Expected Residual Minimization for Stochastic Variational Inequalities

Xiaojun Chen

Hong Kong Polytechnic University

SJOM 2011, 26-29 September 2011

Joint work with H. Fang, M. Fukushima, G. Lin, A. Sumalee,

R.J-B Wets, C. Zhang, Y. Zhang

Outline

- Stochastic complementarity problems
- Stochastic variational inequalities
- Smoothing sample average approximation (SSAA)
- Traffic equilibrium assignment

I. Stochastic complementarity problems

Nonlinear complementarity problem (NCP): Given $F : \mathbb{R}^n \to \mathbb{R}^n$,

$$x \ge 0, \quad F(x) \ge 0, \quad x^T F(x) = 0.$$

The NCP can be reformulated as a system of nonlinear equations

$$\Phi(x, F(x)) = \begin{pmatrix} \phi(x_1, F_1(x)) \\ \vdots \\ \phi(x_n, F_n(x)) \end{pmatrix} = 0$$

or a minimization problem

$$\min_{x \in \mathbb{R}^n} \|\Phi(x, F(x))\|^2$$

by using an NCP function ϕ , e.g.

$$\phi(x_i, F_i(x)) = \min(x_i, F_i(x)).$$

NCP functions

A function $\phi: R^2 \rightarrow R$ is called an NCP-function if

 $\phi(a,b) = 0 \quad \Leftrightarrow \quad ab = 0, a \ge 0, b \ge 0.$

Example of NCP functions

$$\begin{split} \phi_{NR}(a,b) &= \min(a,b) & \text{natural residual} \\ \phi_{FB}(a,b) &= a + b - \sqrt{a^2 + b^2} & \text{Fischer-Burmeister function} \\ \phi_{CCK}(a,b) &= \lambda \phi_{FB}(a,b) + (1-\lambda)a_+b_+ & \text{penalized FB function} \end{split}$$

Smoothing Newton methods and semismooth Newton methods are efficient to solve the NCP via the nonsmooth equations $\Phi(x, F(x)) = 0$ or minimization problem min $\|\Phi(x, F(x))\|^2$.

Cottle-Pang-Stone (1992), Facchinei-Pang (2000), Ferris-Pang (1997), Ralph (1994), B.Chen-Harker (1997), C.Chen-Mangasarian (1996), Chen-Qi-Sun (1998), Chen-Ye (1999), B.Chen-Chen-Kanzwo (2000), Luo-Tseng(1997), Yamashita-Fukushima (1997), Qi-Sun (1993), Fukushima (2001), Han-Xiu-Qi (2006), Hu-Huang-J.Chen (2009), et al.

Deterministic formulation using NCP function

Stochastic NCP: Given $F: \Xi \times \mathbb{R}^n \to \mathbb{R}^n$, find $x \in \mathbb{R}^n$ such that

 $x \ge 0$, $F(\xi, x) \ge 0$, $x^T F(\xi, x) = 0$, for $\xi \in \Xi$.

• Expected value (EV) formulation

Gürkan-Özge-Robinson(1999), Ruszczynski-Shapiro(2003), Jiang-Xu(2008)

$$x \ge 0, \quad E[F(\xi, x)] \ge 0, \quad x^T E[F(\xi, x)] = 0$$

$$\Leftrightarrow \qquad \min_{x \in \mathbb{R}^n} \|\Phi(x, E[F(\xi, x)])\|^2$$

 Expected residual minimization (ERM) formulation Chen-Fukushima(2005)

$$\min_{x \ge 0} E[\|\Phi(x, F(\xi, x))\|^2]$$

ERM formulation for NCP

Expected residual minimization (ERM) formulation

 $\min_{x \ge 0} \varphi(x) := E[\|\min(x, F(\xi, x))\|^2]$ (ERM)

Chen-Fukushima(MOR 2005)

- Smoothing algorithms for solving ERM Chen-Zhang-Fukushima(MP 2009, one of the top 8 most cited articles published in MP in 2009-2010) Zhang-Chen(SIOPT 2009).
- Applications in traffic assignment Zhang-Chen-Sumalee (TRB 2011)
- Math. Programming with stochastic equilibrium constraints Lin-Chen-Fukushima (MP 2009)
- Error bounds

 $E[dist(x - X_{\xi}^{*})] \le \alpha E[\|\min(x, F(\xi, x))\|^{2}]$

Chen-Xiang (MP 2006, 2011, SIOPT 2007). sidual Minimization for Stochastic Variational Inequalities 5/21

II. Stochastic variational inequalities

Variational inequalities (VI): Given a closed and convex set X and a continuous function $F : \mathbb{R}^n \to \mathbb{R}^n$, find $x \in X$ such that

$$(y-x)^T F(x) \ge 0, \quad \forall y \in X.$$

The VI can be reformulated as a minimization problem by using a residual function f:

(i)
$$f(x) \ge 0$$
, $\forall x \in D \supseteq X$.
(ii) $f(x^*) = 0 \quad \Leftrightarrow \quad x^*$ solves the VI.

