# First Order Algorithms for Well Structured Optimization Problems

Marc Teboulle

School of Mathematical Sciences Tel Aviv University

SJOM – Sino-Japan Optimization Meeting September 26-29, 2011 – Beijing, China

# **Opening Remark and Credit**

About more than 380 years ago.....In 1629, Fermat suggested the following:

#### **Opening Remark and Credit**

About more than 380 years ago.....In 1629, Fermat suggested the following:

• Given f, solve for x:  
• 
$$\left[\frac{f(x+d) - f(x)}{d}\right]_{d=0} = 0$$



...We can hardly expect to find a more general method to get the maximum or minimum points on a curve.....

#### Pierre de Fermat

# A Wealth of Algorithms Using/Based First Order Information

#### .....Historical Development: Some fundamental Schemes......

- Fixed point methods [Babylonian time!/Heron for square root, Picard, Banach, Weisfield'34]
- Gauss-Seidel '1798 (coordinate descent), Alternating Minimization
- Gradient methods [Cauchy' 1846, Rosen'63, Frank-Wolfe '56, Polyak'62]
- Stochastic Gradients [Robbins and Monro '51]
- Arrow-Hurwicz ['58]; Subgradient methods [Shor'61, Polyak'64]
- Proximal-Algorithms [Martinet '70, Rockafellar '76, Fukushima-Mine'81]
- Penalty/Barrier methods [Courant'49, Fiacco-McCormick'66]
- Augmented Lagrangians and Splitting [Hestenes-Powell'69, Goldstein-Treyakov'72, Rockafellar'74, Mercier-Lions '79, Passty'79, Fortin-Glowinski'76, Bertsekas'82]
- Extragradient-methods for VI [Korpelevich '76, Konnov,'80]
- Optimal Gradient Schemes [Nemirosvki-Yudin'81, Nesterov'83]
- .....and more.....

#### Mainly developed as general purpose algorithms

# **Goals and Outline**

Building and Analyzing Simple and Efficient First Order Schemes Exploiting Structures for Various Classes of Problems

# **Goals and Outline**

Building and Analyzing Simple and Efficient First Order Schemes Exploiting Structures for Various Classes of Problems

#### Outline

- Gradient/Subgradient: Some Basic Algorithms and Results
- Fast Gradient-Based Schemes with Improved Convergence Rate:
- Nonconvex Models with Nice Structures

Talk based on joint works with:

A. Auslender (Lyon), A.Beck (Technion), R. Luss (Tel Aviv)

# First Order/Gradient Based Methods: Why?

A main drawback: Can be very slow for producing high accuracy solutions....But share many advantages:

# First Order/Gradient Based Methods: Why?

A main drawback: Can be very slow for producing high accuracy solutions....But share many advantages:

- Use minimal information, e.g., (f, f')
- Often lead to very simple and "cheap" iterative schemes.
- Complexity/iteration mildly dependent (e.g., linear) in problem's dimension, (as opposed to more sophisticated methods)
- Suitable when high accuracy is not crucial [in many large scale applications, the data is anyway corrupted or known only roughly..]

# First Order/Gradient Based Methods: Why?

A main drawback: Can be very slow for producing high accuracy solutions....But share many advantages:

- Use minimal information, e.g., (f, f')
- Often lead to very simple and "cheap" iterative schemes.
- Complexity/iteration mildly dependent (e.g., linear) in problem's dimension, (as opposed to more sophisticated methods)
- Suitable when high accuracy is not crucial [in many large scale applications, the data is anyway corrupted or known only roughly..]

For very large scale problems with medium accuracy requirements, gradient based methods often remain the only practical alternative.... Widely used in many applications....

- **Olustering Analysis:** The k-means algorithm
- **2** Neuro-computing: The backpropagation algorithm
- **Statistical Estimation:** The EM (Expectation-Maximization) algorithm.
- Machine Learning: SVM, Regularized regression, PCA, etc...
- **Signal and Image Processing:** Sparse Recovery, Denoising and Deblurring Schemes, Total Variation minimization...
- ...and much more...

# A Useful Optimization Model

(M) 
$$\min \{F(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x}) : \mathbf{x} \in \mathbb{E}\}$$

- $\mathbb{E}$  is a finite dimensional Euclidean space with inner product  $\langle \cdot, \cdot \rangle$  and norm  $\| \cdot \| = \langle \cdot, \cdot \rangle^{1/2}$ .
- $g: \mathbb{E} \to (-\infty, \infty]$  is proper closed and convex, assumed subdifferentiable over dom g assumed closed.
- $f : \mathbb{E} \to \mathbb{R}$  is  $C_{L(f)}^{1,1}$  over  $\mathbb{E}$ , i.e., with gradient Lipschitz:

 $\exists L(f) > 0: \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L(f) \|\mathbf{x} - \mathbf{y}\|, \ \forall \mathbf{x}, \mathbf{y}.$ 

• We assume that (M) is solvable, i.e.,

$$X_* := \operatorname{argmin} f \neq \emptyset$$
, and for  $\mathbf{x}^* \in X_*$ , set  $F_* := F(\mathbf{x}^*)$ .

The model (M) does already have *structural information*. It is rich enough to recover various classes of smooth/nonsmooth convex and nonconvex minimization problems.

# Gradient-Based Schemes for Special Cases of (M)

Specializing model (M):min<sub>x</sub>  $F(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x})$  with f = 0 or  $g = 0, \delta_C$ 

The Gradient Method 
$$\min_{\mathbf{x}} f(\mathbf{x})$$
 :  $\mathbf{x}^{k} = \mathbf{x}^{k-1} - t_{k} \nabla f(\mathbf{x}^{k-1})$   
The Gradient Projection  $\min_{\mathbf{x} \in C} f(\mathbf{x})$  :  $\mathbf{x}^{k} = \prod_{C} (\mathbf{x}^{k-1} - t_{k} \nabla f(\mathbf{x}^{k-1}))$   
Subgradient Projection  $\min_{\mathbf{x} \in C} g(\mathbf{x})$  :  $\mathbf{x}^{k} = \prod_{C} (\mathbf{x}^{k-1} - t_{k} \gamma^{k-1}), \ \gamma^{k-1} \in \partial g(\mathbf{x}^{k-1})$   
Proximal Minimization  $\min_{\mathbf{x}} g(\mathbf{x})$  :  $\mathbf{x}_{k} = \operatorname*{argmin}_{\mathbf{x}} \{g(x) + \frac{1}{2t_{k}} \| \mathbf{x} - \mathbf{x}^{k-1} \|^{2} \}$ 

- t<sub>k</sub> > 0 is a suitable stepsize: fixed; backtracking line search; exact line search; or diminishing step-size: t<sub>k</sub> → 0, ∑ t<sub>k</sub> = ∞
- $\Pi_C(\mathbf{x}) := \underset{\mathbf{z} \in C}{\operatorname{argmin}} \|\mathbf{z} \mathbf{x}\|^2$ . is the orthogonal projection onto  $C \subset \mathbb{E}$
- $\delta_{C}(\cdot)$  is the indicator for C

## Some Typical Rate of Convergence for Gradient Schemes

Our focus is on non-asymptotic global rate of convergence.

Onvex Smooth Minimization: Gradient/Gradient Projection (GP)

$$f(\mathbf{x}^k) - f(\mathbf{x}^*) = O(1/k)$$

Onvex Nonsmooth Minimization: Subgradient Method (SM)

$$\min_{1\leq s\leq k}g(\mathsf{x}_s)-g_*=O(rac{1}{\sqrt{k}})$$

**3** Nonconvex Smooth Mininization: Gradient/Gradient Projection

$$\min_{1\leq s\leq k} \|\nabla f(\mathbf{x}_{s-1})\| = O(\frac{1}{\sqrt{k}})$$

- Key Advantages: rate nearly *independent* of problem's dimension. GP Simple, when projections are easy to compute...
- Main Drawbacks: GP often too slow even for low accuracy requirements...For SM, worse... needs k ≥ ε<sup>-2</sup> iterations!
- Can we improve the situation..?...

# **Building Gradient-Based Schemes**

Our objective is to solve

(M) min 
$$\{F(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x}) : \mathbf{x} \in \mathbb{E}\}, f \text{ smooth}, g \text{ nonsmooth}$$

### **Building Gradient-Based Schemes**

Our objective is to solve

(M)  $\min \{F(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x}) : \mathbf{x} \in \mathbb{E}\}, f \text{ smooth}, g \text{ nonsmooth}$ 

#### Useful and Basic Approaches Include:

- Discretization of dynamical systems
- Local Approximation models for(M)
- Fixed point methods on corresponding optimality conditions

#### Less Standard: Deriving schemes for optimization via VI algorithms

### **Building Gradient-Based Schemes**

Our objective is to solve

(M)  $\min \{F(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x}) : \mathbf{x} \in \mathbb{E}\}, f \text{ smooth}, g \text{ nonsmooth}$ 

#### Useful and Basic Approaches Include:

- Discretization of dynamical systems
- Local Approximation models for(M)
- Fixed point methods on corresponding optimality conditions

Less Standard: Deriving schemes for optimization via VI algorithms

A Key Player: The Proximal Framework

Two key ideas from: [Fukushima-Mine'81] and [Passty'79]

Two key ideas from: [Fukushima-Mine'81] and [Passty'79]

**()** Approximation: Given some y, approximate f(x) + g(x) via:

$$q(\mathbf{x}, \mathbf{y}) = f(\mathbf{y}) + \langle \mathbf{x} - \mathbf{y}, \nabla f(\mathbf{y}) \rangle + \frac{1}{2t} \|\mathbf{x} - \mathbf{y}\|^2 + g(\mathbf{x}).$$

That is, leaving the nonsmooth part  $g(\cdot)$  untouched.

Two key ideas from: [Fukushima-Mine'81] and [Passty'79]

**()** Approximation: Given some y, approximate f(x) + g(x) via:

$$q(\mathbf{x}, \mathbf{y}) = f(\mathbf{y}) + \langle \mathbf{x} - \mathbf{y}, \nabla f(\mathbf{y}) \rangle + \frac{1}{2t} \|\mathbf{x} - \mathbf{y}\|^2 + g(\mathbf{x}).$$

That is, leaving the nonsmooth part  $g(\cdot)$  untouched. Then, solve the approximate model:  $\mathbf{x}_k = \underset{\mathbf{x}}{\operatorname{argmin}} q(\mathbf{x}, \mathbf{x}_{k-1})$ 

Two key ideas from: [Fukushima-Mine'81] and [Passty'79]

**()** Approximation: Given some y, approximate f(x) + g(x) via:

$$q(\mathbf{x},\mathbf{y}) = f(\mathbf{y}) + \langle \mathbf{x} - \mathbf{y}, 
abla f(\mathbf{y}) 
angle + rac{1}{2t} \|\mathbf{x} - \mathbf{y}\|^2 + g(\mathbf{x}).$$

That is, **leaving the nonsmooth part**  $g(\cdot)$  **untouched**. Then, solve the approximate model:  $\mathbf{x}_k = \operatorname{argmin} q(\mathbf{x}, \mathbf{x}_{k-1})$ 

**3** Fixed Point via the optimality condition (Convex case):  $\mathbf{x}^* \in \operatorname{argmin} \{ f(\mathbf{x}) + g(\mathbf{x}) \}$  iff  $\mathbf{0} \in \nabla f(\mathbf{x}^*) + \partial g(\mathbf{x}^*)$ .

