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Outline

@ Variational Formulations and Galerkin Methods
© Solving with VEM

© Reducing the internal D.O.F.s

@ Construction of a projector

© Serendipity Nodal spaces

@ Testing the Serendipity VEMs

@ Face and Edge VEM spaces

© Serendipity Face and Edge spaces
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The continuous model problem - Variational Form

Q C R? (polygonal) computational domain, f € L%(Q)
source term. We look for p solution of

~Ap=f inQ peHIQ)

H3 (Q) = {q| g [3(Q), gradg € (L*(Q))?and g=0 on 90}
Setting

a(p, q) 3—/QVP'quX: (f.q) :—/qudx

the variational form is:
Find p € @ := H}(S) such that

a(p7 q) — (f7 q) \V/q E Q Gal App
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Galerkin approximations

The Galerkin method consists in choosing a finite
dimensional @ C @ and looking for p, € Qp such that

/Vph'VthXZ/thdX Van € Qp.
Q Q

In Finite Element Methods, for a given decomposition 7},
of 2 in elements E, the integrals over {2 are split as sums

[ Ve Varix=3" [ Vor Varax
Q E

E€T,

fqth: /fqth
fyfme=3 ),

EcT,

Fam VEM
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Framework of Virtual Elements

Continuous problem: find p € Q := H3(Q) s. t.
a(p,q) =(f,q) VqeQ

e 7, = decomposition of €2 into elements E
We need to define:

e @ a finite dimensional space

(Qh C Q,]P)k“g - Qh|E k > 1)

e a bilinear form ap(-,-) : Qp x Qp — R

e an element f, € Q}

in such a way that the problem

find py € Qp such that ap(ps, qn) = (fo,qn)  Van € Qp

has a unique solution, and optimal error estimates hold.

loo Dec
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Geometry of the Elements in 7,

Typical assumptions on the geometry of the elements:

HO - There exists an integer N and a positive real number
~ such that for every h and for every E € Ty:

o E is star-shaped with respect to every point of a ball
of radius vhg,

o the ratio between the shortest edge and the diameter
he of E is bigger than ~,

o (= consequence) the number of edges of £ is < N

Note: more sophisticated results in recent papers by
Beirdo da Veiga-Lovadina-Russo and Brenner-Guan-Sung

More Gen
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Geometry of the Elements in 7,

The above assumptions can be easily generalized:

HO’- There exists an integer number M and a constant o
such that:

every element E can be written as a union of Mg < M
elements E;, in such a way that

e each E; satisfies HO

o and, if M > 1 then for each i € {1, .., M} there exists
ajel ... M(j+# i) such that the measure of the
intersection E; N E; is bigger than o times the bigger
of the two measures of E; and E;

Set disc pb
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Construction of the discretized problems

Given k > 1 and Tj, we recall that Vh, V E € T}, we need
e a local space Qf such that P, C QkE
o a bilinear form af on QF x QF
e a linear functional fE Qh — R

and from them we build

o Q= {q;7 € H3(Q) such that Ghie € QF, VE € Ty}
© an(ph, ) Zah Ph:Gn) V' ph dn € Qn

o (fh, qn) == Z(fh ,qn)  Vaqn € Qy
E
And we require the two properties in the following page.

2prop
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The two properties
For all A, and for all E in Tp:
H1- Vpk c Pk, th € Qh

a, (P ) = @ (px,qn)  (k — Consistency)

H2- 3 two positive constants o, and o, independent of h
and of E, such that: (Stability)

Yan € Qn o at(qn, qn) < ap (qn, gn) < o at(qn, qn)

Teor
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Convergence

Under these assumptions we have:
Theorem

The discrete problem: Find p, € Qp such that

an(pn, qn) = (fa, qn), YV agn € Qn

has a unique solution p,. Moreover, for every

approximation p; of p in Qn and for every approximation
pr of p that is piecewise in Py, we have

Ip=pulle < C(llo=pillo+lIp = pellng + I = fillay)

where C is a constant independent of h.

Nod2D
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Classical VEM-approximation in 2D
For k integer > 1, ka integer with k — 2 < ka < k we set
Quka(E):={qe C°(E): q.EPk(e) VeCOE, AqePy,(E)}

Degrees of freedom in Qy x, (E):
(D1)The values q(V;) at the vertices V; of E,
and for k > 2

(D2)The moments [ g pi—2ds, px—2 € Pr_s(e), on
each edge e of E,

and, for kn >0
(D3) The moments [ q px, dX, pry € Pia(E).

