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Opening Remark and Credit

About more than 380 years ago.....In 1629, Fermat suggested the following:

Given f , solve for x :[
f (x + d)− f (x)

d

]
d=0

= 0

...We can hardly expect to find a more general method to get
the maximum or minimum points on a curve.....

Pierre de Fermat
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A Wealth of Algorithms Using/Based First Order Information

......Historical Development: Some fundamental Schemes.......
Fixed point methods [Babylonian time!/Heron for square root, Picard,
Banach, Weisfield’34]
Gauss-Seidel ’1798 (coordinate descent), Alternating Minimization
Gradient methods [Cauchy’ 1846, Rosen’63, Frank-Wolfe ’56, Polyak’62]
Stochastic Gradients [Robbins and Monro ’51]
Arrow-Hurwicz [’58]; Subgradient methods [Shor’61, Polyak’64]
Proximal-Algorithms [Martinet ’70, Rockafellar ’76, Fukushima-Mine’81]
Penalty/Barrier methods [Courant’49, Fiacco-McCormick’66]
Augmented Lagrangians and Splitting [Hestenes-Powell’69,
Goldstein-Treyakov’72, Rockafellar’74, Mercier-Lions ’79, Passty’79,
Fortin-Glowinski’76, Bertsekas’82]
Extragradient-methods for VI [Korpelevich ’76, Konnov,’80]
Optimal Gradient Schemes [Nemirosvki-Yudin’81, Nesterov’83]
..............and more..............................

Mainly developed as general purpose algorithms
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Goals and Outline

Building and Analyzing Simple and Efficient First Order Schemes
Exploiting Structures for Various Classes of Problems

Outline

Gradient/Subgradient: Some Basic Algorithms and Results
Fast Gradient-Based Schemes with Improved Convergence Rate:
Nonconvex Models with Nice Structures

Talk based on joint works with:

A. Auslender (Lyon), A.Beck (Technion), R. Luss (Tel Aviv)
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First Order/Gradient Based Methods: Why?
A main drawback: Can be very slow for producing high accuracy
solutions....But share many advantages:

Use minimal information, e.g., (f , f ′)
Often lead to very simple and ”cheap” iterative schemes.
Complexity/iteration mildly dependent (e.g., linear) in problem’s
dimension, (as opposed to more sophisticated methods)
Suitable when high accuracy is not crucial [in many large scale
applications, the data is anyway corrupted or known only roughly..]

For very large scale problems with medium accuracy requirements, gradient
based methods often remain the only practical alternative.... Widely used in
many applications....

1 Clustering Analysis: The k-means algorithm
2 Neuro-computing: The backpropagation algorithm
3 Statistical Estimation: The EM (Expectation-Maximization) algorithm.
4 Machine Learning: SVM, Regularized regression, PCA, etc...
5 Signal and Image Processing: Sparse Recovery, Denoising and

Deblurring Schemes, Total Variation minimization...
6 ...and much more...
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A Useful Optimization Model

(M) min {F (x) = f (x) + g(x) : x ∈ E}

E is a finite dimensional Euclidean space with inner product 〈·, ·〉 and
norm ‖ · ‖ = 〈·, ·〉1/2.
g : E→ (−∞,∞] is proper closed and convex, assumed subdifferentiable
over dom g assumed closed.
f : E→ R is C 1,1

L(f ) over E, i.e., with gradient Lipschitz:

∃L(f ) > 0 : ‖∇f (x)−∇f (y)‖ ≤ L(f )‖x− y‖, ∀x, y.

We assume that (M) is solvable, i.e.,

X∗ := argmin f 6= ∅, and for x∗ ∈ X∗, set F∗ := F (x∗).