Two key ideas from: [Fukushima-Mine'81] and [Passty'79]

**()** Approximation: Given some y, approximate f(x) + g(x) via:

$$q(\mathbf{x}, \mathbf{y}) = f(\mathbf{y}) + \langle \mathbf{x} - \mathbf{y}, \nabla f(\mathbf{y}) \rangle + \frac{1}{2t} \|\mathbf{x} - \mathbf{y}\|^2 + g(\mathbf{x}).$$

That is, leaving the nonsmooth part  $g(\cdot)$  untouched. Then, solve the approximate model:  $\mathbf{x}_k = \operatorname{argmin} q(\mathbf{x}, \mathbf{x}_{k-1})$ 

Ø Fixed Point via the optimality condition (Convex case):
 x<sup>\*</sup> ∈ argmin{f(x) + g(x)} iff 0 ∈ ∇f(x<sup>\*</sup>) + ∂g(x<sup>\*</sup>). Fix any t > 0, then the following equivalent statements hold:

$$\Leftrightarrow \mathbf{0} \in t\nabla f(\mathbf{x}^*) - \mathbf{x}^* + \mathbf{x}^* + t\partial g(\mathbf{x}^*) \Leftrightarrow (I + t\partial g)(\mathbf{x}^*) \in (I - t\nabla f)(\mathbf{x}^*) \Leftrightarrow \mathbf{x}^* \in (I + t\partial g)^{-1}(I - t\nabla f)(\mathbf{x}^*),$$

Two key ideas from: [Fukushima-Mine'81] and [Passty'79]

**()** Approximation: Given some y, approximate f(x) + g(x) via:

$$q(\mathbf{x}, \mathbf{y}) = f(\mathbf{y}) + \langle \mathbf{x} - \mathbf{y}, 
abla f(\mathbf{y}) 
angle + rac{1}{2t} \|\mathbf{x} - \mathbf{y}\|^2 + g(\mathbf{x}).$$

That is, leaving the nonsmooth part  $g(\cdot)$  untouched. Then, solve the approximate model:  $\mathbf{x}_k = \operatorname{argmin} q(\mathbf{x}, \mathbf{x}_{k-1})$ 

Ø Fixed Point via the optimality condition (Convex case):
 x<sup>\*</sup> ∈ argmin{f(x) + g(x)} iff 0 ∈ ∇f(x<sup>\*</sup>) + ∂g(x<sup>\*</sup>). Fix any t > 0, then the following equivalent statements hold:

$$\Leftrightarrow \mathbf{0} \in t\nabla f(\mathbf{x}^*) - \mathbf{x}^* + \mathbf{x}^* + t\partial g(\mathbf{x}^*) \Leftrightarrow (I + t\partial g)(\mathbf{x}^*) \in (I - t\nabla f)(\mathbf{x}^*) \Leftrightarrow \mathbf{x}^* \in (I + t\partial g)^{-1}(I - t\nabla f)(\mathbf{x}^*),$$

Through both approaches we obtain the Proximal-Gradient Scheme:

$$\begin{aligned} \mathbf{x}_{k} &= \operatorname*{argmin}_{\mathbf{x}} q(\mathbf{x}, \mathbf{x}_{k-1}) = \operatorname*{argmin}_{\mathbf{x} \in \mathbb{E}} \left\{ g(\mathbf{x}) + \frac{1}{2t_{k}} \| \mathbf{x} - (\mathbf{x}_{k-1} - t_{k} \nabla f(\mathbf{x}_{k-1})) \|^{2} \right\} \\ \mathbf{x}_{k} &= (I + t_{k} \partial g)^{-1} (I - t_{k} \nabla f)(\mathbf{x}_{k-1}) := \operatorname{prox}_{t_{k}}(g) (I - t_{k} \nabla f)(\mathbf{x}_{k-1}) \end{aligned}$$

Thus, the scheme is a proximal step at a gradient iteration for f and reveals the fundamental role of the **proximal operator**.

Marc Teboulle - Tel Aviv University

# The Proximal Map (Moreau - (1964))

**Theorem [Moreau-(64)]** Let  $g:\mathbb{E}\to (-\infty,\infty]$  be closed proper convex. For any t>0, let

$$g_t(\mathbf{z}) = \min_{\mathbf{u}} \left\{ g(\mathbf{u}) + \frac{1}{2t} \|\mathbf{u} - \mathbf{z}\|^2 \right\}$$
(\*)

## The Proximal Map (Moreau - (1964))

**Theorem [Moreau-(64)]** Let  $g:\mathbb{E}\to (-\infty,\infty]$  be closed proper convex. For any t>0, let

$$g_t(\mathbf{z}) = \min_{\mathbf{u}} \left\{ g(\mathbf{u}) + \frac{1}{2t} \|\mathbf{u} - \mathbf{z}\|^2 \right\} \qquad (*)$$

 $Imi\{g_t(\mathbf{z}): \ z \in \mathbb{E}\} = \min\{g(\mathbf{u}): \ u \in \mathbb{E}\}.$ 

It is attained at the unique point

$$\operatorname{prox}_t(g)(\mathbf{z}) = (I + t\partial g)^{-1}(\mathbf{z})$$
 for every  $\mathbf{z} \in \mathbb{E}$ ,

and the map  $(I + t\partial g)^{-1}$  is single valued from  $\mathbb{E}$  into itself.

**③** The function  $g_t(\cdot)$  is  $C^{1,1}$  convex on  $\mathbb{E}$  with a  $\frac{1}{t}$ -Lipschitz gradient:

$$abla g_t(\mathsf{z}) = rac{1}{t}(I - \mathsf{prox}_t(g)(\mathsf{z})) ext{ for every } \mathsf{z} \in \mathbb{E}.$$

# The Proximal Gradient Method for (M)

The proximal gradient method with a constant stepsize rule.

Proximal Gradient Method with Constant Stepsize Input: L = L(f) - A Lipschitz constant of  $\nabla f$ . Step 0. Take  $\mathbf{x}_0 \in \mathbb{E}$ . Step k.  $(k \ge 1)$  Compute the prox of g $\mathbf{x}_k = p_L(\mathbf{x}_{k-1}) = \underset{\mathbf{x} \in \mathbb{E}}{\operatorname{argmin}} \left\{ g(\mathbf{x}) + \frac{L}{2} \| \mathbf{x} - (\mathbf{x}_{k-1} - \frac{1}{L} \nabla f(\mathbf{x}_{k-1})) \|^2 \right\}$ 

- The Lipschitz constant L(f) is not always known or not easily computable, this issue is resolved with an easy backtracking stepsize rule.
- A drawback: need to know how to compute efficiently  $\text{prox}_t(g)(\cdot)$
- What is the Global Rate of Convergence for PGM?

# Computing $prox_t(g)$ : A Useful Example

- Computing prox<sub>t</sub>(g) can be very hard..lf at all possible..!.?..
- But, for many useful special cases can be easy...

# Computing $prox_t(g)$ : A Useful Example

- Computing prox<sub>t</sub>(g) can be very hard..lf at all possible..!.?..
- But, for many useful special cases can be easy...
- If  $g \equiv \delta_C$ , the indicator of C closed and convex, then

$$prox_t(g)(\mathbf{x}) = \underset{\mathbf{u}}{\operatorname{argmin}} \{ \delta_C(\mathbf{u}) + \frac{1}{2t} \|\mathbf{u} - \mathbf{x}\|^2 \} = \underset{\mathbf{u}}{\operatorname{argmin}} \{ \frac{1}{2t} \|\mathbf{u} - \mathbf{x}\|^2 : \mathbf{u} \in C \}$$
$$= (I + t\partial g)^{-1}(\mathbf{x}) = \Pi_C(\mathbf{x}), \text{ the ortho projection on } C$$

# Computing $prox_t(g)$ : A Useful Example

- Computing prox<sub>t</sub>(g) can be very hard..lf at all possible..!.?..
- But, for many useful special cases can be easy...
- If  $g \equiv \delta_C$ , the indicator of C closed and convex, then

$$prox_t(g)(\mathbf{x}) = \underset{\mathbf{u}}{\operatorname{argmin}} \{ \delta_C(\mathbf{u}) + \frac{1}{2t} \|\mathbf{u} - \mathbf{x}\|^2 \} = \underset{\mathbf{u}}{\operatorname{argmin}} \{ \frac{1}{2t} \|\mathbf{u} - \mathbf{x}\|^2 : \mathbf{u} \in C \}$$
$$= (I + t\partial g)^{-1}(\mathbf{x}) = \Pi_C(\mathbf{x}), \text{ the ortho projection on } C$$

For some useful sets *C* easy to compute  $\Pi_C$ :

- Affine sets, Simple Polyhedral Sets (halfspace,  $\mathbb{R}^n_+$ ,  $[I, u]^n$ ),
- $I_2, I_1, I_\infty$  Balls,
- Ice Cream Cone, Semidefinite Cone  $S_{+}^{n}$ ,
- Simplex and Spectrahedron (Simplex in S<sup>n</sup>).

This covers many interesting models + equally easy for  $g = \delta_c^*$  the support function of *C*. Some more useful examples....

# Some Calculus Rules for Computing $prox_t(g)$

$$\operatorname{prox}_{t}(g)(\mathbf{x}) = \operatorname{argmin}_{\mathbf{u}} \left\{ g(\mathbf{u}) + \frac{1}{2t} \|\mathbf{u} - \mathbf{x}\|^{2} \right\}.$$



- $\sigma_1(\mathbf{U}) \geq \sigma_2(\mathbf{U}) \geq \ldots$  singular values of  $\mathbf{U}$
- Nuclear norm  $\|\mathbf{U}\|_* = \sum_j \sigma_j(\mathbf{U})$
- Singular value decomposition

$$\mathbf{U} = \mathbf{P} \operatorname{diag}(\sigma) \mathbf{Q}^{T}$$
, then shrinkage  $s_j = \operatorname{sgn}(\sigma_j) \max\{|\sigma_j| - t, 0\}$ .