Projection function

$$\min_{x \in R^n} f(x) := \|x - \operatorname{Proj}_X(x - F(x))\|^2$$

Gap function

$$\min_{x \in X} f(x) := \max_{y \in X} (x - y)^T F(x).$$

A residual function of stochastic VI

Stochastic VI

Given $F : \Xi \times \mathbb{R}^n \to \mathbb{R}^n$, $X_{\xi} \subset \mathbb{R}^n$ and $\Xi \subseteq \mathbb{R}^L$, a set representing future states of knowledge, find $x \in X_{\xi}$ such that

$$(y-x)^T F(\xi, x) \ge 0, \quad \forall y \in X_{\xi}, \qquad \xi \in \Xi.$$

Definition of a residual function Chen-Wets-Zhang(2011) Let $D \subseteq R^n$ be a closed and convex set. $f : \Xi \times D \to R_+$ is a residual function of the stochastic VI, if the following conditions hold,

- (i) For any $x \in D$, prob{ $f(\xi, x) \ge 0$ } = 1.
- (ii) $\exists u : \Xi \times D \to R^n$ such that for any $x \in D$ and almost every $\xi \in \Xi$, $f(\xi, x) = 0$ if and only if $u(\xi, x)$ solves the $VI(X_{\xi}, F(\xi, \cdot))$.

Example: Projection function

$$f(\xi, x) := \|x - \operatorname{Proj}_{X_{\xi}}(x - F(\xi, x))\|^2$$

with $D = R^n$ and $u(\xi, x) = x$.

Stochastic VI with linear constraints

Given $F: \Xi \times \mathbb{R}^n \to \mathbb{R}^n$, $X_{\xi} \subset \mathbb{R}^n$ and $\Xi \subseteq \mathbb{R}^L$, find $x \in X_{\xi}$ such that

$$(y-x)^T F(\xi, x) \ge 0, \quad \forall y \in X_{\xi}, \qquad \xi \in \Xi.$$

$$X_{\xi} = \{ x | Ax = b_{\xi}, \, x \ge 0 \}$$

Gap function for a fixed ξ

$$f(\xi, x) := \max_{y \in X_{\xi}} (x - y)^T F(\xi, x)$$

= $x^T F(\xi, x) + \max\{-y^T F(\xi, x) \mid Ay = b_{\xi}, y \ge 0\}$
= $x^T F(\xi, x) + \min\{z^T b_{\xi} \mid A^T z + F(\xi, x) \ge 0\}.$

A residual function of stochastic VI Chen-Wets-Zhang(2011)

 $f(\xi, x) = u(\xi, x)^T F(\xi, u(\xi, x)) + \min\{z^T b_{\xi} \mid A^T z + F(\xi, u(\xi, x)) \ge 0\}$ where $u(\xi, x) = x + A^{\dagger}(b_{\xi} - Ax), \qquad A^{\dagger} = A^T (AA^T)^{-1}.$

Stochastic VI using a residual function

$$f(\xi, x) = u(\xi, x)^T F(\xi, u(\xi, x)) + Q(\xi, u(\xi, x))$$

 $u(\xi, x) = x + A^{\dagger}(b_{\xi} - Ax)$ is 'recourse' solution (projection of x on X_{ξ}).

$$Q(\xi, u(\xi, x)) = \min\{ z^T b_{\xi} \mid A^T z + F(\xi, u(\xi, x)) \ge 0 \}$$

= $\max\{ -y^T F(\xi, u(\xi, x)) \mid y \in X_{\xi} \}.$

Let $D = \{x | (A^{\dagger}A - I)x \leq c\}, \quad c_i \leq \min_{\xi \in \Xi} (A^{\dagger}b_{\xi})_i$. Then we have $Au(\xi, x) = b_{\xi}, u(\xi, x) \geq 0$ for $x \in D \Rightarrow u(\xi, x) \in X_{\xi}$, for $x \in D$.

$$f(\xi, x) = u(\xi, x)^T F(\xi, u(\xi, x)) + Q(\xi, u(\xi, x))$$

= $u(\xi, x)^T F(\xi, u(\xi, x)) - y(\xi, x)^T F(\xi, u(\xi, x))$
= $\max\{(u(\xi, x) - y)^T F(\xi, u(\xi, x)) | y \in X_{\xi}\}$
 $\geq 0.$