It is easy to check that D1-D3 are unisolvent. 30
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Classical VEM-approximation in 3D

For k integer > 1, and k¢, ka integers > —1 we set
Qi hp(E)={g€ CO(E) 1q)f € Qi (F)V face f, Age Py, (E)}

As degrees of freedom in Qy k, «, (E) we take:

D1)The values g(V;) at the vertices V; of E,

D2) [ qpk—2ds, px—s € Px_o(e), ¥V edge e,(k > 2),
D3) [ q pi, df . pi, € Py (f), ¥ face f, (ks > 0),

D4) qupkA dx, Pky € PkA(E)' (kA > O)

P e e

It is easy to check that D1-D4 are unisolvent. conta dof 1
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“smallest” case: k =1,kr = —1

Q. 1(E):={q € C*(E): qe€Pi(e) Ve C OE,Ag=0in E}

The dimension of the Local Space is 5. Conta dof k=2



Counting the degrees of freedom

k=2 ki =0
Q0(E):={q € C*(E) : qjc € P2(e)Ve C OE, AqePy(E)}

E 1 / JE
e o= —— q
El Je
C
The dimension of the Local Space is 11. Conta dof gen
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Dimensions of Qxx, and Qk k ks

In general: for a polygon E (in 2 dimensions) with N
vertices (and hence N edges) we have

dim(QkJ(f) = Nk + (kf + 1)(kf -+ 2)/2

where (ks + 1)(kf + 2)/2 is the dimension of the space of
polynomials of degree < k¢ in 2 variables.

Similarly: for a polyhedron E (in 3 dimensions) with Ny
vertices, N, edges and N¢ faces dim(Qx «, «,) equals

(ke+1)(ke+2)  (ka+1)(kat2)(kat3)
N¢ +
2 6
where (ka + 1)(ka +2)(ka + 3)/6 is the dimension of the
space of polynomials of degree < ka in_3 variables. vewrew
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VEM versus FEM on triangles

ANIANIFAY

FEM k=1 FEM k=2 FEM k=3
VEM k=1 VEM k=2 VEM k=3

qua
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VEM versus FEM on quads

AANY

FEM k=1 FEM k=2 FEM k=3
VEM k=1 VEM k=2 VEM k=3

cost_ah
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Qn:={qeH Q) : q.€Px(e)Ve € Tp, AqEPs »(E)VE}

Example: k =2

=/
e=— [ qdE
|E] JE
C

We look for aj(-, ) such that

an(pn, gn) = a(ps, qn) =

grad p;, - grad g,d2

cost ah-2




Qn:={qeH'(Q) : q.€Ps(e) Ve €Ty, AqePy(E)VE}

We look for a computable ap(-,-) such that

ah(ph,qh)ﬁa(ph,qh)E/Vph-thdQ
Q

NOTE: Our dofs allow to compute af(p», q)

aE(pz,q)E/Esz : quE:—/EApz qdE + . Vp2 - nqd?¢

Vpy € Py, Vg € QF



Continuous VEM for the model problem - General k

Qn:={qe H'(Q) : q€P(e) Ve Ty, AqeP, »(E)VE}

We look for a computable ay(-, ) such that

ah(ph,qh):a(ph,qh)E/Vph-thdQ
Q

NOTE: Our dofs allow to compute af(py, q)

#(p1.0)= [ Vpu- VadE = [ Apcade+ | Vpi-nqds

Vpx € Py, Vg € QF
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We define a projector g — 1Y g€ P, (E) by
JE
: v

Def M E (nyq7 Wk) - aE(q7 Wk) VWkEPk
— eP
ef:q v q€PL(E) /I'quﬁ_/ »
OE OF



We define a projector g — 1Y g€ P, (E) by
JE
: v

Def M E (nyq7 Wk) - aE(q7 Wk) VWkEPk
— cP
o e / ﬂfqdé—/ qd(
0E OE
We remark that 1) satisfies (Vpx € Pk, Vq € Q)

I'Ik px = px and aE(ﬂ q, pk) . aE(q Pk)