## Rate of Convergence of Prox-Grad for Convex (M)

**Theorem - Rate of Convergence of Prox-Grad** Let  $\{x_k\}$  be the sequence generated by the prox-grad. Then for every  $k \ge 1$ :

$$F(\mathbf{x}_k) - F(\mathbf{x}) \leq \frac{\alpha L(f) \|\mathbf{x}_0 - \mathbf{x}\|^2}{2k}, \ \forall x \in X_*$$

• Thus the prox grad method converges at a *sublinear rate* in function values, namely like there were **no nonsmooth term**.

## Rate of Convergence of Prox-Grad for Convex (M)

**Theorem - Rate of Convergence of Prox-Grad** Let  $\{x_k\}$  be the sequence generated by the prox-grad. Then for every  $k \ge 1$ :

$$F(\mathbf{x}_k) - F(\mathbf{x}) \leq \frac{lpha L(f) \|\mathbf{x}_0 - \mathbf{x}\|^2}{2k}, \ \forall x \in X_*$$

- Thus the prox grad method converges at a *sublinear rate* in function values, namely like there were **no nonsmooth term**.
- Special Cases: With g ≡ 0 and g = δ<sub>C</sub>, our model (M) recovers results for the basic gradient and gradient projection methods respectively.
- With f = 0 in (M), recovers the *Proximal Minimization Algorithm* (Martinet 70) and its sublinear complexity rate (Guler 90).

# Rate of Convergence of Prox-Grad for Convex (M)

**Theorem - Rate of Convergence of Prox-Grad** Let  $\{x_k\}$  be the sequence generated by the prox-grad. Then for every  $k \ge 1$ :

$$F(\mathbf{x}_k) - F(\mathbf{x}) \leq \frac{lpha L(f) \|\mathbf{x}_0 - \mathbf{x}\|^2}{2k}, \ \forall x \in X_*$$

- Thus the prox grad method converges at a *sublinear rate* in function values, namely like there were **no nonsmooth term**.
- Special Cases: With g ≡ 0 and g = δ<sub>C</sub>, our model (M) recovers results for the basic gradient and gradient projection methods respectively.
- With f = 0 in (M), recovers the *Proximal Minimization Algorithm* (Martinet 70) and its sublinear complexity rate (Guler 90).
- This is "Better" than Subgrad Scheme...But in general non-implementable, unless g is "simple".... Nevertheless, very useful when combined with duality: → Augmented Lagrangians Methods
- Note: The sequence {x<sub>k</sub>} can also be proven to *converge* to global solution x\* provided a step size is in (0, 2/L) (Combettes-Wajs (05)).

# The Nonconvex Case in (M): F=f+g

When f is nonconvex, the global convergence rate results are of course weaker:

- Convergence to a global minimum is out of reach.
- Convergence of the sequence to a stationary point is measured by the quantity ||x p<sub>L</sub>(x)||. No global results on {x<sub>k</sub>} or even {F(x<sub>k</sub>)}.

# The Nonconvex Case in (M): F=f+g

When f is nonconvex, the global convergence rate results are of course weaker:

- Convergence to a global minimum is out of reach.
- Convergence of the sequence to a stationary point is measured by the quantity ||x p<sub>L</sub>(x)||. No global results on {x<sub>k</sub>} or even {F(x<sub>k</sub>)}.

### Theorem (Global Rate of Convergence for $\gamma_n$ )

Let  $\{x_k\}$  be the sequence generated by the proximal gradient method with either a constant or a backtracking stepsize rule. Then for every  $n \ge 1$  we have

$$\gamma_n \leq \frac{1}{\sqrt{n}} \left( \frac{2(F(\mathbf{x}_0) - F_*)}{\beta L(f)} \right)^{1/2},$$

where

$$\gamma_n := \min_{1 \leq k \leq n} \|\mathbf{x}_{k-1} - p_{L_k}(\mathbf{x}_{k-1})\|.$$

Moreover,  $\|\mathbf{x}_{k-1} - p_{L_k}(\mathbf{x}_{k-1})\| \to 0$  as  $k \to \infty$ .

# Improving Complexity–Fast Gradient Schemes

Previous explicit methods are simple but are often too slow.

- For Prox-Grad and Gradient methods: a complexity rate of O(1/k)
- For Subgradient Methods: complexity rate of  $O(1/\sqrt{k})$ .

# Improving Complexity–Fast Gradient Schemes

Previous explicit methods are simple but are often too slow.

- For Prox-Grad and Gradient methods: a complexity rate of O(1/k)
- For Subgradient Methods: complexity rate of  $O(1/\sqrt{k})$ .
- Can we do better to solve the convex nonsmooth problem (M)?

$$(M) \qquad \min\{F(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) : \mathbf{x} \in \mathbb{E}\}.$$

Can we devise a method with:
the same computational effort/simplicity as Prox-Grad.
a Faster global rate of convergence.

# Yes we Can...

## Yes we Can...

• Answer: Yes, through an "equally simple" scheme Let  $Q_L(\mathbf{x}, \mathbf{y}) := f(\mathbf{y}) + \langle \mathbf{x} - \mathbf{y}, \nabla f(\mathbf{y}) \rangle + \frac{1}{2L} \|\mathbf{x} - \mathbf{y}\|^2 + g(\mathbf{x}), L > 0$ 

$$\mathbf{x}_{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} Q_L(\mathbf{x}, \mathbf{y}_k), \ \longleftrightarrow \ \mathbf{y}_k \text{ instead of } \mathbf{x}_k$$

The new point  $\mathbf{y}_k$  will be smartly chosen and easy to compute.

## Yes we Can...

• Answer: Yes, through an "equally simple" scheme Let  $Q_L(\mathbf{x}, \mathbf{y}) := f(\mathbf{y}) + \langle \mathbf{x} - \mathbf{y}, \nabla f(\mathbf{y}) \rangle + \frac{1}{2L} \|\mathbf{x} - \mathbf{y}\|^2 + g(\mathbf{x}), L > 0$ 

$$\mathbf{\mathbf{x}}_{k+1} = \operatorname*{argmin}_{\mathbf{x}} Q_L(\mathbf{x}, \mathbf{y}_k), \ \longleftrightarrow \ \mathbf{y}_k \text{ instead of } \mathbf{x}_k$$

The new point  $\mathbf{y}_k$  will be smartly chosen and easy to compute.

 Idea: From an old algorithm of Nesterov (1983)\* designed for minimizing a smooth convex function, and proven to be an "optimal" first order method (Yudin-Nemirovsky (80)) with complexity O(1/k<sup>2</sup>)

## Yes we Can...

• Answer: Yes, through an "equally simple" scheme Let  $Q_L(\mathbf{x}, \mathbf{y}) := f(\mathbf{y}) + \langle \mathbf{x} - \mathbf{y}, \nabla f(\mathbf{y}) \rangle + \frac{1}{2L} \|\mathbf{x} - \mathbf{y}\|^2 + g(\mathbf{x}), L > 0$ 

$$\mathbf{A}_{\mathbf{x}_{k+1}} = \underset{\mathbf{x}}{\operatorname{argmin}} Q_L(\mathbf{x}, \mathbf{y}_k), \longleftrightarrow \mathbf{y}_k \text{ instead of } \mathbf{x}_k$$

The new point  $\mathbf{y}_k$  will be smartly chosen and easy to compute.

- Idea: From an old algorithm of Nesterov (1983)\* designed for minimizing a smooth convex function, and proven to be an "optimal" first order method (Yudin-Nemirovsky (80)) with complexity O(1/k<sup>2</sup>)
- But, here problem (M) is **nonsmooth**. Yet, we can also derive a fast algorithm for the general NSO problem (M), namely *"as if the nonsmooth part can be neutralized"*

\* Y. Nesterov. A method for solving the convex programming problem with convergence rate  $O(1/k^2)$ . Dokl. Akad. Nauk SSSR, 269(3):543–547, (1983)

## A Fast Prox-Grad Algorithm - FISTA [Beck-Teboulle' 09]

An equally simple algorithm as prox-grad. (Here L(f) is known).

# Here with constant stepsize **Input:** L = L(f) - A Lipschitz constant of $\nabla f$ . **Step 0.** Take $\mathbf{y}_1 = \mathbf{x}_0 \in \mathbb{E}, \ t_1 = 1$ . **Step k.** $(k \ge 1)$ Compute $\mathbf{x}_{k} = \operatorname{argmin}_{\mathbf{y} \in \mathbb{T}} \left\{ g(\mathbf{x}) + \frac{L}{2} \| \mathbf{x} - (\mathbf{y}_{k} - \frac{1}{L} \nabla f(\mathbf{y}_{k})) \|^{2} \right\}$ $\mathbf{x}_k \equiv p_L(\mathbf{y}_k), \leftrightarrow$ main computation as Prox-Grad • $t_{k+1} = \frac{1+\sqrt{1+4t_k^2}}{2}$ , •• $\mathbf{y}_{k+1} = \mathbf{x}_k + \left(\frac{t_k - 1}{t_{k+1}}\right) (\mathbf{x}_k - \mathbf{x}_{k-1}).$

Additional computation in  $(\bullet)$  and  $(\bullet\bullet)$  is clearly marginal. Knowledge of L(f) is not Necessary, can use BLS.

With g = 0, this is the smooth Fast Gradient of Nesterov (83); With  $t_k \equiv 1, \forall k$  we recover ProxGrag (PG).

Marc Teboulle - Tel Aviv University

## An Improved $O(1/k^2)$ Global Rate of Convergence for (M)

**Theorem – [B-T' 09]** Let  $\{\mathbf{x}_k\}$  be generated by FISTA. Then for any  $k \ge 1$ 

$$F(\mathbf{x}_k) - F(\mathbf{x}^*) \le \frac{2L(f) \|\mathbf{x}_0 - \mathbf{x}^*\|^2}{(k+1)^2},$$

- # of iterations to reach  $F(\tilde{\mathbf{x}}) F_* \leq \varepsilon$  is  $\sim O(1/\sqrt{\varepsilon})$ .
- Clearly improves Prox Grad by a square root factor.

## An Improved $O(1/k^2)$ Global Rate of Convergence for (M)

**Theorem – [B-T' 09]** Let  $\{\mathbf{x}_k\}$  be generated by FISTA. Then for any  $k \ge 1$ 

$$F(\mathbf{x}_k) - F(\mathbf{x}^*) \le \frac{2L(f)\|\mathbf{x}_0 - \mathbf{x}^*\|^2}{(k+1)^2},$$

- # of iterations to reach  $F(\tilde{\mathbf{x}}) F_* \leq \varepsilon$  is  $\sim O(1/\sqrt{\varepsilon})$ .
- Clearly improves Prox Grad by a square root factor.
- On the practical side this theoretical rate is achieved.
- Many computational studies have confirmed the efficiency of FISTA for solving several interesting models in *Signal/image recovery* and in *Machine learning*

e.g., image denoising/deblurring, nuclear matrix norm regularization, matrix completion problems, multi-task learning, matrix classification, etc..

