Basic Features of Virtual Element Methods

F. Brezzi

IMATI-C.N.R., Pavia, Italy

Computational Science Research Center

Beijing, China, May, 24-th 2017

Outline

- Variational Formulations and Galerkin Methods
- Solving with VEM
- Reducing the internal D.O.F.s
- 4 Construction of a projector
- 5 Serendipity Nodal spaces
- Testing the Serendipity VEMs
- Face and Edge VEM spaces
- 8 Serendipity Face and Edge spaces

The continuous model problem - Variational Form

 $\Omega \subset \mathbb{R}^2$ (polygonal) computational domain, $f \in L^2(\Omega)$ source term. We look for p solution of

$$-\Delta p = f$$
 in Ω $p \in H_0^1(\Omega)$

$$H_0^1(\Omega) \equiv \{q | q \in L^2(\Omega), \ \mathbf{grad} \ q \in (L^2(\Omega))^2 \ \text{and} \ q = 0 \ \text{on} \ \partial \Omega \}$$

Setting

$$a(p,q) := \int_{\Omega} \nabla p \cdot \nabla q \, dx, \quad (f.q) := \int_{\Omega} f \, q \, dx$$

the variational form is:

Find
$$p \in Q := H_0^1(\Omega)$$
 such that

$$a(p,q)=(f,q)$$
 $orall q\in Q$, and the gradient of q is the second of the second of the second of q is the second of the second of q is the second of q in q in

Galerkin approximations

The Galerkin method consists in choosing a finite dimensional $Q_h \subset Q$ and looking for $p_h \in Q_h$ such that

$$\int_{\Omega} \boldsymbol{\nabla} p_h \cdot \boldsymbol{\nabla} q_h \, \mathrm{d} x = \int_{\Omega} f \, q_h \, \mathrm{d} x \qquad \forall \, q_h \in \mathit{Q}_h.$$

In Finite Element Methods, for a given decomposition \mathcal{T}_h of Ω in *elements E*, the integrals over Ω are split as sums

$$\int_{\Omega} \nabla p_h \cdot \nabla q_h \, dx = \sum_{E \in \mathcal{T}_h} \int_{E} \nabla p_h \cdot \nabla q_h \, dx$$
$$\int_{\Omega} f \, q_h \, dx = \sum_{E \in \mathcal{T}_h} \int_{\Omega} f \, q_h \, dx$$

Framework of Virtual Elements

Continuous problem: find $p \in Q := H_0^1(\Omega)$ s. t.

$$a(p,q)=(f,q) \qquad \forall q \in Q$$

• \mathcal{T}_h = decomposition of Ω into elements E

We need to define:

• Q_h : a finite dimensional space

$$(Q_h \subset Q, \mathbb{P}_{k|E} \subset Q_{h|E} \ k \geq 1)$$

- a bilinear form $a_h(\cdot,\cdot): Q_h \times Q_h \to \mathbb{R}$
- an element $f_h \in Q'_h$

in such a way that the problem

find
$$p_h \in Q_h$$
 such that $a_h(p_h, q_h) = (f_h, q_h)$ $\forall q_h \in Q_h$

has a unique solution, and optimal error estimates hold.

Geometry of the Elements in \mathcal{T}_h

Typical assumptions on the geometry of the elements:

- **H0** There exists an integer N and a positive real number γ such that for every h and for every $E \in \mathcal{T}_h$:
 - E is star-shaped with respect to every point of a ball of radius γh_E ,
 - the ratio between the shortest edge and the diameter h_E of E is bigger than γ ,
 - (= consequence) the number of edges of E is $\leq N$

Note: more sophisticated results in recent papers by Beirão da Veiga-Lovadina-Russo and Brenner-Guan-Sung

Geometry of the Elements in \mathcal{T}_h

The above assumptions can be easily generalized:

H0'- There exists an integer number M and a constant σ such that:

every element E can be written as a union of $M_E \leq M$ elements E_i , in such a way that

- each E_i satisfies **H0**
- and, if M > 1 then for each $i \in \{1, ..., M\}$ there exists a $j \in 1, ..., M$ $(j \neq i)$ such that the measure of the intersection $E_i \cap E_j$ is bigger than σ times the bigger of the two measures of E_i and E_j

Construction of the discretized problems

Given $k \geq 1$ and \mathcal{T}_h , we recall that $\forall h, \forall E \in \mathcal{T}_h$ we need

- ullet a local space Q_h^E such that $\mathbb{P}_k\subseteq Q_k^E$
- ullet a bilinear form a_h^E on $Q_h^E imes Q_h^E$
- ullet a linear functional $f_h^E:\ Q_h^E o\mathbb{R}$

and from them we build

•
$$Q_h := \{q_h \in H^1_0(\Omega) \text{ such that } q_{h|E} \in Q_h^E, \, \forall E \in \mathcal{T}_h\}$$

$$ullet a_h(p_h,q_h) := \sum_F a_h^E(p_h,q_h) \qquad orall \, p_h, \, q_h \, \in \, Q_h$$

$$ullet (f_h,q_h):=\sum_E (f_h^E,q_h) \qquad orall q_h \in Q_h$$

And we require the **two properties** in the following page.

The two properties

For all h, and for all E in \mathcal{T}_h :

H1-
$$\forall p_k \in \mathbb{P}_k, \, \forall q_h \in Q_h$$

$$a_h^E(p_k, q_h) = a^E(p_k, q_h)$$
 (k – Consistency)

H2- \exists two positive constants α_* and α^* , independent of h and of E, such that: (Stability)

$$\forall q_h \in Q_h$$
 $\alpha_* a^E(q_h, q_h) \leq a_h^E(q_h, q_h) \leq \alpha^* a^E(q_h, q_h)$

Teor

9 / 62

Convergence

Under these assumptions we have:

Theorem

The discrete problem: Find $p_h \in Q_h$ such that

$$a_h(p_h, q_h) = (f_h, q_h), \qquad \forall q_h \in Q_h$$

has a unique solution p_h . Moreover, for every approximation p_l of p in Q_h and for every approximation p_{π} of p that is piecewise in \mathbb{P}_k , we have

$$\|p-p_h\|_Q \leq C\Big(\|p-p_I\|_Q + \|p-p_\pi\|_{h,Q} + \|f-f_h\|_{Q_h'}\Big)$$

where C is a constant independent of h.