The model (M) does already have structural information. It is rich enough to
recover various classes of smooth/nonsmooth convex and nonconvex
minimization problems.
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Gradient-Based Schemes for Special Cases of (M)

Specializing model (M):minx F (x) := f (x) + g(x) with f = 0 or g = 0, δC

The Gradient Method min
x

f (x) : xk = xk−1 − tk∇f (xk−1)

The Gradient Projection min
x∈C

f (x) : xk = ΠC (xk−1 − tk∇f (xk−1))

Subgradient Projection min
x∈C

g(x) : xk = ΠC (xk−1 − tkγ
k−1), γk−1 ∈ ∂g(xk−1)

Proximal Minimization min
x

g(x) : xk = argmin
x
{g(x) +

1
2tk
‖x− xk−1‖2}

tk > 0 is a suitable stepsize: fixed; backtracking line search; exact line
search; or diminishing step-size: tk → 0,

∑
tk =∞

ΠC (x) := argmin
z∈C

‖z− x‖2. is the orthogonal projection onto C ⊂ E

δC (·) is the indicator for C
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Some Typical Rate of Convergence for Gradient Schemes
Our focus is on non-asymptotic global rate of convergence.

1 Convex Smooth Minimization: Gradient/Gradient Projection (GP)

f (xk )− f (x∗) = O(1/k)

2 Convex Nonsmooth Minimization: Subgradient Method (SM)

min
1≤s≤k

g(xs)− g∗ = O(
1√
k

)

3 Nonconvex Smooth Mininization: Gradient/Gradient Projection

min
1≤s≤k

‖∇f (xs−1)‖ = O(
1√
k

)

Key Advantages: rate nearly independent of problem’s dimension. GP
Simple, when projections are easy to compute...
Main Drawbacks: GP often too slow even for low accuracy
requirements...For SM, worse... needs k ≥ ε−2 iterations!
Can we improve the situation..?...
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Building Gradient-Based Schemes

Our objective is to solve

(M) min {F (x) = f (x) + g(x) : x ∈ E} , f smooth, g nonsmooth

Useful and Basic Approaches Include:

Discretization of dynamical systems
Local Approximation models for(M)
Fixed point methods on corresponding optimality conditions

Less Standard: Deriving schemes for optimization via VI algorithms

A Key Player: The Proximal Framework
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Quadratic Approximation and Fixed Point Approaches

Two key ideas from: [Fukushima-Mine’81] and [Passty’79]

1 Approximation: Given some y, approximate f (x) + g(x) via:

q(x, y) = f (y) + 〈x− y,∇f (y)〉+
1
2t ‖x− y‖2 + g(x).

That is, leaving the nonsmooth part g(·) untouched.
Then, solve the approximate model: xk = argmin

x
q(x, xk−1)

2 Fixed Point via the optimality condition (Convex case):
x∗ ∈ argmin{f (x) + g(x)} iff 0 ∈ ∇f (x∗) + ∂g(x∗). Fix any t > 0, then
the following equivalent statements hold:

⇔ 0 ∈ t∇f (x∗)− x∗ + x∗ + t∂g(x∗) ⇔
(I + t∂g)(x∗) ∈ (I − t∇f )(x∗) ⇔ x∗ ∈ (I + t∂g)−1(I − t∇f )(x∗),

Through both approaches we obtain the Proximal-Gradient Scheme:

xk = argmin
x

q(x, xk−1) = argmin
x∈E

{
g(x) +

1
2tk
‖x− (xk−1 − tk∇f (xk−1))‖2

}
xk = (I + tk∂g)−1(I − tk∇f )(xk−1) := proxtk

(g)(I − tk∇f )(xk−1)

Thus, the scheme is a proximal step at a gradient iteration for f and reveals
the fundamental role of the proximal operator.
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The Proximal Map (Moreau - (1964))

Theorem [Moreau-(64)] Let g : E → (−∞,∞] be closed proper convex. For
any t > 0, let

gt(z) = min
u

{
g(u) +

1
2t ‖u− z‖2

}
(∗)

1 min{gt(z) : z ∈ E} = min{g(u) : u ∈ E}.
2 The minimum in (*) is attained at the unique point

proxt(g)(z) = (I + t∂g)−1(z) for every z ∈ E,

and the map (I + t∂g)−1 is single valued from E into itself.
3 The function gt(·) is C 1,1 convex on E with a 1

t -Lipschitz gradient:

∇gt(z) =
1
t (I − proxt(g)(z)) for every z ∈ E.