## Applications/Limitations of FISTA for (M)

 $(M)\min\{f(\mathbf{x})+g(\mathbf{x}):\mathbf{x}\in\mathbb{E}\}\$ 

 $f \in \mathcal{C}^{1,1}$  convex can be of any type with available gradient

- FISTA is not a monotone method!.. But can be made monotone.
- As long as the **prox** of the nonsmooth function g

$$p_{L}(\mathbf{y}) = \underset{\mathbf{x}\in\mathbb{E}}{\operatorname{argmin}} \left\{ g(\mathbf{x}) + \frac{L}{2} \|\mathbf{x} - (\mathbf{y} - \frac{1}{L} \nabla f(\mathbf{y}))\|^{2} \right\}$$

can be computed analytically or easily/efficiently, via some other approach (e.g., dual for TV); FISTA (MFISTA) is useful and quite efficient.

## Applications/Limitations of FISTA for (M)

 $(M)\min\{f(\mathbf{x})+g(\mathbf{x}):\mathbf{x}\in\mathbb{E}\}\$ 

 $f \in \mathcal{C}^{1,1}$  convex can be of any type with available gradient

- FISTA is not a monotone method!.. But can be made monotone.
- As long as the **prox** of the nonsmooth function g

$$p_{L}(\mathbf{y}) = \underset{\mathbf{x} \in \mathbb{E}}{\operatorname{argmin}} \left\{ g(\mathbf{x}) + \frac{L}{2} \| \mathbf{x} - (\mathbf{y} - \frac{1}{L} \nabla f(\mathbf{y})) \|^{2} \right\}$$

can be computed analytically or easily/efficiently, via some other approach (e.g., dual for TV); FISTA (MFISTA) is useful and quite efficient.

• Caveat: Many inverse problems solve the Penalized Model:

 $\min\{f(\mathbf{x}) + \lambda g(\mathbf{x})\}; \lambda > 0$  tradeoff -unknown penalty parameter

FISTA does not resolve the issue on how to pick the unknown  $\lambda$ ! Continuation, or heuristic techniques can be used.

Many other algorithms suffer the same problem with the unknown parameter and require "tuning".

## **Gradient Schemes with Non-Euclidean Distances**

- $\bullet$  All previous schemes were based on using the squared Euclidean distance for measuring proximity of two points in  $\mathbb E$
- It is useful to exploit the *geometry of the constraints set X*
- This is done by selecting a "distance-like" function that sometimes can reduce computational costs and even improve the rate of convergence.

## **Gradient Schemes with Non-Euclidean Distances**

- $\bullet$  All previous schemes were based on using the squared Euclidean distance for measuring proximity of two points in  $\mathbb E$
- It is useful to exploit the *geometry of the constraints set X*
- This is done by selecting a "distance-like" function that sometimes can reduce computational costs and even improve the rate of convergence.
- Mirror Descent Algorithms
- Ø More on Fast Gradient Schemes
- **9** Building Gradient Schemes via Algorithms for Variational Inequalities

## **A Proximal Distance-Like Function**

Exploiting the Geometry of the constraints

• Usual gradient method reads:

$$y = \underset{\boldsymbol{\xi} \in X}{\operatorname{argmin}} \{ t \langle \boldsymbol{\xi}, \nabla f(\mathbf{x}) \rangle + \frac{1}{2} \| \boldsymbol{\xi} - \mathbf{x} \|^2 \}, \ t > 0.$$

## A Proximal Distance-Like Function

Exploiting the Geometry of the constraints

• Usual gradient method reads:

$$y = \underset{\boldsymbol{\xi} \in X}{\operatorname{argmin}} \{ t \langle \boldsymbol{\xi}, \nabla f(\mathbf{x}) \rangle + \frac{1}{2} \| \boldsymbol{\xi} - \mathbf{x} \|^2 \}, \ t > 0.$$

Replace || · ||<sup>2</sup> by some distance-like d(·, ·) that better exploits C (e.g., allows for deriving *explicit and simple* formula) through a Projection-Like Map:

$$p(\mathbf{g}, \mathbf{x}) := \operatorname{argmin}_{\mathbf{v}} \{ \langle \mathbf{v}, \mathbf{g} \rangle + d(\mathbf{v}, \mathbf{x}) \}.$$

## **A Proximal Distance-Like Function**

Exploiting the Geometry of the constraints

• Usual gradient method reads:

$$y = \underset{\boldsymbol{\xi} \in X}{\operatorname{argmin}} \{ t \langle \boldsymbol{\xi}, \nabla f(\mathbf{x}) \rangle + \frac{1}{2} \| \boldsymbol{\xi} - \mathbf{x} \|^2 \}, \ t > 0.$$

Replace || · ||<sup>2</sup> by some distance-like d(·, ·) that better exploits C (e.g., allows for deriving *explicit and simple* formula) through a Projection-Like Map:

$$p(\mathbf{g}, \mathbf{x}) := \underset{\mathbf{v}}{\operatorname{argmin}} \{ \langle \mathbf{v}, \mathbf{g} \rangle + d(\mathbf{v}, \mathbf{x}) \}.$$

• Minimal required properties for d:

 $d(\cdot, \mathbf{v})$  is a convex function,  $\forall \mathbf{v}$  $d(\cdot, \cdot) \ge 0$ , and  $d(\mathbf{u}, \mathbf{v}) = 0$  iff  $\mathbf{u} = \mathbf{v} \forall \mathbf{u}, \mathbf{v}$ . • *d* is not a distance: no symmetry or/and triangle inequality

## **Two Generic Families for Proximal Distances** d

• Bregman type distances - based on kernel  $\psi$ :

 $D_{\psi}(\mathbf{x}, \mathbf{y}) = \psi(\mathbf{x}) - \psi(\mathbf{y}) - \langle \mathbf{x} - \mathbf{y}, \nabla \psi(\mathbf{y}) \rangle, \ \psi \text{ strongly convex}$ 

•  $\Phi$ -divergence type distances - based on 1-d kernel  $\phi$  convex

$$d_arphi(\mathbf{x},\mathbf{y}) := \sum_{j=1}^n y_j^r arphi(rac{x_j}{y_j}) + rac{\sigma}{2} \|\mathbf{x}-\mathbf{y}\|^2, \; r=1,2$$

The choice of d should be dictated to

best match the constraints of a given problem
 simplify the projection-like computation for given class of "Simple Constraints with Special Structures"
 What are Simple Constraints...?..

## **Simple Constraints**

"Simple" but also fundamental..  $X := \overline{C} \cap V, \ \overline{C}$  closure of C with

C open convex,  $V := \{ \mathbf{x} \in \mathbb{R}^n : \mathcal{A}(\mathbf{x}) = \mathbf{b} \}, \ \mathcal{A}$  linear,  $\mathbf{b} \in \mathbb{R}^m$ .

- $\mathbb{R}^n_+$ ,
- unit ball, box constraints,
- $\Delta_n$  the simplex in  $\mathbb{R}^n$ ,
- *S*<sup>*n*</sup><sub>+</sub> (symmetric semidefinite positive matrices),
- $L_{+}^{n}$  the Lorentz cone,
- the Spectrahedron (Simplex in S<sup>n</sup>)

## Examples of couple (d, H)

| $C \cap \mathcal{V}$  | $d(\mathbf{x}, \mathbf{y})$                                                                                                                                                                  | $H(\mathbf{x},\mathbf{y})$                    |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| $\mathbb{R}^{n}_{++}$ | $\sum_{j=1}^{n} -y_{j}^{2} \log rac{x_{j}}{y_{j}} + x_{j}y_{j} - y_{j}^{2} + rac{\sigma}{2} \ \mathbf{x} - \mathbf{y}\ ^{2}$                                                               | $\frac{1}{2} \  \mathbf{x} - \mathbf{y} \ ^2$ |
| $S_{++}^n$            | $-\log \det(\mathbf{x}\mathbf{y}^{-1}) + \operatorname{tr}(\mathbf{x}\mathbf{y}^{-1}) + \sigma \operatorname{tr}(\mathbf{x} - \mathbf{y})^2 - n$                                             | H = d                                         |
| $L_{++}^n$            | $-\log rac{\mathbf{x}^T D_n \mathbf{x}}{\mathbf{y}^T D_n \mathbf{y}} + rac{2\mathbf{x}^T D_n \mathbf{y}}{\mathbf{y}^T D_n \mathbf{y}} - 2 + rac{\sigma}{2} \ \mathbf{x} - \mathbf{y}\ ^2$ | H = d                                         |
| $\Delta_n$            | $\sum_{j=1}^{n} x_j \log \frac{x_j}{y_j} + y_j - x_j$                                                                                                                                        | H = d                                         |
| Σn                    | $tr(x\logx-x\logy+y-x)$                                                                                                                                                                      | H = d                                         |

$$\Delta_n := \{ \mathbf{x} \in \mathbb{R}^n \mid \sum_{j=1}^n x_j = 1, x > 0 \}, \ \Sigma_n := \{ \mathbf{x} \in S_n \mid \operatorname{tr}(x) = 1, \mathbf{x} \succ 0 \}.$$

$$L_{++}^n := \{ \mathbf{x} \in \mathbb{R}^n \mid x_n > (x_1^2 + \ldots + x_{n-1}^2)^{1/2} \}, \ D_n \equiv \operatorname{diag}(-1, \ldots, -1, 1).$$

$$C_n = \{ \mathbf{x} \in \mathbb{R}^n : a_j < x_j < b_j \quad j = 1 \ldots n \} \text{ similar to } \mathbb{R}_{++}^n (\log \operatorname{quad})$$
Corresponding Projections  $p(\mathbf{g}, \mathbf{x})$  can be obtained analytically in these

cases

Note:  $H(\cdot, \cdot)$  is another proximity measure used to prove convergence results