Classical VEM-approximation in 2D

For k integer $\geq 1, k_{\Delta}$ integer with $k-2 \leq k_{\Delta} \leq k$ we set

$$Q_{k,k_{\Delta}}(E) := \{ q \in C^{0}(\overline{E}) : q_{|e} \in \mathbb{P}_{k}(e) \ \forall e \subset \partial E, \Delta q \in \mathbb{P}_{k_{\Delta}}(E) \}$$

Degrees of freedom in $Q_{k,k_{\Delta}}(E)$:

(D1)The values $q(V_i)$ at the vertices V_i of E,

and for k > 2

(D2)The moments $\int_e q p_{k-2} ds$, $p_{k-2} \in \mathbb{P}_{k-2}(e)$, on each edge e of E,

and, for $k_{\Delta} \geq 0$

(D3) The moments $\int_{F} q p_{k_{\Delta}} dx$, $p_{k_{\Delta}} \in \mathbb{P}_{k_{\Delta}}(E)$.

It is easy to check that D1–D3 are unisolvent,

Classical VEM-approximation in 3D

For k integer ≥ 1 , and k_f, k_{Δ} integers ≥ -1 we set

$$Q_{k,k_f,k_\Delta}(E) := \{ q \in C^0(\overline{E}) : q_{|f} \in Q_{k,k_f}(f) \forall \text{ face } f, \Delta q \in \mathbb{P}_{k_\Delta}(E) \}$$

As degrees of freedom in $Q_{k,k_f,k_\Delta}(E)$ we take:

(D1)The values $q(V_i)$ at the vertices V_i of E,

(D2)
$$\int_{e} q \, p_{k-2} \, ds$$
, $p_{k-2} \in \mathbb{P}_{k-2}(e)$, $\forall \text{ edge } e, (k \geq 2)$,

$$(D3)\int_f q \, p_{k_f} \, df$$
, $p_{k_f} \in \mathbb{P}_{k_f}(f)$, \forall face f , $(k_f \ge 0)$,

(D4)
$$\int_E q p_{k_{\Delta}} dx$$
, $p_{k_{\Delta}} \in \mathbb{P}_{k_{\Delta}}(E)$, $(k_{\Delta} \geq 0)$.

It is easy to check that D1-D4 are unisolvent.

conta dof 1

Counting the degrees of freedom

"smallest" case: $k = 1, k_f = -1$

$$Q_{1,-1}(E)\!:=\!\{q\in C^0(\overline{E})\!: q_{|e}\!\in\!\mathbb{P}_1(e)\,\forall e\subset\partial E, \Delta\!q\!=\!0 \text{ in } E\}$$

The dimension of the Local Space is 5.

Conta dof k=2

Counting the degrees of freedom

$$k = 2, k_f = 0$$

$$Q_{2,0}(E) := \{ q \in C^0(\overline{E}) : q_{|e} \in \mathbb{P}_2(e) \forall e \subset \partial E, \Delta q \in \mathbb{P}_0(E) \}$$

The dimension of the Local Space is 11.

Conta dof gen

14 / 62

Dimensions of Q_{k,k_f} and $Q_{k,k_f,k_{\Delta}}$

In general: for a polygon E (in 2 dimensions) with N vertices (and hence N edges) we have

$$\dim(Q_{k,k_f}) = Nk + (k_f + 1)(k_f + 2)/2$$

where $(k_f+1)(k_f+2)/2$ is the dimension of the space of polynomials of degree $\leq k_f$ in 2 variables.

Similarly: for a polyhedron E (in 3 dimensions) with N_V vertices, N_e edges and N_f faces $\dim(Q_{k,k_f,k_\Delta})$ equals

$$N_V + N_e(k-1) + N_f \frac{(k_f+1)(k_f+2)}{2} + \frac{(k_{\Delta}+1)(k_{\Delta}+2)(k_{\Delta}+3)}{6}$$

where $(k_{\Delta}+1)(k_{\Delta}+2)(k_{\Delta}+3)/6$ is the dimension of the space of polynomials of degree $\leq k_{\Delta}$ in 3 variables, very feature.

VEM versus FEM on triangles

VEM versus FEM on quads

Constructing a_h - 1

$$Q_h := \{ q \in H^1(\Omega) : q_{|e} \in \mathbb{P}_k(e) \forall e \in \mathcal{T}_h, \ \Delta q \in \mathbb{P}_{k-2}(E) \forall E \}$$

Example:
$$k = 2$$

$$\bullet = \frac{1}{|E|} \int_{E} q \, dE$$

We look for $a_h(\cdot,\cdot)$ such that

$$a_h(p_h,q_h)\simeq a(p_h,q_h):=\int_{\Omega}\mathbf{grad}\,p_h\cdot\mathbf{grad}\,q_hd\Omega\stackrel{\text{cost ah-2}}{=} q_hd\Omega$$

Franco Brezzi (IMATI-CNR)

Constructing a_h - 2

$$Q_h := \{ q \in H^1(\Omega) : q_{|e} \in \mathbb{P}_2(e) \, \forall e \in \mathcal{T}_h, \, \Delta q \in \mathbb{P}_0(E) \, \forall E \}$$

We look for a *computable* $a_h(\cdot,\cdot)$ such that

$$a_h(p_h,q_h)\simeq a(p_h,q_h)\equiv \int_\Omega
abla p_h\cdot
abla q_h d\Omega$$

NOTE: Our dofs allow to compute $a^{E}(p_2, q)$

$$a^{E}(p_{2},q) \equiv \int_{E} \nabla p_{2} \cdot \nabla q dE = -\int_{E} \Delta p_{2} q dE + \int_{\partial E} \nabla p_{2} \cdot \mathbf{n} q d\ell$$

$$\forall p_2 \in \mathbb{P}_2, \ \forall q \in Q_h^E$$

cost ah Gen

19 / 62

Continuous VEM for the model problem - General k

$$Q_h := \{ q \in H^1(\Omega) : q_{|e} \in \mathbb{P}_k(e) \, \forall e \in \mathcal{T}_h, \ \Delta q \in \mathbb{P}_{k-2}(E) \, \forall E \}$$