How to construct a globally computable a,(-,-) - Step 1

We define a projector g — 1) rqeP(E) by

Def |-|V P(E aE(nyqa Wk):aE(q7 Wk) vWkEIP)k
g — =
ef:q = Miq € Pu(E) /nqdz—/qde

OE OE

We remark that 1} satisfies (Vpx € Py, Vg € QF):

MY pi = pi and a"(M} q. pi) = a"(q, px)
and we also observe that

MY q is easily computable (also globally) by the d.o.f. of g

cost ah Gen-2
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nV . E
Y Qy — Py(E) satisfies (Vpx € Py, Vg € QE)
: - ):

HYPk =
= px and af (MY q —
(MY g —q,px) =0, so that:



. E . .
k -
nk Pk =

MY : QF — P(E) satisfies (Vpx € Pk, Vg € QF)
a

(Pn, qn) =

E\.
£):
pr and a“ (MY q — g, pc) =0, so that
a(My pr, MY qn) + a((! — 1), (

ny)Qh)



How to construct a globally computable aj(-,-) - Step 2

MY : QF — P(E) satisfies (Vpx € Py, Vg € QF):

NYpx = px and a5(MYq — g, p) = 0, so that :

a(pn, gn) = a(My pa, 1 qn) + a((/ = Y )pa, (1 = 11} )qn)
We make the choice:

an(pns gn) = (MY pa, 1Y qn) + S((I = 1) pn, (1 = 1Y) qn)
with S(+, ) such that:
c0a(qn, gn) < S(an, qn) < cra(qn, qn) Vau € Ker(NY)
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How to construct a globally computable aj(-,-) - Step 2
MY - QF — P(E) satisfies (Vpx € Py, Vg € QF):

My pc = p and a®(MY g — g, p) = 0, so that :

a(pn, qn) = a(ly pn, M qn) + a((1 = 1 )pn, (1 = 11 )gn)
We make the choice:

an(pn, qn) = a(Ny pa, Y qn) + S((1 = T )pw, (1 = T ) qn)
with S(+, ) such that:

coa(qn, qn) < S(qn: an) < cra(an, gn) Van € Ker(NY)
k-Consistency: VE, for p, € P(E) and g€ QF we have

ar, (px, gn) = a“(px, MY qn) = a"(px, qn)
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How to construct a globally computable aj(-,-) - Step 2

MY - QF — P(E) satisfies (Vpx € Py, Vg € QF):
MY o = pe and af(MYa — a.p.) = 0. so that :

a(pn, qn) = a(My pn, My gn) + a((1 = Y )py, (1 = MY) )
We make the choice:
an(pns an) = a(My pn, 1Y qn) + S((1 = 1Y )pa, (I = Y )an)
with S(-,-) such that:

coa(qn, gn) < S(an, qn) < cra(an, gn) Van € Ker(MNY)
Stability (above):
a5 (qn. qn) < a5(NY g, Y @)+ c1a (g —T1} gn, go— 11 qn)

< a*a"(qn, qn)
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How to construct a globally computable aj(-,-) - Step 2
MY - QF — P(E) satisfies (Vpx € Py, Vg € QF):

MY px = px and a“(NYq — g, px) = 0, so that :
a(pn, qn) = a(Ny pn, MY qn) + a((1 — Y ) pa, (1 — 1Y )qn)
We make the choice:

an(pns an) = a(My pa, 1Y qn) + S((1 = 1Y )pa, (I = 1) an)
with S(-, ) such that:

coa(qn, qn) < S(qn, qn) < c1a(qn, qn) Vqn € Ker(MY)
Stability (below):

ar (qn, qn) > at (MY qn, 1Y q) +coa® (gn—T1Y qn, gn—T1Y qn)
> a*a"(qn, qn)

Int dofs
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Reducing the internal D.O.F.s - Static Condensation

7 o 95 9 )
(*)Z a;juj = TIj, I = 1,9
3¢ °9 ¢4  The final equation for 9 will read
9
D a0t =f
@ O QO i
1 2 8 J=1
Solve ug = <f9 — Z ag’,ur)/a9’9 and replace in (*):
r=1
a; ° a
a/Juj——g agru,—f— Igfg 1'21,8
49,9 * 3 d9.9

same-11 VEM
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Static condensation for VEMs

11
)Y aju=f, i=111
j=1

The final equation for 11 reads

11
Z dii,juj = fi1
j=1
10
Solve uy; 1= <f11 — 311,rUr> /ai1.11 and replace in (*):
r=1
Za, P—— Zan,u, SR S g 1,10

d11.11 d11:11
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Serendipity FEMs

79 9 #5  Static condensation was just a way of
solving the linear system leaving
3¢ 9 ¢4 the approximation space unchanged.
Serendipity changes the approximation
: S 3 space (here @, — @5\ x?y?)

