Some Recent Advances in Alternating Direction Methods: Practice and Theory

Yin Zhang (张寅)

Department of Computational and Applied Mathematics Rice University, Houston, Texas, USA

The 5th Sino-Japanese Optimization Meeting Beijing, China, September 28, 2011

Outline:

- Alternating Direction Method (ADM)
- Recent Revival and Extensions
- Local Convergence and Rate
- Global Convergence
- Summary

Contributors:
Xin Liu, Junfeng Yang, Zaiwen Wen, Yilun Wang, Chengbo Li, Yuan Shen, Wei Deng, Wotao Yin

Basic Ideas

To an extent，constructing algorithm \approx＂Art of Balance＂
－Optimization algorithms are＂always＂iterative
－Total cost $=$（number of iterations）$\times($ cost／iter）
－ 2 objectives above
It＇s more difficult to analyze iteration complexity．
A good iteration complexity \neq fast algorithm
ADM Idea：lower per－iteration complexity
Approach：
—＂远交近攻＂，＂各个击破＂—Sun－Tzu（400 BC）
－＂Divide and Conquer＂－Julius Caesar（100－44 BC）

Convex program with the 2-separability structure

$$
\min _{x, y} \underbrace{f_{1}(x)+f_{2}(y)}_{f(x, y)} \text {, s.t. } A x+B y=b, x \in \mathcal{X}, y \in \mathcal{Y}
$$

Augmented Lagrangian (AL): penalty $\beta>0$

$$
\mathcal{L}_{\mathcal{A}}(x, y, \lambda)=f(x, y)-\lambda^{\top}(A x+B y-b)+\frac{\beta}{2}\|A x+B y-b\|^{2}
$$

Classic AL Multipler Method (ALM): step $\gamma \in(0,2)$

$$
\left\{\begin{array}{l}
\left(x^{k+1}, y^{k+1}\right) \leftarrow \arg \min _{x, y}\left\{\mathcal{L}_{\mathcal{A}}\left(x, y, \lambda^{k}\right): x \in \mathcal{X}, y \in \mathcal{Y}\right\} \\
\lambda^{k+1} \leftarrow \lambda^{k}-\gamma \beta\left(A x^{k+1}+B y^{k+1}-b\right)
\end{array}\right.
$$

Hestines-69, Powell-69, Rockafellar-73
(It does not explicitly use 2-separability)

Classic Alternating Direction Method（交替方向法）

Replace joint minimization by alternating minimization once：

$$
\min _{x, y} \mathcal{L}_{\mathcal{A}} \approx\left(\min _{x} \mathcal{L}_{\mathcal{A}}\right) \oplus\left(\min _{y} \mathcal{L}_{\mathcal{A}}\right)
$$

（AL）ADM：step $\gamma \in(0,1.618)$

$$
\left\{\begin{array}{l}
x^{k+1} \leftarrow \arg \min _{x}\left\{\mathcal{L}_{\mathcal{A}}\left(x, y^{k}, \lambda^{k}\right): x \in \mathcal{X}\right\} \\
y^{k+1} \leftarrow \arg \min _{y}\left\{\mathcal{L}_{\mathcal{A}}\left(x^{k+1}, y, \lambda^{k}\right): y \in \mathcal{Y}\right\} \\
\lambda^{k+1} \leftarrow \lambda^{k}-\gamma \beta\left(A x^{k+1}+B y^{k+1}-b\right)
\end{array}\right.
$$

It does use 2－separability：（＂远交近攻＂，＂各个击破＂）
－x－subproblem：

$$
\min _{x} f_{1}(x)+\frac{\beta}{2}\left\|A x-c_{1}\left(y^{k}\right)\right\|^{2}
$$

－y－subproblem：

$$
\min _{y} f_{2}(y)+\frac{\beta}{2}\left\|B y-c_{2}\left(x^{k+1}\right)\right\|^{2}
$$

ADM overview (I)

ADM as we know today

- Glowinski-Marocco-75 and Gabay-Mercier-76
- Glowinski at el. 81-89, Gabay-83...