We look for a *computable* $a_h(\cdot, \cdot)$ such that

$$a_h(p_h,q_h)\simeq a(p_h,q_h)\equiv \int_\Omega
abla p_h\cdot
abla q_h d\Omega$$

NOTE: Our dofs allow to compute $a^{E}(p_{k},q)$

$$a^{E}(p_{k},q) \equiv \int_{E} \nabla p_{k} \cdot \nabla q dE = -\int_{E} \Delta p_{k} \, q dE + \int_{\partial E} \nabla p_{k} \cdot \mathbf{n} q d\ell$$

$$\forall p_k \in \mathbb{P}_k, \, \forall q \in Q_h^E$$

We define a projector $q \to \Pi_k^{\nabla} q \in \mathbb{P}_k(E)$ by

$$\mathsf{Def} : q \to \mathsf{\Pi}_k^{\nabla} q \! \in \! \mathbb{P}_k(E) \left\{ \begin{array}{l} a^E(\mathsf{\Pi}_k^{\nabla} q, w_k) = a^E(q, w_k) \ \forall w_k \! \in \! \mathbb{P}_k \\ \int_{\partial E} \mathsf{\Pi}_k^{\nabla} q d\ell = \int_{\partial E} q d\ell \end{array} \right.$$

We define a projector $q \to \Pi_k^{\nabla} q \in \mathbb{P}_k(E)$ by

$$\mathsf{Def}: q \to \Pi_k^{\nabla} q \in \mathbb{P}_k(E) \left\{ \begin{array}{l} a^E (\Pi_k^{\nabla} q, w_k) = a^E (q, w_k) \ \forall w_k \in \mathbb{P}_k \\ \int_{\partial E} \Pi_k^{\nabla} q d\ell = \int_{\partial E} q d\ell \end{array} \right.$$

We remark that Π_k^{∇} satisfies $(\forall p_k \in \mathbb{P}_k, \, \forall q \in Q_h^E)$:

$$\Pi_k^{\nabla} p_k = p_k$$
 and $a^E(\Pi_k^{\nabla} q, p_k) = a^E(q, p_k)$

We define a projector $q \to \Pi_k^{\nabla} q \in \mathbb{P}_k(E)$ by

$$\mathsf{Def}: q \to \mathsf{\Pi}_k^{\nabla} q \in \mathbb{P}_k(E) \left\{ \begin{array}{l} a^E(\mathsf{\Pi}_k^{\nabla} q, w_k) = a^E(q, w_k) \ \forall w_k \in \mathbb{P}_k \\ \int_{\partial E} \mathsf{\Pi}_k^{\nabla} q d\ell = \int_{\partial E} q d\ell \end{array} \right.$$

We remark that Π_k^{∇} satisfies $(\forall p_k \in \mathbb{P}_k, \, \forall q \in Q_h^E)$:

$$\Pi_k^{\nabla} p_k = p_k$$
 and $a^E(\Pi_k^{\nabla} q, p_k) = a^E(q, p_k)$

and we also observe that

 $\Pi_k^{\nabla} q$ is easily computable (also globally) by the d.o.f. of q

$$\Pi_k^{\nabla}: Q_h^{E} \to \mathbb{P}_k(E)$$
 satisfies $(\forall p_k \in \mathbb{P}_k, \, \forall q \in Q_h^{E})$:
 $\Pi_k^{\nabla} p_k = p_k \, \text{ and } a^E(\Pi_k^{\nabla} q - q, p_k) = 0, \, \text{ so that :}$

$$\Pi_k^{\nabla}: Q_h^E \to \mathbb{P}_k(E)$$
 satisfies $(\forall p_k \in \mathbb{P}_k, \forall q \in Q_h^E)$:
 $\Pi_k^{\nabla} p_k = p_k$ and $a^E (\Pi_k^{\nabla} q - q, p_k) = 0$, so that :
 $a(p_h, q_h) = a(\Pi_k^{\nabla} p_h, \Pi_k^{\nabla} q_h) + a((I - \Pi_k^{\nabla}) p_h, (I - \Pi_k^{\nabla}) q_h)$

$$\Pi_k^{\nabla}: Q_h^E \to \mathbb{P}_k(E)$$
 satisfies $(\forall p_k \in \mathbb{P}_k, \, \forall q \in Q_h^E)$:

$$\Pi_k^{\nabla} p_k = p_k$$
 and $a^E (\Pi_k^{\nabla} q - q, p_k) = 0$, so that :

$$a(p_h,q_h)=a(\Pi_k^{\nabla}p_h,\Pi_k^{\nabla}q_h)+a((I-\Pi_k^{\nabla})p_h,(I-\Pi_k^{\nabla})q_h)$$

We make the choice:

$$a_h(p_h,q_h)=a(\Pi_k^{\nabla}p_h,\Pi_k^{\nabla}q_h)+\mathcal{S}((I-\Pi_k^{\nabla})p_h,(I-\Pi_k^{\nabla})q_h)$$

with $\mathcal{S}(\cdot,\cdot)$ such that:

$$c_0 a(q_h,q_h) \leq \mathcal{S}(q_h,q_h) \leq c_1 a(q_h,q_h) \quad orall q_h \in \mathit{Ker}(\Pi_k^
abla)$$

$$\Pi_k^{\nabla}:Q_h^{E} o \mathbb{P}_k(E)$$
 satisfies $(\forall p_k \in \mathbb{P}_k,\, \forall q \in Q_h^{E})$:

$$\Pi_k^{\nabla} p_k = p_k$$
 and $a^E(\Pi_k^{\nabla} q - q, p_k) = 0$, so that:

$$a(p_h,q_h)=a(\Pi_k^{\nabla}p_h,\Pi_k^{\nabla}q_h)+a((I-\Pi_k^{\nabla})p_h,(I-\Pi_k^{\nabla})q_h)$$