Hence, we obtain $\operatorname{prob}\{f(\xi, x) \ge 0\} = 1$. Moreover, $f(\xi, x) = 0$ if and only if $u(\xi, x)$ solves the VI($X_{\xi}, F(\xi, \cdot)$) a.s Expected Residual Minimization for Stochastic Variational Inequalities

ERM formulation vs EV formulation

Expected residual minimization (ERM) formulation

$$\min_{x \in D} E[f(\xi, x)] = E[u(\xi, x)^T F(\xi, u(\xi, x)) + Q(\xi, u(\xi, x))]$$

x is the first level decision, $u(\xi, x)$ is the recourse variable. $u(\xi, x)$ is feasible but not necessarily optimal, i.e.

$$u(\xi, x) \in X_{\xi}$$
 but $f(\xi, x) \ge 0$.

The cost function $f(\xi, x)$ measures the loss at the event ξ and decision x. The ERM formulation minimizes the expected values of the loss for all possible occurrences due to failure of the equilibrium.

• Expected value (EV) formulation Find $x \in \overline{X} = \{ x | Ax = E[b_{\xi}], x \ge 0 \}$ such that

$$(y-x)^T E[F(\xi,x)] \ge 0, \quad \forall y \in \bar{X}$$

III: Smoothing sample average approximation

• Definition 1: Let $\varphi : R^n \to R$ be locally Lipschitz. We call $\tilde{\varphi} : R^n \times R_+ \to R$ a smoothing function of φ , if $\tilde{\varphi}(\cdot, \mu)$ is continuously differentiable in R^n for any fixed $\mu > 0$, and for any $x \in R^n$,

$$\lim_{z \to x, \mu \downarrow 0} \tilde{\varphi}(z, \mu) = \varphi(x).$$

• Subdifferential associated with $\tilde{\varphi}$

$$G_{\tilde{\varphi}}(x) = \{ v : \nabla_x \tilde{\varphi}(x^{\nu}, \mu_{\nu}) \to v, \text{ for } x^{\nu} \to x, \ \mu_{\nu} \downarrow 0 \}.$$

Rockafellar and Wets (1998): $G_{\tilde{\varphi}}(x)$ is nonempty and bounded,

$$\partial \varphi(x) = \operatorname{CO}\{\lim_{\substack{x_i \to x \\ x_i \in D\varphi}} \nabla \varphi(x_i)\} \subseteq \operatorname{co} G_{\tilde{\varphi}}(x).$$

In our problems: $\partial \varphi(x) = \mathrm{co} G_{\tilde{\varphi}}$

Smoothing sample average approximation(SSAA)

Xiaojun Chen, Roger J-B Wets and Yanfang Zhang (2011)

ERM
$$\min_{x \in D} \varphi(x) = E[f(\xi, x)]$$
(1)

smoothing ERM $\min_{x \in D} \varphi_{\mu}(x) = E[f(\xi, x, \mu)]$ (2)

SSAA - ERM
$$\min_{x \in D} \Phi^{N}_{\mu}(x) := \frac{1}{N} \sum_{i=1}^{N} \tilde{f}(\xi^{i}, x, \mu),$$
 (3)

where $\tilde{f}: \Xi \times \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}_+$ is a smoothing approximation of f.

 \bar{x} is called a stationary point of (3) if

$$\Phi^N_\mu(\bar{x}; z - \bar{x}) \ge 0, \quad \forall z \in D.$$

Assumptions and Properties

- A1. $X_{\xi} = \{x | Ax = b_{\xi}, x \ge 0\}$ is bounded (applications O.K.)
- A2. b_{ξ} and $F(\xi, x)$ are bounded for $x \in X_{\xi}$ and $\xi \in \Xi$, a.s. (standard)
- P1 Relatively complete recourse recourse variable $u(\xi, x)$ is bounded and

$$\max\{-y^T F(\xi, u(\xi, x)) \mid y \in X_{\xi}\}$$

has a solution a.s.

- P2 $f(\xi, \cdot)$ is global Lipschitz a.s.
- **P3** $E[f(\xi, \cdot)]$ is globally Lipschitz on $D \supseteq X_{\xi}$, and semismooth.