Connections before Aug. Lagrangian

- Douglas, Peaceman, Rachford (middle 1950's)
- operator splittings for PDE (a.k.a. ADI methods)

RICE

ADM overview (II)

After PDE, subsequent studies in optimization

- variational inequality, proximal-point, Bregman, ... (Eckstein-Bertsekas-92)
- inexact ADM (He-Liao-Han-Yang-02)
- Tseng-91, Fukushima-92, ...
- proximal-like, Bregman (Chen and Teboulle-93)
-

ADM had been used in optimization to some extent, but not as widely used to be called "main-stream" algorithm

ADM overview (III)

Recent Revival in Signal/Image/Data Processing

- ℓ_{1}-norm, total variation (TV) minimization
- convex, non-smooth, simple structures

Splitting + alternating:

- Wang-Yang-Yin-Z-2008, FTVd (TV code)
(split + quadratic penalty, 2007)
(split + quadratic penalty + multiplier in code, 2008)
- Goldstein-Osher-2008, split Bregman
(split + quadratic penalty + Bregman, earlier in 2008)
- ADM ℓ_{1}-solver for 8 models: YALL1. Yang-Z-2010

Googled "split Bregman": "found 16,300 results".
Turns out that hot split Bregman $=$ cool ALM

ADM Global Convergence

e.g., "Augmented Lagrangian methods ..." Fortin-Glowinski-83

Assumptions required by current theory:

- convexity over the entire domain
- separability for exactly 2 blocks, no more
- exact or high-accuracy minimization for each block

Strength:

- differentiability not required
- side-constraints allowed: $x \in \mathcal{X}, y \in \mathcal{Y}$

But

- why not 3 or more blocks?
- very rough minimization?
- rate of convergence?

Some Recent Applications

From PDE to:
Signal/Image Processing
Sparse Optimization

TV-minimization in Image Processing

TV/L² deconvolution model (Rudin-Osher-Fatemi-92):

$$
\min _{u} \sum_{i}\left\|D_{i} u\right\|+\frac{\mu}{2}\|K u-f\|^{2} \quad(\text { sum all pixels })
$$

Splitting:

$$
\min _{u, \mathbf{w}}\left\{\sum\left\|\mathbf{w}_{i}\right\|+\frac{\mu}{2}\|K u-f\|^{2}: \mathbf{w}_{i}=D_{i} u, \forall i\right\}
$$

Augmented Lagrangian function $\mathcal{L}_{\mathcal{A}}(\mathbf{w}, u, \lambda)$:

$$
\sum_{i}\left(\left\|\mathbf{w}_{i}\right\|-\lambda_{i}^{\top}\left(\mathbf{w}_{i}-D_{i} u\right)+\frac{\beta}{2}\left\|\mathbf{w}_{i}-D_{i} u\right\|^{2}\right)+\frac{\mu}{2}\|K u-f\|^{2}
$$

Closed formulas for minimizing w.r.t. w (shrinkage) and u (FFT) (almost linear-time per iteration)

Shrinkage (or Soft Thresholding)

Solution to a simple optimization problem:

$$
x(v, \mu):=\arg \min _{x \in \mathbb{R}^{d}}\|x\|+\frac{\mu}{2}\|x-v\|^{2}
$$

where $\|\cdot\|$ is the Euclidean norm in $\mathbb{R}^{d}, v \neq 0$ and $\mu>0$.

$$
x(v, \mu)=\max \left(\|v\|-\frac{1}{\mu}, 0\right) \frac{v}{\|v\|}
$$

This formula was used at least 30 years ago.

Multiplier helps: Penalty vs. ADM

Matlab package FTVd (Wang-Yang-Yin-Z, 07~09): http://www.caam.rice.edu/~optimization/L1/ftvd/ (v1-3 use Quadratic penalty, v4 applies ADM.