We make the choice:

$$a_h(p_h,q_h)=a(\Pi_k^{\nabla}p_h,\Pi_k^{\nabla}q_h)+\mathcal{S}((I-\Pi_k^{\nabla})p_h,(I-\Pi_k^{\nabla})q_h)$$

with $\mathcal{S}(\cdot,\cdot)$ such that:

$$c_0 a(q_h, q_h) \leq \mathcal{S}(q_h, q_h) \leq c_1 a(q_h, q_h) \quad \forall q_h \in \mathit{Ker}(\Pi_k^{\nabla})$$

k-Consistency: $\forall E$, for $p_k \in \mathbb{P}_k(E)$ and $q_h \in Q_h^E$ we have

$$a_h^E(p_k,q_h) = a^E(p_k,\Pi_k^{\nabla}q_h) = a^E(p_k,q_h)$$

$$\Pi_k^{\nabla}: Q_h^{E} \to \mathbb{P}_k(E) \text{ satisfies } (\forall p_k \in \mathbb{P}_k, \forall q \in Q_h^{E}):$$

$$\Pi_k^{\nabla} p_k = p_k \text{ and } a^E (\Pi_k^{\nabla} q - q, p_k) = 0, \text{ so that } :$$

$$a(p_h, q_h) = a(\Pi_k^{\nabla} p_h, \Pi_k^{\nabla} q_h) + a((I - \Pi_k^{\nabla}) p_h, (I - \Pi_k^{\nabla}) q_h)$$

We make the choice:

$$a_h(p_h,q_h)=a(\Pi_k^{\nabla}p_h,\Pi_k^{\nabla}q_h)+\mathcal{S}((I-\Pi_k^{\nabla})p_h,(I-\Pi_k^{\nabla})q_h)$$

with $\mathcal{S}(\cdot,\cdot)$ such that:

$$c_0 a(q_h,q_h) \leq \mathcal{S}(q_h,q_h) \leq c_1 a(q_h,q_h) \quad orall q_h \in \mathit{Ker}(\Pi_k^
abla)$$

Stability (above):

$$a_h^{\mathcal{E}}(q_h, q_h) \leq a^{\mathcal{E}}(\Pi_k^{\nabla} q_h, \Pi_k^{\nabla} q_h) + c_1 a^{\mathcal{E}}(q_h - \Pi_k^{\nabla} q_h, q_h - \Pi_k^{\nabla} q_h)$$

$$\leq \alpha^* a^{\mathcal{E}}(q_h, q_h)$$

$$\Pi_k^{\nabla}:Q_h^E o \mathbb{P}_k(E)$$
 satisfies $(\forall p_k \in \mathbb{P}_k, \, \forall q \in Q_h^E)$:

$$\Pi_k^{\nabla} p_k = p_k$$
 and $a^E (\Pi_k^{\nabla} q - q, p_k) = 0$, so that :
 $a(p_h, q_h) = a(\Pi_k^{\nabla} p_h, \Pi_k^{\nabla} q_h) + a((I - \Pi_k^{\nabla}) p_h, (I - \Pi_k^{\nabla}) q_h)$

We make the choice:

$$a_h(p_h,q_h)=a(\Pi_k^{\nabla}p_h,\Pi_k^{\nabla}q_h)+\mathcal{S}((I-\Pi_k^{\nabla})p_h,(I-\Pi_k^{\nabla})q_h)$$

with $\mathcal{S}(\cdot,\cdot)$ such that:

$$c_0 a(q_h,q_h) \leq \mathcal{S}(q_h,q_h) \leq c_1 a(q_h,q_h) \quad orall q_h \in \mathit{Ker}(\Pi_k^
abla)$$

Stability (below):

$$a_h^{\mathcal{E}}(q_h, q_h) \ge a^{\mathcal{E}}(\Pi_k^{\nabla} q_h, \Pi_k^{\nabla} q_h) + c_0 a^{\mathcal{E}}(q_h - \Pi_k^{\nabla} q_h, q_h - \Pi_k^{\nabla} q_h)$$
$$\ge \alpha^* a^{\mathcal{E}}(q_h, q_h)$$

Reducing the internal D.O.F.s - Static Condensation

$$(*) \sum_{j=1}^{9} a_{ij} u_j = f_i, \quad i = 1, 9$$

$$! The final equation for 9 will read$$

$$\sum_{j=1}^9 a_{9,j} u_j = f_9$$

Solve
$$u_9 := \left(f_9 - \sum_{r=1}^{38} \frac{a_{9,r} u_r}{a_{9,9}}\right) / \frac{a_{9,9}}{a_{9,9}}$$
 and replace in (*):

$$\sum_{i=1}^{8} a_{i,j} u_j - \frac{a_{i,9}}{a_{9,9}} \sum_{r=1}^{8} a_{9,r} u_r = f_i - \frac{a_{i,9}}{a_{9,9}} f_9 \qquad i = 1, 8$$

Static condensation for VEMs

$$(*)\sum_{j=1}^{11} a_{ij}u_j = f_i, \quad i = 1, 11$$

The final equation for 11 reads

$$\sum_{j=1}^{11} a_{11,j} u_j = f_{11}$$

Solve $u_{11} := (f_{11} - \sum a_{11,r}u_r)/a_{11,11}$ and replace in (*):

$$\sum_{i=1}^{10} a_{i,j} u_j - \frac{a_{i,11}}{a_{11,11}} \sum_{r=1}^{10} a_{11,r} u_r = f_i - \frac{a_{i,11}}{a_{11,11}} f_{11} \qquad i = 1, 10$$
Franco Brezzi (IMATI-CNR)

VEM

Beijing, May 2017

24 / 62

Franco Brezzi (IMATI-CNR) Beijing, May 2017

Serendipity FEMs

Static condensation was just a way of solving the linear system leaving the approximation space unchanged. Serendipity changes the approximation space (here $\mathbb{Q}_2 \longrightarrow \mathbb{Q}_2 \setminus x^2y^2$)

Note: the 8 boundary d.o.f. are unisolvent for the space

$$S := span \Big\{ 1, x, y, x^2, xy, y^2, x^2y, xy^2 \Big\}.$$

Clearly $\mathbb{P}_2 \subset \mathcal{S} \subset \mathbb{Q}_2$ N.B. It suffers from distorsions!!!

Serendipity VEMs

Here, the boundary dofs are enough to determine a \mathbb{P}_2 in a unique way Using them, you can construct a projector Π_2^S : from VEMs onto \mathbb{P}_2 , and use $(\Pi_2^S v)(9)$ instead of v(9).