Note: the 8 boundary d.o.f. are unisolvent for the space

S = SPan{l,X,y,xz,Xy,yz,xzy,xyz}-

Clearly P, € S € @, N.B. It suffers from distorsions!!!

S for VEM
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Serendipity VEMs

e g 95
8¢ ¢4
[ o 4
1 2 3

Here,the boundary dofs are enough
to determine a P, in a unique way
Using them, you can construct a
projector M3: from VEMSs onto P»,
and use (M3v)(9) instead of v(9).

In other words, we consider the space

S = {v € VEM,s.t. (M5v)(9) = v(9)}

Cearly P, ¢ & € VEM and the 8 boundary dofs are
unisolvent in S. It does not suffer from distorsions!!! .o s,

Franco Brezz
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dofs for Serendipity VEMS - Property .

Let Ng be the number of d.o.f. d1,---,dp, in each
element E, and assume that they are ordered so that the
boundary d.o.f. are the first ones: &1, -,y

We choose a positive integer S with M < S < Ng such
that the following property holds: Vp, € Py (E)

() {81(pi) = 8a(pi) = . = bs(pi) = O} = {pi = 0}.

Note 1: property . implies that S > dim(IPy).

Note 2: the assumption S > M is needed here to keep
conformity of the global space.

Ex-S-Tria
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Examples: on triangles

Vpk < Pk(E)
() {01(p) = d2(p) = ... = ds(px) = 0} = {px = 0}.
k=1 yes k=2 yes k=3 no

For k < 3, property . holds just using the boundary
d.o.f. (S= M)

If Kk > 3 we will need some of the internal d.o.f.

For instance, for k = 3 we need just 1 internal d.o.f. (and
not 3!1), to “kill" the bubble of Ps. £cs-Qua
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Examples: on quadrilaterals

Vpk < Pk(E)
() {d1(pk) = d2(p) = ... = ds(px) = 0} = {px = 0}.
k=2 yes k=3 yes k=4 no

For k < 4, property . holds just using the boundary
d.o.f. (S= M)

If Kk > 4 we will need some of the internal d.o.f.

For instance, for k = 4 we need just 1 internal d.o.f., (and
not 6!!), to “kill" the bubble of Py. £15-Gen
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Examples: General Case

When do we need internal degrees of freedom? And how
many of them? We need to kill the bubbles of P;:

Bi(E) = P (E) N HE(E). Internal d.o.f. could be

/qbkdx, Vby € Bk(E).
E

Apparently dim(Bx(E)) depends only on k and on the
number of edges. E.g. for Gs:=product of the s edges:

AN T [

Bi(T) = B3px—3 Bik(Q) = Bapr—4a  Bi(P) = Bspk—s

guai
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~ o~

Q P

C C <
quad pentagon

Bi(Q) = MA2Aspi_3
Bi(P) = M A2A3pi—3

What counts is the number 7 of straight lines
necessary to cover the boundary of E. In both cases n = 3

Other etas



Other examples
7 = minimum number of straight lines necessary to cover the boundary

N = number of edges

N=6 1=6 N=6 n=3 N=6 n=5

dim(B«(E)) = dim(IPx_,). Hence we need as internal dofs
fE q Pk—n dx, vpk—n € Pk—n

Bofs Ex d,
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Constructing M3 - Example 1

We consider first a simple case
in which k < 1) so that we can
construct 17 using only the

boundary dofs: n =5, k=4

Then for g € Q43 we define N3 q € P4 by

/(”fCI)CMdS:/ gqsds Vag. Py
OE OE

Note that for all g € Pa: [5£(qa)?ds =0=qs =0

Ex 2
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Constructing M3 - Example 2

We consider a more complex case
in which k > 1) so that to
construct 1 we must use also
internal dofs: n =3, k =4,
and we assume that E is convex.

