avoid negative weights whenever possible, and if that fails, a grouping
(of stencils) technique is used in [8], which works fairly well in the third-order case with
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FIG. 3.3. Double Mach reflection,1x = 1y = 1
240

(top and lower left) and 1
480

(middle and lower right).
Genuine two-dimensional WENO. Blow-up regions at the bottom for details.

quite general triangulation but can yield positive weights for the fourth-order case only with
fairly uniform triangulation. In this section, we do not seek positive linear weights as in [8],
but rather use the splitting technique to treat the negative linear weights when they appear.
For scalar equations, the scheme is stable in all runs. For systems of conservation laws,
there are still occasional cases of overshoot and instability; the reason seems to be related
to characteristic decompositions and is still being investigated.

4.1. Accuracy Check for a Smooth Problem

We solve the 2D Burgers equation (1.13) with the same initial and boundary conditions as
before using the fourth-order finite volume WENO scheme [8]. The solution is computed
up to t = 0.5

π2 when no shock has appeared. The meshes used are (1) uniform meshes
with equilateral triangulation and (2) random triangulation. For the uniform meshes we
do not seek positive weights as was done in [8], rather we use the splitting technique
to treat the negative linear weights when they appear. Table 4.1 indicates that close to
fourth-order accuracy can be achieved. For the nonuniform mesh, the measurement ofL∞
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FIG. 3.4. Double Mach reflection,1x = 1y = 1
240

(top and lower left) and 1
480

(middle and lower right).
Dimension by dimension WENO. Blow-up regions at the bottom for details.

errors looks suboptimal, which might be the result of difficulty in defining the order by
refinement (the fine mesh is less logically related to the coarse mesh than in the uniform
case), and a failure for a cancellation of errors through flux differences as in the uniform mesh
case.

TABLE 4.1

2D Burgers Equation: Accuracy Check

Uniform mesh Nonuniform mesh

1x L∞ error Order 1x L∞ error Order

2.57E-1 6.22E-4 2.67E-1 2.11E-3
1.29E-1 4.61E-5 3.75 1.26E-1 2.35E-4 2.92
6.43E-2 2.18E-6 4.40 6.32E-2 2.90E-5 3.03
3.21E-2 1.38E-7 3.98 3.34E-2 2.61E-6 3.78
1.61E-2 6.93E-9 4.32 1.66E-2 2.71E-7 3.24
8.08E-3 6.70E-10 3.40 7.44E-3 1.57E-8 3.55
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FIG. 4.1. 2D Buckley–Leverett equation: the mesh.

4.2. Discontinuous Problem 1: Scalar Equation in 2D

Having shown the stable results with the splitting treatment of negative linear weights
for a fourth-order finite volume WENO scheme for the Burgers equation in Section 2, we
now test the fourth-order WENO scheme on the Buckley–Leverett problem whose flux is
nonconvex,

f (u) = u2

u2+ 0.25(1− u)2
, g(u) = 0,

with the initial datau = 1 when− 1
2 ≤ x ≤ 0 andu = 0 elsewhere. The solution is computed

up tot = 0.4. The exact solution is a shock–rarefaction–contact discontinuity mixture. The
mesh we use here is a nonuniform triangulation, shown in Fig. 4.1. Figure 4.2 shows that
the waves have been resolved very well.

4.3. Discontinuous Problem 2: System of Equations in 2D

We consider the 2D Euler equations in the domain [−1, 1]× [0, 0.2]. The Sod and Lax
shock tube initial data is set in thex-direction, and periodic boundary condition is applied
in the y-direction. We use the fourth-order finite volume scheme on triangular meshes to
solve the above problem. The mesh we use here is uniform. But we do not seek positive
weights as was done in [8], rather we use the splitting technique in Section 2 to treat the

FIG. 4.2. 2D Buckley–Leverett equation att = 0.4, with splitting. Left: the solution surface; Right: the cut
at y = 0.1 (solid line. exact solution, symbols: numerical solution).
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FIG. 4.3. Density plot, Left: Sod problem, Right: Lax problem, with splitting. Roughly 100 points in the
x-direction.

negative linear weights when they appear. In fact, we set deliberately certain linear weights
to be negative to test the splitting technique. Figure 4.3 shows the numerical results of the
Sod and Lax problems.

It seems that there are still oscillations and instability for some nonuniform triangular
meshes for the fourth-order WENO schemes applied to Euler equations. For example, the
double Mach reflection problem with a highly nonuniform mesh would become unstable
at some cells near the shock front. As the method works well for the same meshes with
a scalar equation, the problem might be from the characteristic decompositions. When we
print out the nonlinear positive and negative weights in the cells immediately before the
solution becomes unstable, we found out that, although they stay nicely bounded, they are
somewhat “misaligned” so the effect of their difference may put a monotone profile into a
nonmonotone one. This could be explained by a hypothetical example of a transition from 1
to 0. Suppose we rewrite this as a difference of a positive group which is a transition from 2
to 0, and a negative group which is from 1 to 0. Suppose also that there is only one transition
point in each group. Suppose the positive group has the transition 2, 0.1, 0, and the nega-
tive group has the transition 1, 0.9, 0, then each of them is a nice monotone transition but
their transition point is misaligned, hence their difference is a transition 1,−0.8, 0, which
has a huge undershoot. In most cases, such misalignments are rare in WENO schemes be-
cause both the positive and the negative nonlinear weights are obtained with the same
smoothness indicator. However, it seems that for some of the triangular mesh system
cases such misalignment does occur. We are still investigating possible remedies for this
problem.

5. CONCLUDING REMARKS

We have devised and tested a simple splitting technique to treat the negative linear
weights in WENO schemes. This technique involves very little additional CPU time and
gives good results in most numerical tests. The only case in which it still yields oscilla-
tions and instability is when a fourth-order finite volume WENO method is used on some
nonuniform triangular meshes for Euler equations, the reason of which, presumably related
to characteristic decompositions, is still under investigation.
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