Orders of magnitude faster than PDE-based methods.
Key: "splitting-alternating" takes advantage of the structure. Use of multiplier brings further speedup.

Example: Cross-channel blur + Gaussian noise

 FTVd: $\min _{u} \operatorname{TV}(u)+\mu\|K u-f\|_{2}^{2}$, sizes 512^{2} and 256^{2}Urigınal

Original

Blurry\&Noisy. SNH: 8.01dB

Blurry\&Noisy. SNR: 6.70dB

FIVd: SNR: $19 . \mathrm{b4dB}, \mathrm{t}=16.86 \mathrm{~s}$

FTVd: SNR: $18.49 \mathrm{~dB}, \mathrm{t}=4.29 \mathrm{~s}$

ℓ_{1}-minimization in Compressive Sensing

Signal acquisition/compression: $A \in \mathbb{R}^{m \times n}(m<n)$

$$
b \approx A x^{*} \in \mathbb{R}^{m}
$$

where $x^{*} \in \mathbb{R}^{n}$ is sparse or compressible under a orthogonal transformation Ψ. ℓ_{1} norm is used as the surrogate of sparsity.

8 signal recovery models: $A \in \mathbb{R}^{m \times n}(m<n)$
(1) $\min \left\|\Psi_{x}\right\|_{1}$, s.t. $A x=b \quad(x \geq 0)$
(2) $\min \left\|\Psi_{x}\right\|_{1}$, s.t. $\|A x-b\|_{2} \leq \delta \quad(x \geq 0)$
(0) min $\left\|\Psi_{x}\right\|_{1}+\mu\|A x-b\|_{2}^{2} \quad(x \geq 0)$

- $\min \left\|\Psi_{x}\right\|_{1}+\mu\|A x-b\|_{1} \quad(x \geq 0)$

Can we solve these 8 model by ≤ 30 lines of 1 Matlab code? YALL1 using ADM.

ℓ_{1}-minimization in Compressive Sensing (II)

Sparse signal recovery model: $A \in \mathbb{R}^{m \times n}(m<n)$

$$
\min \left\{\|x\|_{1}: A x=b\right\} \quad \stackrel{\text { dual }}{\Longleftrightarrow} \max \left\{b^{\top} y: A^{\top} y \in[-1,1]^{n}\right\}
$$

Add splitting z to "free" $A^{\top} y$ from the unit box:

$$
\max \left\{b^{\top} y: A^{\top} y=z \in[-1,1]^{n}\right\}
$$

ADM (1 of variants in Yang-Z-09): $A A^{\top}=I$ (common in CS)

$$
\begin{aligned}
& y \leftarrow A(z-x)+b / \beta \\
& z \leftarrow \mathcal{P}_{[-1,1]^{n}}\left(A^{\top} y+x\right) \\
& x \leftarrow x-\gamma\left(z-A^{\top} y\right)
\end{aligned}
$$

Numerical Comparison

ADM solver package YALL1: http://yall1.blogs.rice.edu/
Compared codes: SPGL1, NESTA, SpaRSA, FPC, FISTA, CGD

(noisy measurements, average of 50 runs)

Nonasymptotically, ADMs showed the fastest speed of convergence in reducing error $\left\|x^{k}-x^{*}\right\|$.

Single Parameter β

In theory, $\beta>0 \Longrightarrow$ convergence
How to choose the penalty parameter in practice?
In YALL1: Make the subproblems scalar scale invariant

- Scale A to "unit" size
- Scale b accordingly.
- $\beta=m /\|b\|_{1}$.

Optimal choice is still an open theoretical question.