Then for g € Qa3 we define N2q € P4 by

/(”fCI)CMdS:/ gqsds Vaqi Py
OE

OF
/(HECI)ChdS:/qCIldS Vg € Py
E E
Note: Vqs € Pu: J5£(qa)?ds = 0 = q4 € (bsP1)

Ex 3
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Constructing I3 - Example 3

Now, a more unpleasant case
in which still kK > 7 (so that to
construct 13 we still use also
internal dofs): n =4, k=5,
but without assuming E = convex.
For g € Q54 we define M2q € Ps by

/(H§Q)QSd5:/ qgsds Vgs € Ps
OF OF

/(”?q) bsg1ds = / qbsgrds Vg € Py
E E

Note: Vgs € Py: [5e(g5)?ds = 0 = g5 € (bslP1)

C
Lazy
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The lazy choice and the stingy choice

Setting 7, := dim(IP,) we must add, to the boundary dofs:
e on a triangle (n = 3), m,_3 internal dofs;
o on a quad (n = 4), m_4 internal dofs;

e On an m-gon, m_, internal dofs.

In general, even on very distorted polygons, you must
have as many internal dofs as there are P,-bubbles

In practice, in a code, you may either check every element
to compute its 7 (stingy choice) or treat every element as
if it were a triangle (lazy choice).

The best strategy depends on the circumstances.

S-spaces

Franco Brezzi (IMATI-CNR) VEM Beijing, May 2017 36 / 62



Serendipity VEM-spaces

The operator I'I*,f has the following properties:
° I_If is computable using only the d.o.f. 1,02, ,0ds
o M2qk = qx Vi € Px.

Finally we can set:
Q2 (E)={q€ Qui(E):st.6,(q) = 6,(117q). r= S+l,-, Ne}

From the first S dofs we can compute 17, and then
from 7 we can compute all the other dofs.
Moreover P, C Q7

NOTE! YOU CAN ALWAYS ASSUME kp = k

comp FEM-Tri
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FEM and Serendipity-VEM - Triangles

ANIANIFAY

FEM k=1 FEM k=2 FEM k=3
VEMS k=1 VEMS k=2 VEMS k=3
Comp Quads
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S-FEM (Arnold-Awanou 2011) and S-VEM - Quads

AVAVAYS!

FEMS k=1 FEMS k=2 FEMS k=3 FEMS k=4
VEMS k=1 VEMS k=2 VEMS k=3 VEMS k=4

Num res; Meshes
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Savings in interelement dof's

dofs k=2
Mesh | VEMS, VEM, Qs
83 2,673 7,857 4,401
163 18,785 | 57,953 | 31,841
323 | 140,481 | 444,609 | 241,857
dofs k=3
Mesh | VEMS; VEM; Qs
83 4617 | 14,985 | 11,529
163 32,657 | 110,993 | 84,881
323 | 245,025 | 853,281 | 650,529

Table: Number of inter-element dofs for a cubic uniform mesh. k =2 and k = 3

Franco Brezzi (IMATI-CNR)

VEM

Beijing, May 2017
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Savings in interelement dof's

dofs k=4
Mesh | VEMS, VEM, Qs
83 8,289 23,841 22,113

163 59,585 177,089 164,033
323 | 450,945 | 1,363,329 | 1,261,953

dofs k=5

Mesh | VEMSs VEMSs Qs
83 15,417 34,425 36,153
163 | 112,625 256,241 269,297
323 | 859,617 | 1,974,753 | 2,076,129

Table: Number of inter-element dofs for a cubic uniform mesh. k =4 and k=5
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Two families of meshes

Trapezoidal mesh Voronoi mesh

Franco Brezzi (IMATI-CNR)



Test for the trapezoidal meshes

—Ap=finQ, p=gonl

exact solution:

x® 4 5y? —10y° + y* + x* + xty
f and g chosen accordingly
Arnold — Boffi — Falk(2002)

Trapezoidal mesh

Test Pr LI
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Voronoi mesh

{

div(=xVp+Bp) +yp=1f inQ
p=g onl



k = 3: Q,-FEM, S-FEM, and S-VEM on quads

relative L? error

:R:zteipegrfdipny . : 'A, ET
is0-Q,
e
& degrees of freedom
& # el |stingy | Si| Q

16 105 | 105| 169
64 369 | 369 | 625
256 | 1377 | 1377 | 2401
1024 | 5313 | 5313 | 9409

107 10°

mean diameter

Trapezoidal mesh kK =3

Trap k 5 4
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k =4:. Q,-FEM, S-FEM, and S-VEM on quads