## Computing Explicit Projections $p(\mathbf{g}, \mathbf{x})$

| $C \cap \mathcal{V}$                       | $p(\mathbf{g},\mathbf{x})$ or $p_j(\mathbf{g},\mathbf{x}), j=1,\ldots,n$               |  |
|--------------------------------------------|----------------------------------------------------------------------------------------|--|
| $\mathbb{R}^{n}_{++}$                      | $x_j(\varphi^*)'(-g_jx_j^{-1})$                                                        |  |
| <i>S</i> <sup><i>n</i></sup> <sub>++</sub> | $(2\sigma)^{-1}(A(\mathbf{g},\mathbf{x})+\sqrt{A(\mathbf{g},\mathbf{x})^2+4\sigma I})$ |  |
| $L_{++}^n$                                 | $rac{1}{2\sigma}\left((1+rac{w_n}{\zeta})ar{w},(w_n+\zeta) ight)$                    |  |
| $\Delta_n$                                 | $\frac{x_i \exp(-g_j)}{\sum_{i=1}^{n} x_i \exp(-g_i)}$                                 |  |
| Σn                                         | via eigenvalue decomp. reduces to similar comp. as $\Delta_n$                          |  |

$$\begin{aligned} & (\varphi^*)'(\mathbf{s}) &= (2\sigma)^{-1}\{(\sigma-1) + \mathbf{s} + \sqrt{((\sigma-1) + \mathbf{s})^2 + 4\sigma}\} \\ & A(\mathbf{g}, \mathbf{x}) &= \sigma \mathbf{x} - \mathbf{g} - \mathbf{x}^{-1}, \tau(\mathbf{x}) = \mathbf{x}^T D_n \mathbf{x} \\ & w &= (-2\tau(\mathbf{x})^{-1} D_n \mathbf{x} + 2\sigma \mathbf{x} - \mathbf{g})/2, \ \mathbf{w} = (\bar{\mathbf{w}}, w_n) \in \mathbb{R}^{n-1} \times \mathbb{R} \\ & \zeta &= \left(\frac{\|\mathbf{w}\|^2 + 4\sigma + \sqrt{(\|\mathbf{w}\|^2 + 4\sigma)^2 - 4w_n^2 \|\bar{\mathbf{w}}\|^2}}{2}\right)^{1/2}. \end{aligned}$$

## 1. The Mirror Descent Algorithm-MDA

 $\min\{g(\mathbf{x}): \mathbf{x} \in C\}$  Convex Nonsmooth

• Originated from functional analytic arguments in infinite dimensional setting between primal-dual spaces.

A. S. Nemirovsky and D. B. Yudin. *Problem complexity and method efficiency in optimization* Wiley-Interscience Publication, (1983).

## 1. The Mirror Descent Algorithm-MDA

 $\min\{g(\mathbf{x}): \mathbf{x} \in C\}$  Convex Nonsmooth

• Originated from functional analytic arguments in infinite dimensional setting between primal-dual spaces.

A. S. Nemirovsky and D. B. Yudin. *Problem complexity and method efficiency in optimization* Wiley-Interscience Publication, (1983).

• In (Beck-Teboulle-2003) we have shown that the (MDA) can be simply viewed as a **subgradient method** with a strongly convex Bregman proximal distance:

$$\mathbf{x}_{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \{ \langle \mathbf{x}, \mathbf{v}_k \rangle + \frac{1}{t_k} D_{\psi}(\mathbf{x}, \mathbf{x}_k) \}, \ \mathbf{v}_k \in \partial g(\mathbf{x}_k), \ t_k > 0.$$

## 1. The Mirror Descent Algorithm-MDA

 $\min\{g(\mathbf{x}): \mathbf{x} \in C\}$  Convex Nonsmooth

• Originated from functional analytic arguments in infinite dimensional setting between primal-dual spaces.

A. S. Nemirovsky and D. B. Yudin. *Problem complexity and method efficiency in optimization* Wiley-Interscience Publication, (1983).

• In (Beck-Teboulle-2003) we have shown that the (MDA) can be simply viewed as a **subgradient method** with a strongly convex Bregman proximal distance:

$$\mathbf{x}_{k+1} = \operatorname*{argmin}_{\mathbf{x}} \{ \langle \mathbf{x}, \mathbf{v}_k 
angle + rac{1}{t_k} D_\psi(\mathbf{x}, \mathbf{x}_k) \}, \ \mathbf{v}_k \in \partial g(\mathbf{x}_k), \ t_k > 0.$$

• Exploiting geometry of constraints can improve performance of SM.

• Example: Convex Minimization over the Unit Simplex  $\Delta_n$  that uses the *entropy kernel* defined on  $\Delta_n$  (is 1-strongly convex w.r.t  $\|\cdot\|_1$ ).

#### **Convex Minimization over the Unit Simplex** $\Delta_n$

$$\inf\{g(\mathbf{x}): \; x \in \Delta_n\}, \; \Delta_n = \{\mathbf{x} \in \mathbb{R}^n: \; e^{\mathsf{T}}\mathbf{x} = 1, \mathbf{x} \geq 0\}$$

• **EMDA:** Start with  $\mathbf{x}^0 = n^{-1}e$ . For  $k \ge 1$  generate

$$x_j^k = \frac{x_j^{k-1} \exp(-t_k v_j^{k-1})}{\sum_{i=1}^n x_i^{k-1} \exp(-t_k v_i^{k-1})}, \ j = 1, \dots, n \ t_k := \frac{\sqrt{2 \log n}}{L_g \sqrt{k}},$$

where 
$$\mathbf{v}^{k-1} := (v_1^{k-1}, ..., v_n^{k-1}) \in \partial g(\mathbf{x}_{k-1})$$

**Theorem** The sequence generated by EMDA satisfies for all  $k \ge 1$ 

$$\min_{1 \le s \le k} g(\mathbf{x}^s) - \min_{\mathbf{x} \in \Delta} g(\mathbf{x}) \le \sqrt{2 \log n} \frac{\max_{1 \le s \le k} ||\mathbf{v}^s||_{\infty}}{\sqrt{k}}$$

This outperforms the classical subgradient (based on  $\|\cdot\|^2$ ), by a factor of  $(n/\log n)^{1/2}$ , which for large *n* can make a huge difference!....

## 2. A Fast Non-Euclidean Gradient Method

For the nonsmooth convex case  $\min\{F(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x})\}, f \in C^{1,1}$ . Easily obtained by extending the smooth case of [Auslender-Teboulle'06)] along the proof techniques of Beck-Teboulle'09 for FISTA.

A Fast Non-Euclidean Gradient Method with Bregman Distance  $D_{\psi}$ Input:  $L = L(f), \sigma > 0, \psi, \sigma$ -strongly convex. Step 0:  $\mathbf{x}_0, \mathbf{z}_0 \in ri(\text{dom }\psi), t_0 = 1$ 

Step k: 
$$\mathbf{y}_k = (1 - t_k^{-1})\mathbf{x}_k + t_k^{-1}\mathbf{z}_k \leftarrow$$
  
 $\mathbf{z}_{k+1} = \operatorname*{argmin}_{\mathbf{x}} \left\{ \langle \mathbf{x}, \nabla f(\mathbf{y}_k) \rangle + g(\mathbf{x}) + \frac{L}{\sigma t_k} D_{\psi}(\mathbf{x}, \mathbf{z}_k) \right\},$   
 $\mathbf{x}_{k+1} = (1 - t_k^{-1})\mathbf{x}_k + t_k^{-1}\mathbf{z}_{k+1},$   
 $t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2},$ 

As simple as FISTA, just requires the simple additional update  $\mathbf{y}_k$ .

### **Complexity of Non-Euclidean Fast Gradient**

**Theorem** For the sequence  $\{\mathbf{x}_k\}$  generated by the previous algorithm:

$$\mathsf{F}(\mathbf{x}_k) - \mathsf{F}(\mathbf{x}^*) \leq rac{4LD_\psi(\mathbf{x}^*, \mathbf{x}_0)}{\sigma(k+1)^2}, \ \forall k \geq 1.$$

Thus, we have an  $O(1/k^2)$  scheme for Non-Euclidean Distance to solve (M).

Moreover, as in Mirror Descent, the advantage of using Non Euclidean distance adequately exploiting the constraints allows to:

- Simplify the prox computation for the given constraints set
- Improve the constant in the complexity bound

## **Complexity of Non-Euclidean Fast Gradient**

**Theorem** For the sequence  $\{\mathbf{x}_k\}$  generated by the previous algorithm:

$$\mathsf{F}(\mathbf{x}_k) - \mathsf{F}(\mathbf{x}^*) \leq rac{4LD_\psi(\mathbf{x}^*, \mathbf{x}_0)}{\sigma(k+1)^2}, \ \forall k \geq 1.$$

Thus, we have an  $O(1/k^2)$  scheme for Non-Euclidean Distance to solve (M).

Moreover, as in Mirror Descent, the advantage of using Non Euclidean distance adequately exploiting the constraints allows to:

- Simplify the prox computation for the given constraints set
- Improve the constant in the complexity bound

#### Two other schemes :

- One requires past history of all gradients + 2 prox: one quadratic, and one based on  $\psi;$
- the other also requires past history of all gradients, and 2 prox based on  $\psi$ .

See, Nesterov. Smooth minimization of non-smooth functions. *Math. Program. Series A*, Vol. 103, 127–152, (2005); Gradient methods for minimizing composite objective function. CORE Technical report,(2007).

## 3. Gradient Schemes via Variational Inequalities

- $X \subset \mathbb{R}^n$  closed convex set
- $F: X \to \mathbb{R}^n$  monotone map on X, i.e.,

$$\langle F(\mathbf{x}) - F(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \geq 0, \ \forall \mathbf{x}, \mathbf{y} \in X.$$

#### **VI Problem**

Find 
$$\mathbf{x}^* \in X$$
 such that  $\langle F(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle \ge 0 \quad \forall \mathbf{x} \in X$ .

 VI extend and encompass a broad spectrum of problems: Complementarity, Optimization, Saddle point, Equilibrium...

## 3. Gradient Schemes via Variational Inequalities

- $X \subset \mathbb{R}^n$  closed convex set
- $F: X \to \mathbb{R}^n$  monotone map on X, i.e.,

$$\langle F(\mathbf{x}) - F(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \geq 0, \ \forall \mathbf{x}, \mathbf{y} \in X.$$

#### **VI Problem**

Find 
$$\mathbf{x}^* \in X$$
 such that  $\langle F(\mathbf{x}^*), \mathbf{x} - \mathbf{x}^* \rangle \ge 0 \quad \forall \mathbf{x} \in X$ .

- VI extend and encompass a broad spectrum of problems: Complementarity, Optimization, Saddle point, Equilibrium...
- Here, X is assumed "*simple*" for the VI.
- This is exploited to derive schemes with explicit formulas for general constrained smooth convex problems as well as some structured nonsmooth problems.

## Starting Idea: The Extra-Gradient Method

Korpelevich, G. M. Extrapolation gradient methods and their relation to modified Lagrange functions. *Ekonom. i Mat. Metody*, **19** (1976), no. 4, 694–703.

• Provides a "simple cure" to difficulties, and strong assumptions needed in the usual *Projection methods for VI* (e.g., *F* strongly monotone on *X*)

$$\mathbf{x}^{k} = \Pi_{X}(\mathbf{x}^{k-1} - t_{k}F(\mathbf{x}^{k-1})), \ t_{k} > 0.$$

## Starting Idea: The Extra-Gradient Method

Korpelevich, G. M. Extrapolation gradient methods and their relation to modified Lagrange functions. *Ekonom. i Mat. Metody*, **19** (1976), no. 4, 694–703.