Signal Reconstruction with Group Sparsity

Group-sparse signal $x=\left(x_{1} ; \cdots ; x_{s}\right), x_{i} \in \mathbb{R}^{n_{i}}, \sum_{i=1}^{s} n_{i}=n$

$$
\min _{x} \sum_{i=1}^{s}\left\|x_{i}\right\|_{2} \text { s.t. } A x=b
$$

Introduce splitting $y \in \mathbb{R}^{n}$,

$$
\min _{x, y} \sum_{i=1}^{s}\left\|y_{i}\right\|_{2} \text { s.t. } y=x, A x=b
$$

ADM (Deng-Yin-Z-10):

$$
\begin{aligned}
y & \leftarrow \operatorname{shrink}\left(x+\lambda_{1}, 1 / \beta\right) \quad \text { (group-wise) } \\
x & \leftarrow\left(I+A^{T} A\right)^{-1}\left(\left(y-\lambda_{1}\right)+A^{\top}\left(b+\lambda_{2}\right)\right) \\
\left(\lambda_{1}, \lambda_{2}\right) & \leftarrow\left(\lambda_{1}, \lambda_{2}\right)-\gamma(y-x, A x-b)
\end{aligned}
$$

Easy if $A A^{T}=I$; else take a steepest descent step in x (say).

Multi-Signal Reconstruction with Joint Sparsity

Recover a set of jointly sparse signals $X=\left[\begin{array}{lll}x_{1} & \cdots & x_{p}\end{array}\right] \in \mathbb{R}^{n \times p}$

$$
\min _{X} \sum_{i=1}^{n}\left\|e_{i}^{T} X\right\| \text { s.t. } A_{j} x_{j}=b_{j}, \forall j
$$

Assume $A_{j}=A$ for simplicity. Introduce splitting $Z \in \mathbb{R}^{p \times n}$,

$$
\min _{X} \sum_{i=1}^{n}\left\|Z e_{i}\right\| \text { s.t. } Z=X^{T}, A X=B
$$

ADM (Deng-Yin-Z-10):

$$
\begin{aligned}
Z & \leftarrow \operatorname{shrink}\left(X^{\top}+\Lambda_{1}, 1 / \beta\right) \quad \text { (column-wise) } \\
X & \leftarrow\left(I+A^{T} A\right)^{-1}\left(\left(Z-\Lambda_{1}\right)^{\top}+A^{\top}\left(B+\Lambda_{2}\right)\right) \\
\left(\Lambda_{1}, \Lambda_{2}\right) & \leftarrow\left(\Lambda_{1}, \Lambda_{2}\right)-\gamma\left(Z-X^{T}, A X-B\right)
\end{aligned}
$$

Easy if $A A^{T}=I$; else take a steepest descent step in X.

Extensions to Non-convex Territories

(as long as convexity exists in each direction)

Low-Rank/Sparse Matrix Models
Non-separable functions
More than 2 blocks

Matrix Fitting Models (I): Completion

Find low-rank Z to fit data $\left\{M_{i j}:(i, j) \in \Omega\right\}$
Nuclear-norm minimization is good, but SVDs are expensive.
Non-convex model (Wen-Yin-Z-09): find $X \in \mathbb{R}^{m \times k}, Y \in \mathbb{R}^{k \times n}$

$$
\min _{X, Y, Z}\|X Y-Z\|_{F}^{2} \text { s.t. } \mathcal{P}_{\Omega}(Z-M)=0
$$

An SOR scheme:

$$
\begin{aligned}
& Z \leftarrow \omega Z+(1-\omega) X Y \\
& X \leftarrow \operatorname{qr}\left(Z Y^{\top}\right) \\
& Y \leftarrow X^{\top} Z \\
& Z \leftarrow X Y+\mathcal{P}_{\Omega}(M-X Y)
\end{aligned}
$$

1 small QR ($m \times k$). No SVD. ω dynamically adjusted. Much faster than nuclear-norm codes (when it is applicable)

Nonlinear GS vs SOR

(a) $n=1000, r=10, \mathrm{SR}=0.08$

(b) $\mathrm{n}=1000, \mathrm{r}=10, \mathrm{SR}=0.15$

Alternating minimization, but no multiplier for storage reason
Is non-convexity a problem for global optimization of this problem?