Convergence of SSAA

Xiaojun Chen, Roger J-B Wets and Yanfang Zhang (2011)

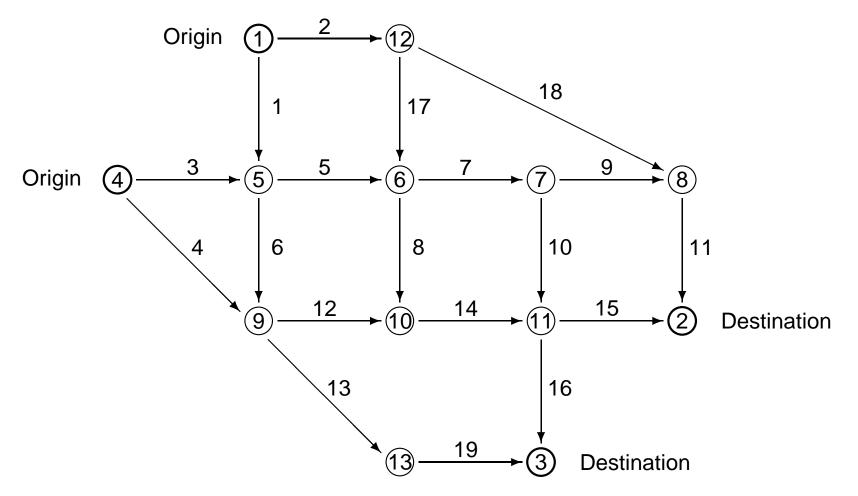
Let S^N_{μ} and T^N_{μ} be the sets of solutions and stationary points of (3), respectively.

Under assumptions (A1)-(A2), if the sample is iid, then the following hold.

- (1.1) Any sequence $\{x^N_\mu \in S^N_\mu\}$ has a cluster point as $N \to \infty$ and $\mu \downarrow 0$ a.s.
- (1.2) Any cluster point of $\{x_{\mu}^{N} \in S_{\mu}^{N}\}$ is an optimal solution of the ERM (1) a.s.
- (2.1) Any sequence $\{x^N_\mu \in T^N_\mu\}$ has a cluster point as $N \to \infty$ and $\mu \downarrow 0$ a.s.
- (2.2) Any cluster point of $\{x_{\mu}^{N} \in T_{\mu}^{N}\}$ is a stationary point of the ERM (1) a.s.

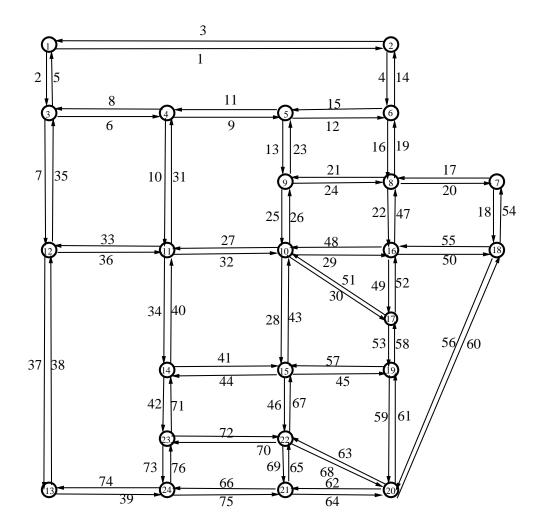
IV Traffic equilibrium assignment

Nguyen and Dupuis Network with random OD demand b_{ξ} random link capacities (affecting travel time $F(\xi, \cdot)$)



13 nodes, 19 links, 25 paths connecting 4 origin-destination (OD) pairs $1 \rightarrow 2, 4 \rightarrow 2, 1 \rightarrow 3$ and $4 \rightarrow 3$. Expected Residual Minimization for Stochastic Variational Inequalities 15/21

Sioux Falls network



24 nodes, 76 links, 528 OD pairs, 1179 paths

Wardrop's user equilibrium

- Wardrop's user equilibrium At the equilibrium point no traveler can change his route to reduce his travel cost.
- For one scenario $\xi \in \Xi$, the static Wardrop's user equilibrium is equivalent to NCP: Find x, such that

$$x \ge 0, \quad F(\xi, x) \ge 0, \quad x^T F(\xi, x) = 0,$$

where y : a path flow pattern, v : a travel cost vector.

$$x = \begin{pmatrix} y \\ v \end{pmatrix}, \quad F(\xi, x) = \begin{pmatrix} G(\xi, y) - A^T v \\ Ay - b_{\xi} \end{pmatrix}$$

VI: Find $x \in X_{\xi}$, such that $(y-x)^T G(\xi, x) \ge 0, \quad \forall y \in X_{\xi} = \{x | Ax = b_{\xi}, x \ge 0\}$

- G : path travel cost function
- A : Origin-Destination(OD) route incidence matrix
- *b* : demand on each OD-pair

Smoothing algorithms

- Choose a smoothing function $\tilde{\varphi}(x,\mu)$ and an algorithm for smooth problems
- Use $\tilde{\varphi}(x_k, \mu_k)$ and its gradient $\nabla \tilde{\varphi}(x_k, \mu_k)$ at each step of the algorithm
- Update the smoothing parameter μ_k at each step. The updating scheme plays a key role in convergence analysis of the smoothing method.