• Provides a "simple cure" to difficulties, and strong assumptions needed in the usual *Projection methods for VI* (e.g., *F* strongly monotone on *X*)

$$\mathbf{x}^{k} = \Pi_{X}(\mathbf{x}^{k-1} - t_{k}F(\mathbf{x}^{k-1})), \ t_{k} > 0.$$

• Extragradient Method-Korpelevich (76):

$$\mathbf{y}^{k-1} = \Pi_X(\mathbf{x}^{k-1} - \beta_k F(\mathbf{x}^{k-1})), \quad \mathbf{x}^k = \Pi_X(\mathbf{x}^{k-1} - \alpha_k F(\mathbf{y}^{k-1})),$$

with  $\beta_k = \alpha_k = \frac{1}{L}$  (*L* is the Lipschtiz constant for *F*)

- No complexity results.../or potential implications to solve NSO/constrained problems.
- Does not exploit the geometry of set X.

## **Basic Model Algorithm is Very Simple**

• Pick some suitable prox-distance  $d(\cdot, \cdot)$  and let

$$p(\mathbf{g}, \mathbf{x}) = \underset{\mathbf{v}}{\operatorname{argmin}} \{ \langle \mathbf{v}, \mathbf{g} \rangle + d(\mathbf{v}, \mathbf{x}) \}.$$

Extra-Gradient-Like: EGL

Given  $x^1 \in C \cap V$ , compute:

with  $\alpha^k, \ \beta^k > 0$  determined within algorithm, or fixed in terms of L.

• Main Computational Object: The Projection-Like Map  $p(\cdot, \cdot)$  with respect to the choice of  $d(\cdot, \cdot)$ .

## **Convergence Results for EGL**

**Convergence Result** (Auslender-Teboulle (05) Let  $\{\mathbf{x}^k, \mathbf{y}^k, \mathbf{z}^k\}$  the sequences generated by EGL. Then,

- The sequences {x<sup>k</sup>}, {z<sup>k</sup>} are bounded and each limit point of {z<sup>k</sup>} is a solution of (VI).
- **2** If  $H(\mathbf{x}, \mathbf{y}) = \frac{\sigma}{2} \|\mathbf{x} \mathbf{y}\|^2$  for  $\Phi$ -div. distance, then the whole sequence  $\{\mathbf{x}^k\}$  converges to a solution of (VI).

## **Convergence Results for EGL**

**Convergence Result** (Auslender-Teboulle (05) Let  $\{\mathbf{x}^k, \mathbf{y}^k, \mathbf{z}^k\}$  the sequences generated by EGL. Then,

- The sequences {x<sup>k</sup>}, {z<sup>k</sup>} are bounded and each limit point of {z<sup>k</sup>} is a solution of (VI).
- O If H(x, y) = <sup>σ</sup>/<sub>2</sub> ||x y||<sup>2</sup> for Φ-div. distance, then the whole sequence {x<sup>k</sup>} converges to a solution of (VI).
- **()** If F is *L*-Lipschitz on X, we have the complexity estimate

$$heta(\mathbf{z}^k) = O(rac{1}{k}),$$

• where  $\theta(\mathbf{z}) = \sup\{\langle F(\boldsymbol{\xi}), z - \boldsymbol{\xi} \rangle : \boldsymbol{\xi} \in X\}$  is the gap function.

Related independent result (only with  $d(\cdot, \cdot) \equiv$  Bregman and for rate of convergence), Nemirovsky (04).

## Applying EGL to Convex Minimization

(P) 
$$f_* = \inf\{f(\mathbf{x}): -G(\mathbf{x}) \in K, \mathbf{A}\mathbf{x} = \mathbf{a}, \mathbf{x} \in S\}.$$

- $\mathbb{R}^n$ ,  $\mathbb{R}^m$ , and  $\mathbb{R}^p$  finite dim. v.s. with inner products,  $\langle \cdot, \cdot \rangle_{n,m,p}$
- f convex;  $G : \mathbb{R}^n \to \mathbb{R}^p$ , K- convex;  $\mathbf{a} \in \mathbb{R}^p$ ,  $\mathbf{A} : \mathbb{R}^n \to \mathbb{R}^p$
- S "simple" closed convex
- K closed convex cone, int  $K \neq \emptyset$ ; e.g.,  $K = \mathbb{R}^m_+, S^m_+, L^m_+$

## Applying EGL to Convex Minimization

(P)  $f_* = \inf\{f(\mathbf{x}): -G(\mathbf{x}) \in K, \mathbf{A}\mathbf{x} = \mathbf{a}, \mathbf{x} \in S\}.$ 

- $\mathbb{R}^n$ ,  $\mathbb{R}^m$ , and  $\mathbb{R}^p$  finite dim. v.s. with inner products,  $\langle \cdot, \cdot \rangle_{n,m,p}$
- f convex;  $G : \mathbb{R}^n \to \mathbb{R}^p$ , K- convex;  $\mathbf{a} \in \mathbb{R}^p$ ,  $\mathbf{A} : \mathbb{R}^n \to \mathbb{R}^p$
- S "simple" closed convex
- K closed convex cone, int  $K \neq \emptyset$ ; e.g.,  $K = \mathbb{R}^m_+, S^m_+, L^m_+$
- Possible, thanks to the theory of duality for variational inequalities.
- Produce methods with explicit formulas at each iteration that does not require the solution of any subproblem.
- Yields algorithms with low computational cost very easy to implement, and with improved iteration complexity bounds.
- Naturally applied to Structured and Nonsmooth Convex Problems: SDP, SOC, Saddle point/minimax
- Again, "structure" helps to get better complexity results with EGL with a complexity estimate  $\sim O(\frac{1}{k})$  for various NSO.

## Primal-Dual Variational Inequality Associated to (P)

$$(P) \quad f_* = \inf\{f(\mathbf{x}): -G(\mathbf{x}) \in K, \ \mathbf{A}\mathbf{x} = \mathbf{a}, \mathbf{x} \in S\}$$

One can show:  $\mathbf{x}^*$  solves (P) iff  $\exists (\mathbf{u}^*, \mathbf{v}^*)$  s.t.  $(\mathbf{x}^*, \mathbf{u}^*, \mathbf{v}^*)$  solves (PDVI):

$$\mathsf{Find}\ \boldsymbol{z}^* = (\boldsymbol{x}^*, \boldsymbol{u}^*, \boldsymbol{v}^*) \in \Omega:\ \langle \mathcal{T}(\boldsymbol{z}^*), \boldsymbol{z} - \boldsymbol{z}^* \rangle \geq 0, \, \forall \boldsymbol{z} \in \Omega$$

## Primal-Dual Variational Inequality Associated to (P)

$$(P) \quad f_* = \inf\{f(\mathbf{x}): -G(\mathbf{x}) \in K, \ \mathbf{A}\mathbf{x} = \mathbf{a}, \mathbf{x} \in S\}$$

One can show:  $\mathbf{x}^*$  solves (P) iff  $\exists (\mathbf{u}^*, \mathbf{v}^*)$  s.t.  $(\mathbf{x}^*, \mathbf{u}^*, \mathbf{v}^*)$  solves (PDVI):

Find 
$$\mathbf{z}^* = (\mathbf{x}^*, \mathbf{u}^*, \mathbf{v}^*) \in \Omega$$
:  $\langle T(\mathbf{z}^*), \mathbf{z} - \mathbf{z}^* \rangle \ge 0, \, \forall \mathbf{z} \in \Omega$ 

- $\Omega := S \times (K \times \mathbb{R}^p) =$  "simple"  $\times$  "Hard"  $\times$  "Affine"
- The primal-dual operator is defined by

$$T(\mathbf{z}) := (\nabla f(\mathbf{x}) + \langle \mathbf{u}, \nabla G(\mathbf{x}) \rangle_m + \mathbf{A}^* \mathbf{v}, -G(\mathbf{x}), -(\mathbf{A}\mathbf{x} - \mathbf{a}))$$
  
$$\equiv (T_1(\mathbf{z}), T_2(\mathbf{z}), T_3(\mathbf{z})).$$

Given z = (x, u, v) ∈ Ω, Ω ≡ S × (K × ℝ<sup>p</sup>)
let Z := (X, U, W) = T(z̄) for some other given z̄ ∈ Ω.
To apply EGL for solving (PDVI), and hence for solving (P) all we need is to compute the projection-like map

$$\mathbf{z}^{+} := p(Z, \mathbf{z}) = \operatorname*{argmin}_{\zeta} \{ \langle Z, \zeta \rangle + d(\zeta, \mathbf{z}) \}$$

for some chosen distance  $d(\zeta, \mathbf{z})$ .

**Projection-like Map**  $z^+ := p(Z, z)$  **is Easy to Compute!** 

We choose *d* defined by:

$$d(\mathbf{z}',\mathbf{z}) := d_1(\mathbf{x}',\mathbf{x}) + d_2(\mathbf{u}',\mathbf{u}) + \frac{1}{2} \|\mathbf{v}'-\mathbf{v}\|^2,$$

- **(**)  $d_1$  captures the "simple" constraints described by S
- 2  $d_2$  captures the "hard" constraints through projections-like maps on K
- **(3)** Last distance captures the affine equality constraints (if any).
- Since *d* is *separable*, the computation of *p* decomposed accordingly, and hence  $\mathbf{z}^+ = (\mathbf{x}^+, \mathbf{u}^+, \mathbf{v}^+)$  are computed independently and easily as follows.

**Projection-like Map**  $z^+ := p(Z, z)$  **is Easy to Compute!** 

We choose *d* defined by:

$$d(\mathbf{z}',\mathbf{z}) := d_1(\mathbf{x}',\mathbf{x}) + d_2(\mathbf{u}',\mathbf{u}) + \frac{1}{2} \|\mathbf{v}'-\mathbf{v}\|^2,$$

- **(**)  $d_1$  captures the "simple" constraints described by S
- 2  $d_2$  captures the "hard" constraints through projections-like maps on K
- **③** Last distance captures the affine equality constraints (if any).
- Since *d* is *separable*, the computation of *p* decomposed accordingly, and hence  $\mathbf{z}^+ = (\mathbf{x}^+, \mathbf{u}^+, \mathbf{v}^+)$  are computed independently and easily as follows.

$$\begin{split} \mathbf{x}^{+} &= p_{1}(T_{1}(\bar{\mathbf{z}}), \mathbf{x}) := p_{1}(X, \mathbf{x}) = \operatorname{argmin}\{\langle \mathbf{w}, X \rangle + d_{1}(\mathbf{w}, \mathbf{x}) : \mathbf{w} \in S\}, \\ \mathbf{u}^{+} &= p_{2}(T_{2}(\bar{\mathbf{z}}), u) := p_{2}(U, \mathbf{u}) = \operatorname{argmin}\{\langle \mathbf{w}, U \rangle + d_{2}(\mathbf{w}, \mathbf{u}) : \mathbf{w} \in K\}, \\ \mathbf{v}^{+} &= p_{3}(T_{3}(\bar{\mathbf{z}}), v) := p_{3}(W, \mathbf{v}) = \operatorname{argmin}\{\langle \mathbf{w}, W \rangle + \frac{1}{2} \| \mathbf{w} - \mathbf{v} \|^{2} : \mathbf{w} \in \mathbb{R}^{p}\} \end{split}$$

In particular, note that one always has:  $\mathbf{v}^+ = \mathbf{v} - W$ .