- "Yes" in theory
- "Not really" in practice

Matrix Fitting Models (II): Separation

Given data $\left\{D_{i j}:(i, j) \in \Omega\right\}$,
Find low-rank Z so that difference $\mathcal{P}_{\Omega}(Z-D)$ is sparse
Non-convex Model (Shen-Wen-Z-10): $U \in \mathbb{R}^{m \times k}, V \in \mathbb{R}^{k \times n}$

$$
\min _{U, V, Z}\left\|\mathcal{P}_{\Omega}(Z-D)\right\|_{1} \text { s.t. } Z-U V=0
$$

ADM scheme:

$$
\begin{aligned}
U & \leftarrow \operatorname{qr}^{\left((Z-\Lambda / \beta) V^{\top}\right)} \\
V & \leftarrow U^{\top}(Z-\Lambda / \beta) \\
\mathcal{P}_{\Omega^{c}}(Z) & \leftarrow \mathcal{P}_{\Omega^{c}}(U V+\Lambda / \beta) \\
\mathcal{P}_{\Omega}(Z) & \leftarrow \mathcal{P}_{\Omega}(\operatorname{shrink}(\cdots)+D) \\
\Lambda & \leftarrow \Lambda-\gamma \beta(Z-U V)
\end{aligned}
$$

- 1 small QR. No SVD. Faster.
- non-convex, 3 blocks. nonlinear constraint. convergence?

Nonnegative Matrix Factorization (Z-09)

Given $A \in \mathbb{R}^{n \times n}$, find $X, Y \in \mathbb{R}^{n \times k}(k \ll n)$,

$$
\min \left\|X Y^{\top}-A\right\|_{F}^{2} \text { s.t. } X, Y \geq 0
$$

Splitting:

$$
\min \left\|X Y^{\top}-A\right\|_{F}^{2} \text { s.t. } X=U_{1}, Y=U_{2}, U_{1}, U_{2} \geq 0
$$

ADM scheme:

$$
\begin{aligned}
X & \leftarrow\left(A Y+\beta\left(U_{1}-\Lambda_{1}\right)\right)\left(Y^{\top} Y+\beta I\right)^{-1} \\
Y^{\top} & \leftarrow\left(X^{\top} X+\beta I\right)^{-1}\left(X^{\top} A+\beta\left(U_{2}-\Lambda_{2}\right)\right) \\
\left(U_{1}, U_{2}\right) & \leftarrow \mathcal{P}_{+}\left(X+\Lambda_{1}, Y+\Lambda_{2}\right) \\
\left(\Lambda_{1}, \Lambda_{2}\right) & \leftarrow\left(\Lambda_{1}, \Lambda_{2}\right)-\gamma\left(X-U_{1}, Y-U_{2}\right)
\end{aligned}
$$

- cost/iter: $2(k \times k)$ linear systems plus matrix arithmetics
- better performance than Matlab built-in function "nnmf"
- non-convex, non-separable, 3 blocks: convergence?

Theoretical Convergence Results

A general setting
Local R-linear convergence

Global convergence for linear constraints
(Liu-Yang-Z, work in progress)

General Setting: Problem

Consider

$$
\min _{x} f(x) \text { s.t. } c(x)=0
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}(m<n)$ are \mathcal{C}^{2}-mappings. Augmented Lagrangian:

$$
\mathcal{L}_{\alpha}(x, y) \triangleq \alpha f(x)-y^{T} c(x)+\frac{1}{2}\|c(x)\|^{2}
$$

Augmented saddle point system:

$$
\begin{array}{r}
\nabla_{x} \mathcal{L}_{\alpha}(x, y)=0 \\
c(x)=0
\end{array}
$$

Splitting and Iteration Scheme

$G: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a splitting of $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ if

$$
G(x, x) \equiv F(x), \forall x \in \mathbb{R}^{n} .
$$

e.g., if $A=L-R, G(x, x) \triangleq L x-R x \equiv A x \triangleq F(x)$.