-2

10 5o
=
10 /A"
5 o degrees of freedom
du' of /n # el | stingy | Sk Qx
: g 16 | 161| 161| 289
£ 64 | 577 | 577 | 1089
107" " 256 2177 | 2177 4225
1024 | 8449 | 8449 | 16641
10_1120'2 16“ 10’

mean diameter

Trapezoidal mesh kK =4

¥L k=g
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k = 3: Classical VEM and S-VEM (stingy, lazy) on Lloyd)

T

= casseal VM o

10° N

. ,I,,”" degrees of freedom
Bt g | # el |stingy| lazy| VEM
: 25 | 204| 229| 279
S F | | 100 | 804 | 904| 1104
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Voronoi-Lloyd mesh kK =3
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k = 4: Classical VEM and S-VEM (stingy, lazy on

Franco Brezzi (IMATI-CNR) VEM

Voronoi)
10° ==
ol s iV ':9
il /7, degrees of freedom
&y # el |stingy | lazy | VEM
4 25 | 284 355 430
0 3 100 | 1112 | 1405 | 1705
a : 400 | 4408 | 5605| 6805

¢ : 1600 | 17614 | 22405 | 27205
mjo'z o 10

mean diameter
Voronoi-Lloyd mesh k =4

Beijing, May 2017

48 / 62



Vector valued polynomials

Useful well known decompositions:

In 2 dimensions we have
(P)? = grad(Py1) & x'Py_1,

(Pk)2 = I‘Ot(]P)k+1) b xPy_1.

and in 3 dimensions
(Px)* = grad(Py.1) @ x A (Px_1)?,

(Py)? = curl((Pyy1)?) @ xPy_y,

2D face
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Vector valued polynomials

Classical Mixed FEM's

In 2 dimensions we have
RTy = rot(Py1) ® xPy, N1y = V(Pii1) © x Py,

BDM,, = N2, = (P,)>
and in 3 dimensions
RT, = curl((Py1)*)®xPy, N1, = grad(Py,1)DxA(Py)?,

BDM = N2, = (P)*.

2D face
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2d Face elements (H(div)-conforming)
For k, kg, k. integers, with kK > 0, kg > 0, k, > —1 set:
V,’:?kd’kr(E) ={v|v-n.ecP,(e)Ve,divve Py, rotvePy },

with the following degrees of freedom:

/v ‘ne gede  for all gx € Py(e), for all edge e,
for kg > 1: /v -gradqy, dE  for all g, € Py, (E),
E

for k, > 0: /v -xtqdE  for all g, € P, (E).
E

The dof's allow to compute the [2-orthogonal projection
M2 on the polynomials of degree s for s < k, + 1. 2D ede
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2d edge elements (H(rot)-conforming)
For k, kg, k. integers, with kK > 0, kg > —1, and k, > 0:
i.,kd,k,(E) = {v|v - t.ePy(e)Ve, divvePy,, rotvePy },

with the degrees of freedom:

/v -te qrde  for all g, € Py(e), for all edge e,
for k. > 1: /v -rotqy, dE  for all gx, € Py (E),
E

for kg > 0: /v-quddE for all qi, € Py, (E).
E

The dof's allow to compute the [2-orthogonal projection
M2 on the polynomials of degree s for s < kg + 1. 30 face
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3d Face elements

The same idea applies to 3D Face elements:

For k > 0, ky > 0, and k, > —1 they can be defined as

V/i,kd.,k,(E) ;= {v| such that v-ns € P,(f)V face f,
with divv € Py (E), and curlv € (P, (E))*}).

The degrees of freedom are also the natural extension of
the 2D case (see next slide)

3Df dof
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D.O.F. for 3d Face elements

As degrees of freedom in V,’;kd’kr(E), we can take the
following ones

o/v -ng qedf  for all g, € Py(f), for all face f,
f'
o for ky>1: /v-graquddE Vai, € Py,
E
e and for k, > 0 : /v -x N\ q dE Vqy € (P ).
E

The dof allow to compute the L?-orthogonal projection %
on the polynomials of degree s for s < k, + 1
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3D Edge elements - The boundary

Here the definition is more tricky. We start from the
boundary, and: for every triplet & = (k, Ky, k,) with
k> 0,kg > =1,k > 0) and for every face f we define
the local boundary space on the face f as:

VE(F) = Ve, ().