In other words, we consider the space

$$\mathcal{S} := \left\{ v \in VEM, \text{s.t. } (\Pi_2^S v)(9) = v(9) \right\}$$

Cearly $\mathbb{P}_2 \subset \mathcal{S} \subset VEM$ and the 8 boundary dofs are unisolvent in \mathcal{S} . It **does not** suffer from distorsions!!!

dofs for Serendipity VEMS - Property \mathscr{S}

Let N_F be the number of d.o.f. $\delta_1, \dots, \delta_{N_F}$ in each element E, and assume that they are ordered so that the boundary d.o.f. are the first ones: $\delta_1, \dots, \delta_M$ We **choose** a positive integer S with $M < S < N_F$ such **that** the following property holds: $\forall p_k \in \mathbb{P}_k(E)$

$$(\mathscr{S}) \quad \{\delta_1(p_k) = \delta_2(p_k) = \dots = \delta_S(p_k) = 0\} \Rightarrow \{p_k \equiv 0\}.$$

Note 1: property \mathscr{S} implies that $S \geq dim(\mathbb{P}_k)$.

Note 2: the assumption S > M is needed here to keep conformity of the global space.

Examples: on triangles

$$\forall p_k \in \mathbb{P}_k(E)$$
 $(\mathscr{S}) \quad \{\delta_1(p_k) = \delta_2(p_k) = \dots = \delta_{\mathcal{S}}(p_k) = 0\} \Rightarrow \{p_k \equiv 0\}.$

For k < 3, property \mathscr{S} holds just using the boundary d.o.f. (S = M)

If k > 3 we will need some of the internal d.o.f.

For instance, for k = 3 we need just 1 internal d.o.f. (and

not 3!!), to "kill" the bubble of \mathbb{P}_3 .

Examples: on quadrilaterals

$$\forall p_k \in \mathbb{P}_k(E)$$

 $(\mathscr{S}) \quad \{\delta_1(p_k) = \delta_2(p_k) = \dots = \delta_{S}(p_k) = 0\} \Rightarrow \{p_k \equiv 0\}.$

For k < 4, property $\mathscr S$ holds just using the boundary d.o.f. (S = M)

If $k \ge 4$ we will need some of the internal d.o.f.

For instance, for k=4 we need just 1 internal d.o.f., (and not 6!!), to "kill" the bubble of \mathbb{P}_4 .

Examples: General Case

When do we need internal degrees of freedom? And how many of them? We need to kill the bubbles of \mathbb{P}_k : $B_k(E) = \mathbb{P}_k(E) \cap H_0^1(E)$. Internal d.o.f. could be

$$\int_{E} q b_k dx, \quad \forall b_k \in B_k(E).$$

Apparently $dim(B_k(E))$ depends only on k and on the number of edges. E.g. for β_s :=product of the s edges:

Examples - Troubles

$$B_k(\widetilde{Q}) = \lambda_1 \lambda_2 \lambda_3 p_{k-3}$$

$$B_k(\widetilde{P}) = \lambda_1 \lambda_2 \lambda_3 p_{k-3}$$

What counts is the number η of straight lines necessary to cover the boundary of E. In both cases $\eta = 3$

Other etas

31 / 62

Other examples

 η = minimum number of straight lines necessary to cover the boundary

 \mathbf{N} = number of edges

$$N=6$$
 $\eta=5$

$$dim(B_k(E)) = dim(\mathbb{P}_{k-\eta})$$
. Hence we need as internal dofs $\int_E q \, p_{k-\eta} \, \mathrm{d}x, \quad \forall p_{k-\eta} \in \mathbb{P}_{k-\eta}$

Constructing Π_k^S - Example 1

We consider first a simple case in which $k < \eta$ so that we can construct Π_k^s using only the **boundary** dofs: $\eta = 5$, k = 4

Then for $q \in Q_{4,3}$ we define $\Pi_4^S q \in \mathbb{P}_4$ by

$$\int_{\partial E} (\mathsf{\Pi}_4^{\mathcal{S}} q) \, q_4 \, \mathrm{d} s = \int_{\partial E} q \, q_4 \, \mathrm{d} s \quad \forall q_4 \in \mathbb{P}_4$$

Note that for all $q_4 \in \mathbb{P}_4$:

$$\int_{\partial F} (q_4)^2 \, \mathrm{d} s = 0 \Rightarrow q_4 \equiv 0$$

Ex 2

Constructing Π_k^S - Example 2

We consider a more complex case in which $k \geq \eta$ so that to construct Π_k^s we must use also **internal** dofs: $\eta = 3$, k = 4, and we assume that E is convex.

Then for
$$q \in Q_{4,3}$$
 we define $\Pi_4^S q \in \mathbb{P}_4$ by
$$\int_{\partial E} (\Pi_4^S q) \, q_4 \, \mathrm{d}s = \int_{\partial E} q \, q_4 \, \mathrm{d}s \quad \forall q_4 \in \mathbb{P}_4$$

$$\int_E (\Pi_4^S q) \, q_1 \, \mathrm{d}s = \int_E q \, q_1 \, \mathrm{d}s \quad \forall q_1 \in \mathbb{P}_1$$
 Note: $\forall q_4 \in \mathbb{P}_4$:
$$\int_{\partial E} (q_4)^2 \, \mathrm{d}s = 0 \Rightarrow q_4 \in (b_3 \mathbb{P}_1)$$

Constructing Π_k^S - Example 3

Now, a more *unpleasant* case in which still $k \geq \eta$ (so that to construct Π_k^s we still use also internal dofs): $\eta = 4$, k = 5,

but **without** assuming E = convex.