Let $G(x, x, y)$ be a splitting of $\nabla_{x} \mathcal{L}_{\alpha}(x, y)$ on x
Augmented saddle point system becomes

$$
\begin{aligned}
G(x, x, y) & =0 \\
c(x) & =0
\end{aligned}
$$

A general Split (gSS) Scheme for Saddle-point Systems:

$$
\begin{aligned}
& x^{k+1} \leftarrow G\left(x, x^{k}, y^{k}\right)=0 \\
& y^{k+1} \leftarrow y^{k}-\tau c\left(x^{k+1}\right)
\end{aligned}
$$

Block Jacobi for Square System $F(x)=0$

Partition the system and variable into $s \leq n$ consistent blocks:

$$
F=\left(F_{1}, F_{2}, \cdots, F_{s}\right), \quad x=\left(x_{1}, x_{2}, \cdots, x_{s}\right)
$$

Block Jacobi iteration: given x^{k}, for $i=1,2, \ldots, s$

$$
\begin{gathered}
x_{i}^{k+1} \leftarrow F_{i}\left(x_{1}^{k}, \ldots, x_{i-1}^{k}, x_{i}, x_{i+1}^{k}, \ldots, x_{s}^{k}\right)=0 \\
\text { or } \quad x^{k+1} \leftarrow G\left(x, x^{k}\right)=0
\end{gathered}
$$

where

$$
G(x, z)=\left(\begin{array}{c}
F_{1}\left(x_{1}, z_{2}, \ldots, z_{s}\right) \\
\vdots \\
F_{i}\left(z_{1}, \ldots, x_{i}, z_{i+1}, \ldots, z_{s}\right) \\
\vdots \\
F_{s}\left(z_{1}, \ldots, x_{s}\right)
\end{array}\right)
$$

Block Gauss-Seidel for Square System $F(x)=0$

Block GS iteration: given x^{k}, for $i=1,2, \ldots, s$

$$
\begin{gathered}
x_{i}^{k+1} \leftarrow F_{i}\left(x_{1}^{k+1}, \ldots, x_{i-1}^{k+1}, x_{i}, x_{i+1}^{k}, \ldots, x_{s}^{k}\right)=0 \\
\text { or } \quad x^{k+1} \leftarrow G\left(x, x^{k}\right)=0
\end{gathered}
$$

where

$$
G(x, z)=\left(\begin{array}{c}
F_{1}\left(x_{1}, z_{2}, \ldots, z_{s}\right) \\
\vdots \\
F_{i}\left(x_{1}, \ldots, x_{i}, z_{i+1}, \ldots, z_{s}\right) \\
\vdots \\
F_{s}\left(x_{1}, \ldots, x_{s}\right)
\end{array}\right)
$$

(SOR can be similarly defined.)

Splitting for Gradient Descent: $F(x)=\nabla f(x)$

Gradient descent method (with a constant step size):

$$
\begin{gathered}
x^{k+1}=x^{k}-\alpha F\left(x^{k}\right), \\
\text { or } \quad x^{k+1} \leftarrow G\left(x, x^{k}\right)=0
\end{gathered}
$$

where

$$
G(x, z)=\frac{1}{\alpha} x-\left(\frac{1}{\alpha} z-F(z)\right) .
$$

- gradient descent iterations can be done block-wise
- block GS, SOR and gradient descent can be mixed (e.g., 1st block: GS; 2nd block: gradient descent)

Assumptions

Let $\partial_{i} G(x, x, y)$ be the partial Jacobian of the splitting G w.r.t. the i-th argument, and $\partial_{i} G^{*} \triangleq \partial_{i} G\left(x^{*}, x^{*}, y^{*}\right)$ where x^{*} is a minimizer and y^{*} the associated multiplier.