Marc Teboulle – Tel Aviv University, First Order Algorithms for Well Structured Optimization Problems 11



The Proximal Map (Moreau - (1964))

Theorem [Moreau-(64)] Let g : E → (−∞,∞] be closed proper convex. For
any t > 0, let

gt(z) = min
u

{
g(u) +

1
2t ‖u− z‖2

}
(∗)

1 min{gt(z) : z ∈ E} = min{g(u) : u ∈ E}.
2 The minimum in (*) is attained at the unique point

proxt(g)(z) = (I + t∂g)−1(z) for every z ∈ E,

and the map (I + t∂g)−1 is single valued from E into itself.
3 The function gt(·) is C 1,1 convex on E with a 1

t -Lipschitz gradient:

∇gt(z) =
1
t (I − proxt(g)(z)) for every z ∈ E.

Marc Teboulle – Tel Aviv University, First Order Algorithms for Well Structured Optimization Problems 11



The Proximal Gradient Method for (M)

The proximal gradient method with a constant stepsize rule.

Proximal Gradient Method with Constant Stepsize
Input: L = L(f ) - A Lipschitz constant of ∇f .
Step 0. Take x0 ∈ E.
Step k. (k ≥ 1) Compute the prox of g

xk = pL(xk−1) = argmin
x∈E

{
g(x) +

L
2 ‖x− (xk−1 −

1
L∇f (xk−1))‖2

}

The Lipschitz constant L(f ) is not always known or not easily computable,
this issue is resolved with an easy backtracking stepsize rule.
A drawback: need to know how to compute efficiently proxt(g)(·)
What is the Global Rate of Convergence for PGM?
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Computing proxt(g): A Useful Example

Computing proxt(g) can be very hard..If at all possible..!.?..
But, for many useful special cases can be easy...

If g ≡ δC , the indicator of C closed and convex, then

proxt(g)(x) = argmin
u
{δC (u) +

1
2t ‖u− x‖2} = argmin{ 1

2t ‖u− x‖2 : u ∈ C}

= (I + t∂g)−1(x) = ΠC (x), the ortho projection on C

For some useful sets C easy to compute ΠC :
Affine sets, Simple Polyhedral Sets (halfspace, Rn

+, [l , u]n),
l2, l1, l∞ - Balls,
Ice Cream Cone, Semidefinite Cone Sn

+,
Simplex and Spectrahedron (Simplex in Sn).

This covers many interesting models + equally easy for g = δ∗C the support
function of C . Some more useful examples....
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Some Calculus Rules for Computing proxt(g)

proxt(g)(x) = argmin
u

{
g(u) +

1
2t ‖u− x‖2

}
.

g(u) proxt(g)(x)
δC (u) ΠC (x)

δ∗C (u) -support function- x− ΠC (x)

dC (u)

{
x + (ΠC (x)−x)

tdC (x)
if dC (x) > 1/t

x otherwise
‖Ax− b‖2/2,A ∈ Rm×n (I + t−1AT A)−1(x + t−1AT b)

‖u‖1 (-shrinkage-) sgn (xj ) max{|xj | − t, 0}

‖u‖
{
‖x‖2/2t if ‖x‖ ≤ t
‖x‖ − t/2 otherwise

‖U‖∗, U ∈ Rm×n, (m ≥ n) P diag(s)QT

σ1(U) ≥ σ2(U) ≥ . . . singular values of U
Nuclear norm ‖U‖∗ =

∑
j σj (U)

Singular value decomposition

U = P diag(σ)QT , then shrinkage sj = sgn (σj ) max{|σj | − t, 0}.
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Rate of Convergence of Prox-Grad for Convex (M)

Theorem - Rate of Convergence of Prox-Grad Let {xk} be the sequence
generated by the prox-grad. Then for every k ≥ 1:

F (xk )− F (x) ≤ αL(f )‖x0 − x‖2

2k , ∀x ∈ X∗

Thus the prox grad method converges at a sublinear rate in function
values, namely like there were no nonsmooth term.

Special Cases: With g ≡ 0 and g = δC , our model (M) recovers results for
the basic gradient and gradient projection methods respectively.
With f = 0 in (M), recovers the Proximal Minimization Algorithm
(Martinet 70) and its sublinear complexity rate (Guler 90).
This is ”Better” than Subgrad Scheme...But in general
non-implementable, unless g is ”simple”.... Nevertheless, very useful when
combined with duality: −→ Augmented Lagrangians Methods
Note: The sequence {xk} can also be proven to converge to global
solution x∗ provided a step size is in (0, 2/L) (Combettes-Wajs (05)).
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The Nonconvex Case in (M): F=f+g

When f is nonconvex, the global convergence rate results are of course weaker:
Convergence to a global minimum is out of reach.
Convergence of the sequence to a stationary point is measured by the
quantity ‖x− pL(x)‖. No global results on {xk} or even {F (xk )}.!..