- For computing x<sup>+</sup>, u<sup>+</sup> we use the results given in the previous tables, e.g. for S = ℝ<sup>n</sup>, ℝ<sup>n</sup><sub>+</sub>, S<sup>n</sup><sub>+</sub>, L<sup>n</sup><sub>+</sub>. Similarly, for K = ℝ<sup>n</sup><sub>+</sub>, S<sup>n</sup><sub>+</sub>, and L<sup>n</sup><sub>+</sub>.
- No matter how complicated the constraints are in the ground set  $S \cap Q$ , the resulting projections-like maps are given by analytical formulas!

# Nonsmooth and Nonconvex Problems

#### ...No miracles here ...!....

Again, look for problems with special structures that can beneficially exploited.

- The Single Source Sensor Localization Problem
- Sparse PCA Problems
- Nonconvex Affine Feasibility Problems

### The Source Localization Problem

- **SL Problem:** Locate a single radiating source from noisy range measurements collected using a network of passive sensors.
- The SL problem has received significant attention in the signal processing literature, specifically in the field of mobile phones localization.

#### The Source Localization Problem

- **SL Problem:** Locate a single radiating source from noisy range measurements collected using a network of passive sensors.
- The SL problem has received significant attention in the signal processing literature, specifically in the field of mobile phones localization.
- Consider an array of *m* sensors with
  - **Q**  $\mathbf{a}_i \in \mathbb{R}^n$  coordinates of the *j*th sensor (in practical applications n = 2 or 3)
  - 2  $d_j > 0$  the noisy observation of range between source and *j*th sensor:

$$d_j = \|\mathbf{x} - \mathbf{a}_j\| + \varepsilon_j, \quad j = 1, \dots, m,$$

 $\mathbf{x} \in \mathbb{R}^n$  is the unknown source's coordinate vector;  $\varepsilon$  unknown noise vector.

Many possible mathematical formulations. Given the observed range measurements  $d_j > 0$ , find a "good" approximation of the source x. A natural and common optimization formulation:

(SL) 
$$\min_{\mathbf{x}\in\mathbb{R}^n}\left\{f(\mathbf{x})\equiv\sum_{j=1}^m(\|\mathbf{x}-\mathbf{a}_j\|-d_j)^2\right\}.$$

#### The Source Localization Problem

- **SL Problem:** Locate a single radiating source from noisy range measurements collected using a network of passive sensors.
- The SL problem has received significant attention in the signal processing literature, specifically in the field of mobile phones localization.
- Consider an array of *m* sensors with
  - **Q**  $\mathbf{a}_i \in \mathbb{R}^n$  coordinates of the *j*th sensor (in practical applications n = 2 or 3)
  - $d_j > 0$  the noisy observation of range between source and *j*th sensor:

$$d_j = \|\mathbf{x} - \mathbf{a}_j\| + \varepsilon_j, \quad j = 1, \dots, m,$$

 $\mathbf{x} \in \mathbb{R}^n$  is the unknown source's coordinate vector;  $\varepsilon$  unknown noise vector.

Many possible mathematical formulations. Given the observed range measurements  $d_j > 0$ , find a "good" approximation of the source x. A natural and common optimization formulation:

(SL) 
$$\min_{\mathbf{x}\in\mathbb{R}^n}\left\{f(\mathbf{x})\equiv\sum_{j=1}^m(\|\mathbf{x}-\mathbf{a}_j\|-d_j)^2\right\}.$$

Has also a statistical interpretation: when  $\epsilon$  follows a Gaussian distribution with a covariance matrix  $\sim I_d$ , the optimal solution of (SL) is in fact a maximum likelihood estimate.

The SL problem is a **nonsmooth nonconvex** problem and as such, not easy to solve.

Marc Teboulle - Tel Aviv University,

# A Simple Gradient-Based Algorithm

• The derivation is inspired from Weiszfeld's algorithm (1939) for the classical *convex* location problem

# A Simple Gradient-Based Algorithm

• The derivation is inspired from Weiszfeld's algorithm (1939) for the classical *convex* location problem

Algorithm SWLS:

$$\mathbf{x}_{k+1} \in \operatorname*{argmin}_{\mathbf{x} \in \mathbb{R}^n} \sum_{j=1}^m \left( rac{\|\mathbf{x} - \mathbf{a}_j\|^2}{\|\mathbf{x}_k - \mathbf{a}_j\|} - d_j 
ight)^2.$$

- Can be re-formulated for each k as a Weighted Least Squares (WLS)
- Denote the set of sensors by  $\mathcal{A} := \{\mathbf{a}_1, \dots, \mathbf{a}_m\}.$
- The scheme is not well defined if  $x_k \in A$  for some k !

# A Simple Gradient-Based Algorithm

• The derivation is inspired from Weiszfeld's algorithm (1939) for the classical *convex* location problem

Algorithm SWLS:

$$\mathbf{x}_{k+1} \in \operatorname*{argmin}_{\mathbf{x} \in \mathbb{R}^n} \sum_{j=1}^m \left( rac{\|\mathbf{x} - \mathbf{a}_j\|^2}{\|\mathbf{x}_k - \mathbf{a}_j\|} - d_j 
ight)^2.$$

- Can be re-formulated for each k as a Weighted Least Squares (WLS)
- Denote the set of sensors by  $\mathcal{A} := \{\mathbf{a}_1, \dots, \mathbf{a}_m\}.$
- The scheme is not well defined if  $\mathbf{x}_k \in \mathcal{A}$  for some k !
- Eliminate non-smoothness difficulty by choosing a "good" initial point!

(G) 
$$\exists \mathbf{x}_0 \text{ s.t. } f(\mathbf{x}_0) < \frac{1}{4} \min_{j=1,\ldots,m} d_j^2$$

The analysis is quite unusual...[Beck-Teboulle'(08)]

## **Convergence of SWLS**

**Theorem** Let  $\{\mathbf{x}_k\}$  be generated by SWLS such that  $\mathbf{x}_0$  satisfies (G). Then,

- (a)  $\mathbf{x}_k \notin \mathcal{A}$  for every  $k \geq 0$ .
- (b) The sequence {x<sub>k</sub>} is bounded. Any limit point of {x<sub>k</sub>} is a stationary point of f.
- (c) The sequence of function values  $\{f(\mathbf{x}_k)\}$  converges to  $f_*$ , where  $f_*$  is the function value at some stationary point of f.
- (d) Assuming all stationary points are isolated, i.e.,
   x\* is an isolated s.p. of f if there are no other s.p. in some N(x\*), the sequence {x<sub>k</sub>} converges to a stationary point.

## **Convergence of SWLS**

**Theorem** Let  $\{\mathbf{x}_k\}$  be generated by SWLS such that  $\mathbf{x}_0$  satisfies (G). Then,

- (a)  $\mathbf{x}_k \notin \mathcal{A}$  for every  $k \geq 0$ .
- (b) The sequence {x<sub>k</sub>} is bounded. Any limit point of {x<sub>k</sub>} is a stationary point of f.
- (c) The sequence of function values  $\{f(\mathbf{x}_k)\}$  converges to  $f_*$ , where  $f_*$  is the function value at some stationary point of f.
- (d) Assuming all stationary points are isolated, i.e.,
   x\* is an isolated s.p. of f if there are no other s.p. in some N(x\*), the sequence {xk} converges to a stationary point.

We have performed Monte Carlo runs and observed

- The algorithm appears very robust: # of iterations constant ≈ 30, independently of size (m, n) with stopping rule ||∇f(x<sub>k</sub>)|| ≤ 10<sup>-5</sup>
- Convergence to a "global minimum" was almost always observed..
- A probabilistic analysis of the algorithm seems worthwhile.....

# Sparse PCA

Principal Component Analysis solves

$$\max\{x^{T}Ax: \|x\|_{2} = 1, x \in \mathbf{R}^{n}\}$$

while sparse Principal Component Analysis solves

 $\max\{x^T A x : \|x\|_2 = 1, \|\mathbf{x}\|_0 \le \mathbf{k}, x \in \mathbf{R}^n\}, \ k \in (1, n] \text{ sparsity}$ 

 $||x||_0$  counts the number of nonzero entries of x **Issues:** 

- Maximizing a Convex objective.
- **2** Hard Nonconvex Constraint  $||x||_0 \le k$ .

#### **Possible Approaches:**

- SDP Convex Relaxations [D'aspremont et al. 2008]
- Approximation/Modified formulations: Many proposed approaches

## Sparse PCA: The Big Picture

 $\blacklozenge$  Our problem of interest is the difficult sparse PCA problem as is

 $\max\{x^{T}Ax: \|x\|_{2} = 1, \|x\|_{0} \le k, x \in \mathbf{R}^{n}\}$ 

## Sparse PCA: The Big Picture

♠ Our problem of interest is the difficult sparse PCA problem as is  $\max\{x^T A x : \|x\|_2 = 1, \ \|x\|_0 \le k, \ x \in \mathbf{R}^n\}$ 

♠ Literature has focused on solving various modifications:

- *I*<sub>0</sub>-penalized PCA max { $x^TAx s ||x||_0 : ||x||_2 = 1$ }, s > 0
- Relaxed  $l_1$ -constrained PCA max  $\{x^T A x : ||x||_2 = 1, ||x||_1 \le \sqrt{k}\}$
- **Relaxed**  $l_1$ -penalized **PCA** max { $x^T A x s ||x||_1 : ||x||_2 = 1$ }
- Approx-Penalized max  $\{x^T A x sg_p(|x||) : ||x||_2 = 1\} g_p(x) \simeq ||x||_0$
- SDP-Convex Relaxations max{tr(AX) : tr (X) = 1, X ≥ 0, ||X||<sub>1</sub> ≤ k}

## Sparse PCA: The Big Picture

♠ Our problem of interest is the difficult sparse PCA problem as is  $\max\{x^T A x : ||x||_2 = 1, ||x||_0 \le k, x \in \mathbf{R}^n\}$ 

♠ Literature has focused on solving various modifications:

- *l*<sub>0</sub>-penalized PCA max  $\{x^T A x s ||x||_0 : ||x||_2 = 1\}, s > 0$
- Relaxed  $l_1$ -constrained PCA max  $\{x^T A x : \|x\|_2 = 1, \|x\|_1 \le \sqrt{k}\}$
- Relaxed  $l_1$ -penalized PCA max { $x^T A x s ||x||_1 : ||x||_2 = 1$ }
- Approx-Penalized max  $\{x^T A x sg_p(|x||) : ||x||_2 = 1\} g_p(x) \simeq ||x||_0$
- SDP-Convex Relaxations max{tr(AX) : tr (X) = 1, X ≥ 0, ||X||<sub>1</sub> ≤ k}
- Convex relaxations are too computationally expensive for large problems.
- No algorithm give bounds to the optimal solution of the original problem.
- Even when "Simple", the algorithms for modifications:
  - **&** do not solve the original problem of interest
  - **&** do require unknown penalty parameter *s* to be tuned.