For $q \in Q_{5,4}$ we define $\Pi_5^{\mathcal{S}} q \in \mathbb{P}_5$ by

$$\int_{\partial E} (\mathsf{\Pi}_5^{S} q) \, q_5 \, \mathrm{d} s = \int_{\partial E} q \, q_5 \, \mathrm{d} s \quad \forall q_5 \in \mathbb{P}_5$$

$$\int_{E} (\mathsf{\Pi}_{5}^{S} q) \, b_4 q_1 \, \mathrm{d} s = \int_{E} q \, b_4 q_1 \, \mathrm{d} s \quad \forall q_1 \in \mathbb{P}_1$$

Note:
$$\forall q_5 \in \mathbb{P}_4$$
:

$$\int_{\partial F} (q_5)^2 \, \mathrm{d} s = 0 \Rightarrow q_5 \in (b_4 \mathbb{P}_1)$$

The lazy choice and the stingy choice

Setting $\pi_r := \dim(\mathbb{P}_r)$ we must add, to the boundary dofs:

- on a **triangle** $(\eta = 3)$, π_{k-3} internal dofs;
- on a **quad** $(\eta = 4)$, π_{k-4} internal dofs;
- on an η -gon, $\pi_{k-\eta}$ internal dofs.

In general, even on very distorted polygons, you must have as many internal dofs as there are \mathbb{P}_k -bubbles

In practice, in a code, you may either check every element to compute its η (stingy choice) or treat every element as if it were a triangle (lazy choice).

The *best strategy* depends on the circumstances.

Serendipity VEM-spaces

The operator Π_k^S has the following properties:

- Π_k^S is computable using only the d.o.f. $\delta_1, \delta_2, \cdots, \delta_S$
- $\Pi_k^S q_k = q_k \ \ \forall q_k \in \mathbb{P}_k$.

Finally we can set:

$$Q_k^S(E) := \{ q \in Q_{k,k}(E) : \text{s.t.} \, \delta_r(q) = \delta_r(\Pi_k^S q), r = S + 1, \dots, N_E \}$$

From the first S dofs we can compute Π_k^S , and then from Π_k^S we can compute all the other dofs.

Moreover $\mathbb{P}_k \subseteq Q_k^S$

NOTE! YOU CAN ALWAYS ASSUME $k_{\wedge} = k$

FEM and Serendipity-VEM - Triangles

VEMS k=1

S-FEM (Arnold-Awanou 2011) and S-VEM - Quads

Savings in interelement dof's

	dofs k=2		
Mesh	$VEMS_2$	VEM_2	\mathbb{Q}_2
8 ³	2,673	7,857	4,401
16 ³	18,785	57,953	31,841
32 ³	140,481	444,609	241,857

	dofs k=3		
Mesh	$VEMS_3$	VEM ₃	\mathbb{Q}_3
8 ³	4,617	14,985	11,529
16 ³	32,657	110,993	84,881
32 ³	245,025	853,281	650,529

Table: Number of inter-element dofs for a cubic uniform mesh. k=2 and k=3

Savings in interelement dof's

	dofs k=4		
Mesh	$VEMS_4$	VEM_4	Q ₄
8 ³	8,289	23,841	22,113
16 ³	59,585	177,089	164,033
32^{3}	450, 945	1,363,329	1,261,953

	dofs k=5			
Mesh	$VEMS_5$ VEM_5 \mathbb{Q}_5			
8 ³	15,417	34,425	36,153	
16^{3}	112,625	256,241	269,297	
32 ³	859,617	1,974,753	2,076,129	

Table: Number of inter-element dofs for a cubic uniform mesh. k=4 and k=5

Two families of meshes

Trapezoidal mesh

Voronoi mesh

Test for the trapezoidal meshes

$$-\Delta p = f$$
 in Ω , $p = g$ on Γ
exact solution:
 $x^3 + 5y^2 - 10y^3 + y^4 + x^5 + x^4y$

f and g chosen accordingly

Arnold - Boffi - Falk(2002)

Trapezoidal mesh

Test Pr Ll

Test for the Voronoi meshes

$$\begin{cases} \operatorname{div}(-\kappa \nabla p + \beta p) + \gamma p = f & \text{in } \Omega \\ p = g & \text{on } \Gamma \end{cases}$$

Voronoi mesh

Trap k = 3

k = 3: \mathbb{Q}_{k} -FEM, S-FEM, and S-VEM on quads

	degrees of freedom		
# el.	stingy	\mathcal{S}_k	\mathbb{Q}_k
16	105	105	169
64	369	369	625
256	1377	1377	2401
1024	5313	5313	9409

Trapezoidal mesh k = 3

k = 4: \mathbb{Q}_{k} -FEM, S-FEM, and S-VEM on quads

	degrees of freedom			
# el.	stingy	\mathbb{Q}_k		
16	161	161	289	
64	577	577	1089	
256	2177	2177	4225	
1024	8449	8449	16641	

Trapezoidal mesh k = 4

k = 3: Classical VEM and S-VEM (stingy, lazy) on Lloyd)

	degrees of freedom		
# el.	stingy	lazy	VEM
25	204	229	279
100	804	904	1104
400	3204	3604	4404
1600	12804	14404	17604

Voronoi-Lloyd mesh k = 3

k = 4: Classical VEM and S-VEM (stingy, lazy on Voronoi)

	degrees of freedom			
# el.	stingy lazy VEN			
25	284	355	430	
100	1112	1405	1705	
400	4408	5605	6805	
1600	17614	22405	27205	

Voronoi-Lloyd mesh k = 4

Useful well known decompositions:

In 2 dimensions we have

$$(\mathbb{P}_k)^2 = \operatorname{\mathsf{grad}}(\mathbb{P}_{k+1}) \oplus \mathbf{x}^{\perp} \mathbb{P}_{k-1},$$

$$(\mathbb{P}_k)^2 = \mathsf{rot}(\mathbb{P}_{k+1}) \oplus \mathsf{x}\mathbb{P}_{k-1}.$$

and in 3 dimensions

$$(\mathbb{P}_k)^3 = \operatorname{grad}(\mathbb{P}_{k+1}) \oplus x \wedge (\mathbb{P}_{k-1})^3,$$

$$(\mathbb{P}_k)^3 = \operatorname{curl}((\mathbb{P}_{k+1})^3) \oplus x \mathbb{P}_{k-1},$$

Classical Mixed FEM's

In 2 dimensions we have

$$RT_k = \mathbf{rot}(\mathbb{P}_{k+1}) \oplus \mathbf{x}\mathbb{P}_k, \quad \mathsf{N}1_k = \mathbf{\nabla}(\mathbb{P}_{k+1}) \oplus \mathbf{x}^{\perp}\mathbb{P}_k,$$

$$BDM_k \equiv N2_k \equiv (\mathbb{P}_k)^2$$
.

and in 3 dimensions

$$RT_k = \operatorname{curl}((\mathbb{P}_{k+1})^3) \oplus x \mathbb{P}_k, \ N1_k = \operatorname{grad}(\mathbb{P}_{k+1}) \oplus x \wedge (\mathbb{P}_k)^3,$$

$$BDM_k \equiv N2_k \equiv (\mathbb{P}_k)^3$$
.