Theorem (Global Rate of Convergence for γn)
Let {xk} be the sequence generated by the proximal gradient method with either
a constant or a backtracking stepsize rule. Then for every n ≥ 1 we have

γn ≤
1√
n

(
2(F (x0)− F∗)

βL(f )

)1/2

,

where
γn := min

1≤k≤n
‖xk−1 − pLk (xk−1)‖.

Moreover, ‖xk−1 − pLk (xk−1)‖ → 0 as k →∞.
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Improving Complexity–Fast Gradient Schemes

Previous explicit methods are simple but are often too slow.

For Prox-Grad and Gradient methods: a complexity rate of O(1/k)

For Subgradient Methods: complexity rate of O(1/
√

k).

Can we do better to solve the convex nonsmooth problem (M)?

(M) min{F (x) := f (x) + g(x) : x ∈ E}.

Can we devise a method with:
♠ the same computational effort/simplicty as Prox-Grad .
♠ a Faster global rate of convergence.
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Yes we Can...

Answer: Yes, through an “equally simple” scheme
Let QL(x, y) := f (y) + 〈x− y,∇f (y)〉+ 1

2L‖x− y‖2 + g(x), L > 0

♣ xk+1 = argmin
x

QL(x, yk ), ←↩ yk instead of xk

The new point yk will be smartly chosen and easy to compute.
Idea: From an old algorithm of Nesterov (1983)∗ designed for minimizing
a smooth convex function, and proven to be an “optimal” first order
method (Yudin-Nemirovsky (80)) with complexity O(1/k2)

But, here problem (M) is nonsmooth. Yet, we can also derive a fast
algorithm for the general NSO problem (M), namely ”as if the nonsmooth
part can be neutralized”

∗ Y. Nesterov. A method for solving the convex programming problem with convergence rate
O(1/k2). Dokl. Akad. Nauk SSSR, 269(3):543–547, (1983)
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A Fast Prox-Grad Algorithm - FISTA [Beck-Teboulle’ 09]
An equally simple algorithm as prox-grad. (Here L(f ) is known).

Here with constant stepsize
Input: L = L(f ) - A Lipschitz constant of ∇f .
Step 0. Take y1 = x0 ∈ E, t1 = 1.
Step k. (k ≥ 1) Compute

xk = argmin
x∈E

{
g(x) +

L
2 ‖x− (yk −

1
L∇f (yk ))‖2

}
xk ≡ pL(yk ), ←↩ main computation as Prox-Grad

• tk+1 =
1 +

√
1 + 4t2

k

2 ,

•• yk+1 = xk +

(
tk − 1
tk+1

)
(xk − xk−1).

Additional computation in (•) and (••) is clearly marginal.
Knowledge of L(f ) is not Necessary, can use BLS.

With g = 0, this is the smooth Fast Gradient of Nesterov (83);
With tk ≡ 1, ∀k we recover ProxGrag (PG).
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An Improved O(1/k2) Global Rate of Convergence for (M)

Theorem – [B-T’ 09] Let {xk} be generated by FISTA. Then for any k ≥ 1

F (xk )− F (x∗) ≤ 2L(f )‖x0 − x∗‖2

(k + 1)2 ,

# of iterations to reach F (x̃)− F∗ ≤ ε is ∼ O(1/
√
ε).

Clearly improves Prox Grad by a square root factor.

On the practical side this theoretical rate is achieved.
Many computational studies have confirmed the efficiency of FISTA for
solving several interesting models in Signal/image recovery and in Machine
learning
e.g., image denoising/deblurring, nuclear matrix norm regularization,
matrix completion problems, multi-task learning, matrix classification, etc..
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Applications/Limitations of FISTA for (M)

(M) min{f (x) + g(x) : x ∈ E}

f ∈ C 1,1 convex can be of any type with available gradient

FISTA is not a monotone method!.. But can be made monotone.
As long as the prox of the nonsmooth function g

pL(y) = argmin
x∈E

{
g(x) +

L
2 ‖x− (y− 1

L∇f (y))‖2
}

can be computed analytically or easily/efficiently, via some other approach
(e.g., dual for TV); FISTA (MFISTA) is useful and quite efficient.