# Quick Highlight of Simple Algorithms for Modified SPCA

| Туре                        | Iteration                                                                                                                                                                                                       | Per-Iteration<br>Complexity                                | References                  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------|
| /1-constrained              | $x_{i}^{j+1} = \frac{\operatorname{sgn}(((A + \frac{\sigma}{2})x^{j})_{i})( ((A + \frac{\sigma}{2})x^{j})_{i}  - \lambda^{j})_{+}}{\sqrt{\sum_{h}( ((A + \frac{\sigma}{2})x^{j})_{h}  - \lambda^{j})_{+}^{2}}}$ | <i>O</i> ( <i>n</i> <sup>2</sup> ), <i>O</i> ( <i>mn</i> ) | Witten et al. (2009)        |
| l <sub>1</sub> -constrained | $x_{i}^{j+1} = \frac{\text{sgn}((Ax^{j})_{i})( (Ax^{j})_{i}  - s^{j})_{+}}{\sqrt{\sum_{h} ( (Ax^{j})_{h}  - s^{j})_{+}^{2}}} \text{ where }$                                                                    | <i>O</i> ( <i>n</i> <sup>2</sup> ), <i>O</i> ( <i>mn</i> ) | Sigg-Buhman (2008)          |
|                             | $s^{j}$ is $(k + 1)$ -largest entry of vector $ Ax^{j} $                                                                                                                                                        |                                                            |                             |
| I <sub>0</sub> -penalized   | $z^{j+1} = \frac{\sum_{i} [\operatorname{sgn}((b_i^T z^j)^2 - s)]_+ (b_i^T z^j) b_i]}{\ \sum_{i} [\operatorname{sgn}((b_i^T z^j)^2 - s)]_+ (b_i^T z^j) b_i\ _2}$                                                | O(mn)                                                      | Shen-Huang (2008),          |
|                             |                                                                                                                                                                                                                 |                                                            | Journee et al. (2010)       |
| / <sub>0</sub> -penalized   | $x_{i}^{j+1} = \frac{\operatorname{sgn}(2(Ax^{j})_{i})( 2(Ax^{j})_{i}  - s\varphi_{p}'( x_{h}^{j} ))_{+}}{\sqrt{\sum_{h}( 2(Ax^{j})_{h}  - s\varphi_{p}'( x_{h}^{j} ))_{+}^{2}}}$                               | <i>O</i> ( <i>n</i> <sup>2</sup> )                         | Sriperumbudur et al. (2010) |
| /1-penalized                | $y^{j+1} = \underset{y}{\operatorname{argmin}} \{ \sum_{i} \ b_{i} - x^{j}y^{T}b_{i}\ _{2}^{2} + \lambda \ y\ _{2}^{2} + s\ y\ _{1} \}$                                                                         |                                                            | Zou et al. (2006)           |
|                             | $\mathbf{x}^{j+1} = \frac{(\sum_{i} b_i b_i^T) \mathbf{y}^{j+1}}{\ (\sum_{i} b_i b_i^T) \mathbf{y}^{j+1}\ _2}$                                                                                                  |                                                            |                             |
| /1-penalized                | $z^{j+1} = \frac{\sum_{i} ( b_i^T z^j  - s)_+ \operatorname{sgn}(b_i^T z^j) b_i}{\ \sum_{i} ( b_i^T z^j  - s)_+ \operatorname{sgn}(b_i^T z^j) b_i\ _2}$                                                         | O(mn)                                                      | Shen-Huang (2008),          |
|                             |                                                                                                                                                                                                                 |                                                            | Journee et al. (2010)       |

Table: Cheap sparse PCA algorithms for modified problems.

# The Big Picture Revisited

All previous listed algorithms have been derived from various disparate approaches/motivations to solve modifications of SPCA.

#### Any connection?

Is is possible to tackle the difficult sparse PCA problem as is?

## The Big Picture Revisited

All previous listed algorithms have been derived from various disparate approaches/motivations to solve modifications of SPCA.

#### Any connection?

Is is possible to tackle the difficult sparse PCA problem as is?

Very recently we have shown that: (Details in Luss-Teboulle (2011))

- All the previously listed algorithms are a particular realization of a "Father Algorithm": ConGradU (based on the well-known Conditional Gradient Algorithm)
- ConGradU CAN be applied directly to the original problem!

#### Maximizing a Convex function over a Compact Nonconvex set

Classic Conditional Gradient Algorithm [Frank-Wolfe'56, Polyak'63, Dunn'79..]

solves: 
$$\max \{F(x) : x \in C\}$$
, with  $F$  is  $C^1$ ;  $C$  convex compact  
 $x^0 \in C, p^j = \operatorname{argmax} \{\langle x - x^j, \nabla F(x^j) \rangle : x \in C\}$   
 $x^{j+1} = x^j + \alpha^j (p^j - x^j), \alpha^j \in (0, 1]$  stepsize

A Here : F is convex, possibly nonsmooth; C is compact but nonconvex

#### Maximizing a Convex function over a Compact Nonconvex set

Classic Conditional Gradient Algorithm [Frank-Wolfe'56, Polyak'63, Dunn'79..]

solves : max { $F(x) : x \in C$ }, with F is  $C^1$ ; C convex compact  $x^0 \in C, p^j = \operatorname{argmax} \{\langle x - x^j, \nabla F(x^j) \rangle : x \in C\}$  $x^{j+1} = x^j + \alpha^j (p^j - x^j), \alpha^j \in (0, 1]$  stepsize

A Here : F is convex, possibly nonsmooth; C is compact but nonconvex Based on Mangasarian (96) developed for C a polyhedral set.

ConGradU – Conditional Gradient with Unit Step Size

$$x^0 \in C, \; x^{j+1} \in \operatorname{argmax}\{\langle x - x^j, F'(x^j) 
angle : x \in C\}$$

#### Notes:

- **(**) *F* is not assumed to be differentiable and F'(x) is a subgradient of *F* at *x*.
- **2** Useful when max{ $\langle x x^j, F'(x^j) \rangle : x \in C$ } is *easy* to solve

## Solving Original *l*<sub>0</sub>-constrained PCA via ConGradU

Applying **ConGradU** directly to  $\max\{x^T A x : ||x||_2 = 1, ||x||_0 \le k, x \in \mathbb{R}^n\}$  results in

$$x^{j+1} = \operatorname{argmax} \{ x^{jT} A x : \|x\|_2 = 1, \ \|x\|_0 \le k \} = \frac{T_k(Ax^j)}{\|T_k(Ax^j)\|_2}$$
$$T_k(a) := \operatorname{argmin}_{y} \{ \|x - a\|_2^2 : \|x\|_0 \le k \}$$

Despite the hard constraint, very easy to compute:  $(T_k(a))_i = a_i$  for the k largest entries (in absolute value) of a and  $(T_k(x))_i = 0$  otherwise.

## Solving Original *l*<sub>0</sub>-constrained PCA via ConGradU

Applying **ConGradU** directly to  $\max\{x^T A x : ||x||_2 = 1, ||x||_0 \le k, x \in \mathbf{R}^n\}$  results in

$$x^{j+1} = \operatorname{argmax}\{x^{j^{T}}Ax : \|x\|_{2} = 1, \|x\|_{0} \le k\} = \frac{T_{k}(Ax^{j})}{\|T_{k}(Ax^{j})\|_{2}}$$
$$T_{k}(a) := \operatorname{argmin}_{y}\{\|x - a\|_{2}^{2} : \|x\|_{0} \le k\}$$

Despite the hard constraint, very easy to compute:  $(T_k(a))_i = a_i$  for the k largest entries (in absolute value) of a and  $(T_k(x))_i = 0$  otherwise.

- Iterations are cheap (e.g., in comparison to SDP convex relaxations which require eigenvalue decompositions at every iteration)
- **Convergence:** Every limit point of  $\{x^j\}$  converges to a stationary point.
- **Complexity**: O(kn) or O(mn)
- The original problem can be solved using ConGradU with the same complexity as when applied to modifications!
- Penalized/Modified problems require tuning an unknown tradeoff penalty parameter to get the desired sparsity. This can be very computationally expensive and not needed here.
- For Numerical results and Comparisons, see Luss-Teboulle (2011), available on arXiv.

#### Extensions

Again the special problem structures beneficially exploited to build a simple scheme **ConGradU**:

- that encompasses all currently known cheap methods for sparse PCA
- can easily be applied to the solve original *l*<sub>0</sub>-constrained problem

Our tools can be easily extended to produce other novel simple algorithms for other similar problems:

Sparse Singular Value Decomposition:

 $\max \{x^T B y : \|x\|_2 = 1, \ \|y\|_2 = 1, \ \|x\|_0 \le k_1, \ \|y\|_0 \le k_2\}$ 

**2** Sparse Canonical Correlation Analysis:

 $\max \{ x^{\mathsf{T}} B^{\mathsf{T}} C y : x^{\mathsf{T}} B^{\mathsf{T}} B x = 1 \ y^{\mathsf{T}} C^{\mathsf{T}} C y = 1, \ \|x\|_{0} \le k_{1}, \ \|y\|_{0} \le k_{2} \}$ 

**③** Sparse nonnegative Principal Component Analysis:

$$\max \{x^{T}Ax : \|x\|_{2} = 1, \ \|x\|_{0} \le k, \ x \ge 0\}$$

## Summary on First Order Schemes

- Powerful for constructing cheap iterations
- Efficient algorithms in many applied optimization models with structures.
- Further research needed for simple and efficient schemes that can cope with curse of dimensionality and Nonconvex/Nonsmooth settings.

## Summary on First Order Schemes

- Powerful for constructing cheap iterations
- Efficient algorithms in many applied optimization models with structures.
- Further research needed for simple and efficient schemes that can cope with curse of dimensionality and Nonconvex/Nonsmooth settings.

Thank you for listening!