Assumption 1. (2nd-order Sufficiency)
$f, c \in \mathcal{C}^{2}$, and $\alpha>0$ is chosen so that

$$
\nabla_{x}^{2} \mathcal{L}_{\alpha}\left(x^{*}, y^{*}\right) \succ 0
$$

Assumption 2. (Requirement on splitting)
$\partial_{1} G$ is nonsingular in a neighborhood of $\left(x^{*}, x^{*}, y^{*}\right)$, and

$$
\rho\left(\left[\partial_{1} G^{*}\right]^{-1} \partial_{2} G^{*}\right)<1
$$

(e.g., for gradient descent: $\left[\partial_{1} G^{*}\right]^{-1} \partial_{2} G^{*}=I-\alpha \nabla^{2} f\left(x^{*}\right)$)

Assumptions are Reasonable

A1. 2nd-order sufficiency guarantees that $\alpha>0$ exists so that

$$
\alpha\left[\nabla^{2} f\left(x^{*}\right)-\sum_{i} \hat{y}_{i}^{*} \nabla^{2} c_{i}\left(x^{*}\right)\right]+A\left(x^{*}\right)^{\top} A\left(x^{*}\right) \succ 0
$$

where $A(x)=\partial c(x)$. Note

$$
\nabla_{x} \mathcal{L}_{\alpha}(x, y)=G(x, x, y) \Longrightarrow \nabla_{x}^{2} \mathcal{L}_{\alpha}^{*}=\partial_{1} G^{*}+\partial_{2} G^{*} \succ 0
$$

A2. Any convergent linear splitting for matrices $\succ 0$ leads to a corresponding nonlinear splitting G satisfying

$$
\rho\left(\left[\partial_{1} G^{*}\right]^{-1} \partial_{2} G^{*}\right)<1
$$

Hence, A2 is satisfied by block GS (i.e., ADM), SOR, gradient descent (with appropriate α) and their mixtures.

The Error System

Recall gSS:

$$
\begin{aligned}
& x^{k+1} \leftarrow G\left(x, x^{k}, y^{k}\right)=0 \\
& y^{k+1} \leftarrow y^{k}-\tau c\left(x^{k+1}\right)
\end{aligned}
$$

Using Implicit Function Theorem, we derive an error system

$$
e^{k+1}=M^{*}(\tau) e^{k}+o\left(\left\|e^{k}\right\|\right)
$$

where $e^{k} \triangleq\left(x^{k}, y^{k}\right)-\left(x^{*}, y^{*}\right)$,

$$
M^{*}(\tau)=\left[\begin{array}{cc}
-\left[\partial_{1} G^{*}\right]^{-1} \partial_{2} G^{*} & {\left[\partial_{1} G^{*}\right]^{-1} A^{* \top}} \\
\tau A^{*}\left[\partial_{1} G^{*}\right]^{-1} \partial_{2} G^{*} & I-\tau A^{*}\left[\partial_{1} G^{*}\right]^{-1} A^{* \top}
\end{array}\right]
$$

Key Lemma. (Z-2010) Under Assumptions 1-2, there exists $\eta>0$ such that $\rho\left(M^{*}(\tau)\right)<1$ for all $\tau \in(0,2 \eta)$.

Convergence: $\tau \in(0,2 \eta)$

Theorem [Local convergence].

There exists an open neighborhood U of a KKT point $\left(x^{*}, y^{*}\right)$
such that for any $\left(x^{0}, y^{0}\right) \in U$, the sequence $\left\{\left(x^{k}, y^{k}\right)\right\}$ generated by gSS stays in U and converges to $\left(x^{*}, y^{*}\right)$.

Theorem [R-linear rate].
The asymptotic convergence rate of gSS is R-linear with R-factor $\rho\left(M^{*}(\tau)\right)$, i.e.,

$$
\limsup _{k \rightarrow \infty}\left\|\left(x^{k}, y^{k}\right)-\left(x^{*}, y^{*}\right)\right\|^{1 / k}=\rho\left(M^{*}(\tau)\right)
$$

- These follow from the Key Lemma and Ortega-Rockoff-70.