Caveat: Many inverse problems solve the Penalized Model:

min{f (x) + λg(x)}; λ > 0 tradeoff -unknown penalty parameter

FISTA does not resolve the issue on how to pick the unknown λ!
Continuation, or heuristic techniques can be used.

Many other algorithms suffer the same problem with the unknown
parameter and require ”tuning”.
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Gradient Schemes with Non-Euclidean Distances

All previous schemes were based on using the squared Euclidean distance
for measuring proximity of two points in E
It is useful to exploit the geometry of the constraints set X
This is done by selecting a “distance-like” function that sometimes can
reduce computational costs and even improve the rate of convergence.

1 Mirror Descent Algorithms
2 More on Fast Gradient Schemes
3 Building Gradient Schemes via Algorithms for Variational Inequalities
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A Proximal Distance-Like Function

Exploiting the Geometry of the constraints
Usual gradient method reads:

y = argmin
ξ∈X

{t〈ξ,∇f (x)〉+
1
2‖ξ − x‖2}, t > 0.

Replace ‖ · ‖2 by some distance-like d(·, ·) that better exploits C (e.g.,
allows for deriving explicit and simple formula) through a
Projection-Like Map:

p(g, x) := argmin
v
{〈v, g〉+ d(v, x)}.

Minimal required properties for d :

d(·, v) is a convex function, ∀v
d(·, ·) ≥ 0, and d(u, v) = 0 iff u = v ∀u, v.
• d is not a distance: no symmetry or/and triangle inequality
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Two Generic Families for Proximal Distances d

Bregman type distances - based on kernel ψ:

Dψ(x, y) = ψ(x)− ψ(y)− 〈x− y,∇ψ(y)〉, ψ strongly convex

Φ-divergence type distances - based on 1-d kernel φ convex

dϕ(x, y) :=

n∑
j=1

y r
j ϕ(

xj

yj
) +

σ

2 ‖x− y‖2, r = 1, 2

The choice of d should be dictated to

♠ best match the constraints of a given problem
♠ simplify the projection-like computation for given class of ”Simple
Constraints with Special Structures”
♣ What are Simple Constraints...?..
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Simple Constraints

”Simple” but also fundamental.. X := C ∩ V , C closure of C with

C open convex,V := {x ∈ Rn : A(x) = b}, A linear, b ∈ Rm.

Rn
+,

unit ball, box constraints,
∆n the simplex in Rn,
Sn

+ (symmetric semidefinite positive matrices),
Ln

+ the Lorentz cone,
the Spectrahedron (Simplex in Sn)
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Examples of couple (d ,H)

C ∩ V d(x, y) H(x, y)
Rn

++

∑n
j=1−y 2

j log xj
yj

+ xj yj − y 2
j + σ

2 ‖x− y‖2 1
2‖x− y‖2

Sn
++ − log det(xy−1) + tr(xy−1) + σ tr(x− y)2 − n H = d

Ln
++ − log xT Dnx

yT Dny + 2xT Dny
yT Dny − 2 + σ

2 ‖x− y‖2 H = d
∆n

∑n
j=1 xj log xj

yj
+ yj − xj H = d

Σn tr(x log x− x log y + y− x) H = d

∆n := {x ∈ Rn |
n∑

j=1

xj = 1, x > 0}, Σn := {x ∈ Sn | tr(x) = 1, x � 0}.

Ln
++ := {x ∈ Rn | xn > (x 2

1 + . . .+ x 2
n−1)1/2}, Dn ≡ diag(−1, . . . ,−1, 1).