2d Face elements (H(div)-conforming)

For k, k_d , k_r integers, with $k \ge 0$, $k_d \ge 0$, $k_r \ge -1$ set:

$$\mathbf{V}_{k,k_d,k_r}^f(E) := \{ \mathbf{v} | \mathbf{v} \cdot \mathbf{n}_e \in \mathbb{P}_k(e) \, \forall e, \operatorname{div} \mathbf{v} \in \mathbb{P}_{k_d}, \, \operatorname{rot} \mathbf{v} \in \mathbb{P}_{k_r} \},$$

with the following degrees of freedom:

$$\begin{split} &\int_{e} \mathbf{v} \cdot \mathbf{n}_{e} \, q_{k} \mathrm{d}e \quad \text{ for all } q_{k} \in \mathbb{P}_{k}(e), \text{ for all edge } e, \\ &\text{ for } k_{d} \geq 1 \colon \int_{E} \mathbf{v} \cdot \mathbf{grad} q_{k_{d}} \mathrm{d}E \quad \text{ for all } q_{k_{d}} \in \mathbb{P}_{k_{d}}(E), \\ &\text{ for } k_{r} \geq 0 \colon \int_{E} \mathbf{v} \cdot \mathbf{x}^{\perp} \, q_{k_{r}} \mathrm{d}E \quad \text{ for all } q_{k_{r}} \in \mathbb{P}_{k_{r}}(E). \end{split}$$

The dof's allow to compute the L^2 -orthogonal projection Π_s^0 on the polynomials of degree s for $s \leq k_r + 1$.

2d edge elements (H(rot)-conforming)

For k, k_d , k_r integers, with $k \geq 0$, $k_d \geq -1$, and $k_r \geq 0$:

$$\mathbf{V}_{k,k_d,k_r}^e(E) := \{\mathbf{v}|\mathbf{v}\cdot\mathbf{t}_e \in \mathbb{P}_k(e) \forall e, \operatorname{div}\mathbf{v} \in \mathbb{P}_{k_d}, \operatorname{rot}\mathbf{v} \in \mathbb{P}_{k_r}\},$$

with the degrees of freedom:

$$\int_{e} \mathbf{v} \cdot \mathbf{t}_{e} \, q_{k} \mathrm{d}e \quad \text{ for all } q_{k} \in \mathbb{P}_{k}(e), \text{ for all edge } e,$$
 for $k_{r} \geq 1$:
$$\int_{E} \mathbf{v} \cdot \mathbf{rot} q_{k_{r}} \mathrm{d}E \quad \text{ for all } q_{k_{r}} \in \mathbb{P}_{k_{r}}(E),$$
 for $k_{d} \geq 0$:
$$\int_{E} \mathbf{v} \cdot x \, q_{k_{d}} \mathrm{d}E \quad \text{ for all } q_{k_{d}} \in \mathbb{P}_{k_{d}}(E).$$

The dof's allow to compute the L^2 -orthogonal projection Π^0_s on the polynomials of degree s for $s \leq k_d + 1$.

3d Face elements

The same idea applies to 3D Face elements:

For $k \geq 0$, $k_d \geq 0$, and $k_r \geq -1$ they can be defined as

$$\mathbf{V}_{k,k_d,k_r}^f(E) := \{ \mathbf{v} | \text{ such that } \mathbf{v} \cdot \mathbf{n}_f \in \mathbb{P}_k(f) \, \forall \text{ face } f, \\ \text{with } \operatorname{div} \mathbf{v} \in \mathbb{P}_{k_d}(E), \text{ and } \mathbf{curl} \, \mathbf{v} \in (\mathbb{P}_{k_r}(E))^3 \}.$$

The degrees of freedom are also the natural extension of the 2D case (see next slide)

D.O.F. for 3d Face elements

As degrees of freedom in $\mathbf{V}_{k,k_d,k_r}^f(E)$, we can take the following ones

•
$$\int_f \mathbf{v} \cdot \mathbf{n}_f \, q_k \mathrm{d}f$$
 for all $q_k \in \mathbb{P}_k(f)$, for all face f ,

$$ullet$$
 for $k_d \geq 1$: $\int_E \mathbf{v} \cdot \mathbf{grad} q_{k_d} \mathrm{d} E \quad orall q_{k_d} \in \mathbb{P}_{k_d},$

• and for
$$k_r \geq 0$$
: $\int_E \mathbf{v} \cdot \mathbf{x} \wedge \mathbf{q}_{k_r} \mathrm{d}E \quad \forall \mathbf{q}_{k_r} \in (\mathbb{P}_{k_r})^3.$

The dof allow to compute the L^2 -orthogonal projection Π_s^0 on the polynomials of degree s for $s < k_r + 1$

3D Edge elements - The boundary

Here the definition is more tricky. We start from the **boundary**, and: for every triplet $\kappa = (\kappa, \kappa_d, \kappa_r)$ with $\kappa \geq 0, \kappa_d \geq -1, \kappa_r \geq 0)$ and for every **face** f we define the **local boundary space** on the face f as:

$$\mathbf{V}_{\kappa}^{e}(f) := \mathbf{V}_{\kappa,\kappa_{d},\kappa_{r}}^{e}(f).$$

Then we define the global boundary space

$$\mathcal{B}_{\kappa}(\partial E) := \{ \mathbf{v} | \mathbf{v}^{\tau_f} \in \mathbf{V}_{\kappa}^e(f) \text{ for all face } f \text{ of } \partial E$$
 with $\mathbf{v} \cdot \mathbf{t}_e$ continuous \forall edge e of $\partial E \}$.