KoK Ky

Then we define the global boundary space

B (0E) := {v|v™ € Vi(f) for all face f of OE
with v - t. continuousV edge e of OE}.

3De-curl
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3D Edge elements - The curl

Now we take care of the curl: for every triplet
o= (g, g, por), with p >0, g >0 < p, > —1, we set

VI(E) =V . (E).

o fbd s [ or
Now we are ready: for k = (K, kg, k,), b = (1, fors ),
and ky > —1, with x, =y and g = —1 we define

wkyu(E) = {v]| such that v € B, (9E);
with divv € Py, (E). and curlv € V] (E)}.

3Be dofBd
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Degrees of Freedom for 3D Edge elements-Boundary

As boundary degrees of freedom, we need:
° /v -teqyde for all g, € Py(e), V edge e,

e for kg > O: /v-xqﬁddf Y qx, € Py (f) V face f,
f

o for k, > 1: /v -rotq, df V q., € P, (f)V face f,
f

which are, on each face, the d.o.f. we used for 2-d edge

spaces. They allow to compute the L?(f)-projection of

the tangential components on (Ps(f))? for s < 4.1
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Degrees of Freedom for 3D Edge elements-Interior

As far as w := curl v is concerned, we note that, always
for u = K,, the normal components of w - n on faces are
already determined by the values of the 2d-rot of the
tangential components of v on each face. Since obviously
divw = 0, the only information that is needed for w is

o for i, > 0: /w -x A q,dE  forall g, € (P,)°.
E

And after we took care of w = curlv we finally require
e for k; > 0: /v-quddE for all gx, € Py,.
E

These dof allow to compute the [2-orthogonal projection
N2 on (Ps(E)? for s < min{ 3y, pt,, kg + 1} S,
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[? scalar products

In all our cases (Face or Edge, 2D or 3D), once you know
how to compute, for each E, the L2—projection from a
local VEM space VE on (Ps(E))9, you can define a
computable scalar product, exact on p.w. Ps, in V as

= Nfu - NEVAE+Se(u — Nfu,v — NE
wvl,, Z/ Eu - NEVAE+Se(u — NEu, v — NEV),

where the stabilizer S¢ is any symmetric bilinear form
acting on the degrees of freedom, coercive on ker(INE).
Often some sort of scaled L2(OE) inner product will do.

Sere-gen
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The Serendipity reduction

As it has been done for nodal VEM spaces you can now
reduce the internal degrees of freedom (and for edge 3D
spaces, also the face degrees of freedom), by the
Serendipity General Strategy. Roughly:

Construct a projection (not necessarily orthogonal)

M2e: VE — (Py(E))? (or, say, RT«(E)) computable, for
each E, with the first Sg degrees of freedom. The
reduced local space Sg C VE will then be

Sg = {ve VE| st dv=5;(N¥E()) for j > Sg}
and the definition of the reduced global space will follow

as usual. Note that the computablity of L?-projections on
p.-w. Pk will not be affected. FEM:vs VEM
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Serendipity Mixed VEMs; 2D face elements

tt

tt

tt

- DI B A - L e[ 09 0 022
K K i1 K K K )
BDM1 V1,0,0 VS1,0,0 RT1 BDFM1 V1,1,0 VS1,1,0
144 144 144 144 144 144 144

42 [ 45 [ T +2 ™ +12 ™ ~ +6 [ T +8 ™ T 45
IRE IRE EE 'RE IEK IRE EE
BDM2 V2,1,1 VS2,1,1 RT2 BDFM2 v2,2,1 VS2,2,1
144 144 144 44 44 44 114

§+6§§+11§§+6§ +24§§+12§ §+15§§+10§
11t 11t 111 11L 11t 1L 1111
BDM3 V3,22 VS3,2,2 RT3 BDFM3 V33,2 VS$3,3,2

PRESERVING Pk

PRESERVING Pk + x Pk
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Conclusions

o Virtual Elements allow very general geometries.

o On quadrilaterals, they improve on traditional FEM
for their robustness with respect to distortions, in
particular for the Serendipity variants.

e Both on triangles and quadrilaterals, they allow a
much easier treatment of C* continuity (k =1,2,...).

o The serendipity approach allows big savings in the
number of d.o.f., in particular for high order
approximations on polytopes with many edges/faces.

o They already proved interesting in several important
applications (elasticity, plates, fluids, magnetics,...).

o Remember: there is no method for all seasons”
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