Corollary [quadratic case].
If f is quadratic and c is affine, then $U=\mathbb{R}^{n} \times \mathbb{R}^{m}$ and the convergence is globally Q-linear with Q-factor $\rho\left(M^{*}(\tau)\right)$.

Global Convergence: Linear Constraints

$$
\min _{x} f\left(x_{1}, \cdots, x_{p}\right), \text { s.t. } \sum A_{i} x_{i}=b
$$

1st-order optimality or saddle point system:

$$
\begin{aligned}
\nabla f(x) & =A^{\top} y \\
A x-b & =0
\end{aligned}
$$

Augmented saddle point system:

$$
\begin{aligned}
\nabla f(x)+\beta A^{\top}(A x-b) & =A^{\top} y \\
y-\tau \beta(A x-b) & =y
\end{aligned}
$$

Splittings $(F(x)=G(x, x))$ can be applied to the 1st equation.

- Block Jacobi type give block diagonal split
- ADM: a block Gauss-Seidel type split

Global Convergence (preliminary)

$$
\min _{x} f\left(x_{1}, \cdots, x_{p}\right) \text {, s.t. } \sum A_{i} x_{i}=b
$$

f is separable if $f\left(x_{1}, \cdots, x_{p}\right)=\sum_{i}^{p} f_{i}\left(x_{i}\right)$. In this case, the Hessian is block diagonal.

Block Jacobi scheme:
If $f \in \mathcal{C}^{2}$ is separable, and each

$$
\nabla^{2} f_{i}\left(x_{i}\right)+\beta A_{i}^{T} A_{i} \succeq \epsilon I
$$

$\nabla_{x}^{2} \mathcal{L}_{\alpha}$ is uniformly block diagonally dominant, then the block Jacobi scheme converges to a KKT point.

It can be extended to more general settings (GS, ...) under further assumptions (still under scrutiny).

The number of blocks can be arbitrary without modification Other multi-block extensions exist with convexity and algorithm modifications (He and Yuan et al).

Summary: $A D M \simeq$ Splitting + Alternating

A simple yet effective approach to exploiting structures:

- bypasses non-differentiability
- enables very cheap iterations
- has at least an R-linear rate
- great versatility, good efficiency

Many issues remain. Convergence theory needs more work.

References on Codes

(FISTA) A. Beck, and M. Teboulle, "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems", SIAM J. Imag. Sci., 2:183-202, 2009.
(NESTA) J. Bobin, S. Becker, and E. Candes, "NESTA: A Fast and Accurate First-order Method for Sparse Recovery", TR, CalTech, April 2009.

(SPGL1) M. P. Friedlander and E. van den Berg, "Probing the Pareto frontier for basis pursuit solutions", SIAM J. Sci. Comput., 31(2):890-912, 2008.
(FPC) E. T. Hale, W. Yin, and Y. Zhang, "Fixed-point continuation for I1-minimization: Methodology and convergence", SIAM J. Optim, 19(3):1107-1130, 2008.
(IALM) Z. Lin, M. Chen, L. Wu, and Y. Ma, "The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices", TR UIUC, UILU-ENG-09-2215, Nov. 2009.
(FPCA) S. Ma, D. Goldfarb and L. Chen, "Fixed Point and Bregman Iterative Methods for Matrix Rank Minimization", Math. Prog., to appear.

(APGL) K.-C. Toh, and S. W. Yun, "An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems", Pacific J. Optimization.
(SpaRSA) S. Wright, R. Nowak, M. Figueiredo, "Sparse reconstruction by separable approximation", IEEE Trans Signal Process., 57(7):2479-2493, 2009.
(CGD) S. Yun, and K.-C. Toh, "A coordinate gradient descent method for L1-regularized convex minimization", Computational Optimization and Applications, to appear.