Challeges:

- 1 How to choose a smoothing function and an algorithm for the problem ?
- 2 How to update the smoothing parameter μ_k ?

We develop efficient smoothing projected gradient method and smoothing conjugate gradient method.

We prove global convergence of these methods to a stationary point.

Smoothing gradient method

Step 1. Choose constants σ , $\rho \in (0, 1)$, and an initial point x^0 . Set k = 0. Step 2. Compute the gradient

$$g_k = \nabla \tilde{\varphi}(x^k, \mu_k).$$

Step 3. Compute the step size ν_k by the Armijo line search, where $\nu_k = \max\{\rho^0, \rho^1, \cdots\}$ and ρ^i satisfies

$$\tilde{\varphi}(x^k - \rho^i g_k, \mu_k) \le \tilde{\varphi}(x^k, \mu_k) - \sigma \rho^i g_k^T g_k.$$

Set $x^{k+1} = x^k - \nu_k g_k$. Step 4. If $\|\nabla \tilde{\varphi}(x^{k+1}, \mu_k)\| \ge n\mu_k$, then set $\mu_{k+1} = \mu_k$; otherwise, choose $\mu_{k+1} = \sigma \mu_k$.

Smoothing conjugate gradient method Chen-Zhou (SIIMS 2010).

Nguyen and Dupuis Newtwork ($\beta = 0.9, \varepsilon = 3.3E3$)

		$x_{ m EV}$	$x_{ m ERM}$
	$\operatorname{prob}\{f(\xi, x) \le \varepsilon\}$	0.508	0.952
$N = 10^{3}$	$E[f(\xi,x)]$	3.498E3	2.938E3
$\mu = 10^{-4}$	$lpha^*$	7.935E3	3.226E3
	$\operatorname{CVaR}(x, \alpha^*)$	8.154E3	3.333E3
	$\operatorname{prob}\{f(\xi, x) \le \varepsilon\}$	0.510	0.908
$N = 5 * 10^3$	$E[f(\xi,x)]$	3.498E3	2.983E3
$\mu = 10^{-5}$	$lpha^*$	7.918E3	3.286E3
	$\operatorname{CVaR}(x, \alpha^*)$	8.121E3	3.403E3
	$\operatorname{prob}\{f(\xi, x) \le \varepsilon\}$	0.509	0.927
$N = 10^4$	$E[f(\xi,x)]$	3.505E3	2.976E3
$\mu = 10^{-6}$	$lpha^*$	7.978E3	3.253E3
	$\operatorname{CVaR}(x, \alpha^*)$	8.168E3	3.359E3

 $\alpha^*(x) \in \operatorname*{argmin}_{\alpha \in R} \operatorname{CVaR}(x, \alpha) := \alpha + \frac{1}{1 - \beta} E\{[f(\xi, x) - \alpha]_+\}.$

References

- 1. X. Chen and M. Fukushima, Expected residual minimization method for stochastic linear complementarity problems, Math. Oper. Res. 30(2005) 1022-1038.
- 2. X. Chen, R. J-B Wets and Y. Zhang, Stochastic variational inequalities: residual minimization smoothing/sample average approximations, SIAM J. Optim. under revision 2011.
- 3. X. Chen, C. Zhang and M. Fukushima, Robust solution of monotone stochastic linear complementarity problems, Math. Program. 117(2009) 51-80.
- 4. H. Fang, X. Chen and M. Fukushima, Stochastic R0 matrix linear complementarity problems, SIAM J. Optim. 18(2007) 482-506.
- 5. G. Lin, X. Chen and M. Fukushima, Solving stochastic mathematical programs with equilibrium constraints via approximation and smoothing implicit programming with penalization, Math. Program. 116(2009) 343-368.
- 6. C. Zhang and X. Chen, Smoothing projected gradient method and its application to stochastic linear complementarity problems, SIAM J. Optim. 20(2009) 627-649.
- C. Zhang, X. Chen and A Sumalee, Robust Wardrop's user equilibrium assignment under stochastic demand and supply: expected residual minimization approach, Transp. Res. B 45(2011) 534-552.