3De-curl

3D Edge elements - The curl

Now we take care of the **curl**: for every triplet $\boldsymbol{\mu} = (\mu, \mu_d, \mu_r), \text{ with } \boldsymbol{\mu} \geq 0, \mu_d \geq 0 < \mu_r \geq -1, \text{ we set}$ $\boldsymbol{V}^f_{\boldsymbol{\mu}}(E) := \boldsymbol{V}^f_{\mu, \mu_d, \mu_r}(E).$

Now we are **ready**: for $\kappa = (\kappa, \kappa_d, \kappa_r)$, $\mu = (\mu, \mu_r, \mu_d)$, and $k_d \ge -1$, with $\kappa_r = \mu$ and $\mu_d = -1$ we define

$$\begin{aligned} \mathbf{V}^e_{\kappa,k_d,\mu}(E) &:= \{\mathbf{v}| \text{ such that } \mathbf{v}_{|\partial E} \in \mathcal{B}_\kappa(\partial E); \\ & \text{with } \operatorname{div} \mathbf{v} \in \mathbb{P}_{k_d}(E), \text{ and } \mathbf{curl} \, \mathbf{v} \in \mathbf{V}^f_\mu(E) \}. \end{aligned}$$

56 / 62

Degrees of Freedom for 3D Edge elements-Boundary

As boundary degrees of freedom, we need:

$$ullet \int_e {f v} \cdot {f t}_e \, q_\kappa {
m d} e \quad ext{ for all } q_\kappa \in {\mathbb P}_\kappa(e), \ orall \ ext{ edge } e,$$

$$\bullet \ \ \text{for} \ \kappa_d \geq 0 \colon \quad \int_f \mathbf{v} \cdot \mathbf{x} \ q_{\kappa_d} \mathrm{d}f \quad \forall \ q_{\kappa_d} \in \mathbb{P}_{\kappa_d}(f) \ \forall \ \text{face} \ f,$$

• for
$$\kappa_r \geq 1$$
: $\int_f \mathbf{v} \cdot \mathbf{rot} q_{\kappa_r} \mathrm{d}f \quad orall \ q_{\kappa_r} \in \mathbb{P}_{\kappa_r}(f) \ orall \ \mathrm{face} \ f,$

which are, on each face, the d.o.f. we used for 2-d *edge* spaces. They allow to compute the $L^2(f)$ -projection of the tangential components on $(\mathbb{P}_s(f))^2$ for $s \leq \beta_{d+1}$

3De dof int

Degrees of Freedom for 3D Edge elements-Interior

As far as $\mathbf{w} := \mathbf{curl} \, \mathbf{v}$ is concerned, we note that, always for $\mu = \kappa_r$, the normal components of $\mathbf{w} \cdot \mathbf{n}$ on faces are already determined by the values of the 2d-rot of the tangential components of \mathbf{v} on each face. Since obviously $\operatorname{div} \mathbf{w} = \mathbf{0}$, the only information that is needed for \mathbf{w} is

• for
$$\mu_r \geq 0$$
: $\int_E \mathbf{w} \cdot \mathbf{x} \wedge \mathbf{q}_{\mu_r} \mathrm{d}E$ for all $\mathbf{q}_{\mu_r} \in (\mathbb{P}_{\mu_r})^3$.

And after we took care of $\mathbf{w} \equiv \mathbf{curl} \, \mathbf{v}$ we finally require

$$ullet$$
 for $k_d \geq 0$: $\int_E {f v} \cdot {f x} \; q_{k_d} {
m d} E$ for all $q_{k_d} \in {\mathbb P}_{k_d}$.

These dof allow to compute the L^2 -orthogonal projection Π^0_s on $(P_s(E)^3 \text{ for } s \leq \min\{\beta_d, \mu_r, k_d + 1\}_{\text{one of the projection}}$

L² scalar products

In all our cases (Face or Edge, 2D or 3D), once you know how to compute, for each E, the L^2 -projection from a local VEM space \mathbf{V}^E on $(\mathbb{P}_s(E))^d$, you can define a computable scalar product, exact on p.w. \mathbb{P}_s , in \mathbf{V} as

$$\left[\mathbf{u},\mathbf{v}\right]_{\mathbf{V},\mathbf{h}} := \sum_{E} \int_{E} \Pi_{s}^{E} \mathbf{u} \cdot \Pi_{s}^{E} \mathbf{v} dE + \mathcal{S}_{E}(\mathbf{u} - \Pi_{s}^{E} \mathbf{u}, \mathbf{v} - \Pi_{s}^{E} \mathbf{v}),$$

where the **stabilizer** S_E is any symmetric bilinear form acting on the degrees of freedom, coercive on $ker(\Pi_s^E)$. Often some sort of scaled $L^2(\partial E)$ inner product will do.

Sere-gen

The Serendipity reduction

As it has been done for *nodal* VEM spaces you can now **reduce** the *internal* degrees of freedom (and for edge 3D spaces, also the *face* degrees of freedom), by the *Serendipity General Strategy*. Roughly:

Construct a projection (not necessarily orthogonal) $\Pi_k^{S_E} \colon \mathbf{V}^E \to (\mathbb{P}_k(E))^d$ (or, say, $RT_k(E)$) computable, for each E, with the first S_E degrees of freedom. The reduced **local** space $\mathbf{S}_E \subseteq \mathbf{V}^E$ will then be

$$\mathbf{S}_E := \{ \mathbf{v} \in \mathbf{V}^E | \text{ s.t. } \delta_j \mathbf{v} \equiv \delta_j(\Pi_k^{S_E}(\mathbf{v})) \text{ for } j > S_E \}$$

and the definition of the reduced **global** space will follow as usual. Note that the computablity of L^2 -projections on p.w. \mathbb{P}_k will not be affected.

Serendipity Mixed VEMs; 2D face elements

FEM spaces, VEM spaces and Serendipity ones

Conclu

Conclusions

- Virtual Elements allow very general geometries.
- On quadrilaterals, they improve on traditional FEM for their robustness with respect to *distortions*, in particular for the Serendipity variants.
- Both on triangles and quadrilaterals, they allow a much easier treatment of C^k continuity (k = 1, 2, ...).
- The serendipity approach allows big savings in the number of d.o.f., in particular for high order approximations on polytopes with many edges/faces.
- They already proved interesting in several important applications (elasticity, plates, fluids, magnetics,...).
- Remember: there is no method for all seasons"

62 / 62