Cn = {x ∈ Rn : aj < xj < bj j = 1 . . . n} similar to Rn
++ (log quad)

Corresponding Projections p(g, x) can be obtained analytically in these
cases

Note: H(·, ·) is another proximity measure used to prove convergence results
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Computing Explicit Projections p(g, x)

C ∩ V p(g, x) or pj (g, x), j = 1, . . . , n
Rn

++ xj (ϕ
∗)
′
(−gj x−1

j )

Sn
++ (2σ)−1(A(g, x) +

√
A(g, x)2 + 4σI)

Ln
++

1
2σ

(
(1 + wn

ζ
)w̄ , (wn + ζ)

)
∆n

xj exp(−gj )∑n
i=1

xi exp(−gi )

Σn via eigenvalue decomp. reduces to similar comp. as ∆n

(ϕ∗)′(s) = (2σ)−1{(σ − 1) + s +
√

((σ − 1) + s)2 + 4σ}
A(g, x) = σx− g − x−1, τ(x) = xT Dnx

w = (−2τ(x)−1Dnx + 2σx− g)/2, w = (w̄,wn) ∈ Rn−1 × R

ζ =

(
‖w‖2 + 4σ +

√
(‖w‖2 + 4σ)2 − 4w 2

n‖w̄‖2

2

)1/2

.
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1. The Mirror Descent Algorithm-MDA

min{g(x) : x ∈ C} Convex Nonsmooth

Originated from functional analytic arguments in infinite dimensional
setting between primal-dual spaces.
A. S. Nemirovsky and D. B. Yudin. Problem complexity and method
efficiency in optimization Wiley-Interscience Publication, (1983).

In (Beck-Teboulle-2003) we have shown that the (MDA) can be simply
viewed as a subgradient method with a strongly convex Bregman
proximal distance:

xk+1 = argmin
x
{〈x, vk〉+

1
tk

Dψ(x, xk )}, vk ∈ ∂g(xk ), tk > 0.

Exploiting geometry of constraints can improve performance of SM.
Example: Convex Minimization over the Unit Simplex ∆n that uses
the entropy kernel defined on ∆n (is 1-strongly convex w.r.t ‖ · ‖1).
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Convex Minimization over the Unit Simplex ∆n

inf{g(x) : x ∈ ∆n}, ∆n = {x ∈ Rn : eT x = 1, x ≥ 0}

EMDA: Start with x0 = n−1e. For k ≥ 1 generate

x k
j =

x k−1
j exp(−tk v k−1

j )∑n
i=1 x k−1

i exp(−tk v k−1
i )

, j = 1, . . . , n tk :=

√
2 log n

Lg
√

k
,

where vk−1 := (v k−1
1 , . . . , v k−1

n ) ∈ ∂g(xk−1).

Theorem The sequence generated by EMDA satisfies for all k ≥ 1

min
1≤s≤k

g(xs)−min
x∈∆

g(x) ≤
√

2 log n max1≤s≤k ||vs ||∞√
k

This outperforms the classical subgradient (based on ‖ · ‖2), by a factor of
(n/ log n)1/2, which for large n can make a huge difference!....
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2. A Fast Non-Euclidean Gradient Method

For the nonsmooth convex case min{F (x) := f (x) + g(x)}, f ∈ C 1,1.
Easily obtained by extending the smooth case of [Auslender-Teboulle’06)] along
the proof techniques of Beck-Teboulle’09 for FISTA.

A Fast Non-Euclidean Gradient Method with Bregman Distance Dψ
Input: L = L(f ), σ > 0, ψ, σ-strongly convex.
Step 0: x0, z0 ∈ ri(domψ), t0 = 1

Step k: yk = (1− t−1
k )xk + t−1

k zk ←

zk+1 = argmin
x

{
〈x,∇f (yk )〉+ g(x) +

L
σtk

Dψ(x, zk )
}
,

xk+1 = (1− t−1
k )xk + t−1

k zk+1,

tk+1 =
1 +

√
1 + 4t2

k

2 ,

As simple as FISTA, just requires the simple additional update yk .
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Complexity of Non-Euclidean Fast Gradient
Theorem For the sequence {xk} generated by the previous algorithm:

F (xk )− F (x∗) ≤ 4LDψ(x∗, x0)

σ(k + 1)2 , ∀k ≥ 1.

Thus, we have an O(1/k2) scheme for Non-Euclidean Distance to solve (M).

Moreover, as in Mirror Descent, the advantage of using Non Euclidean distance
adequately exploiting the constraints allows to:

1 Simplify the prox computation for the given constraints set
2 Improve the constant in the complexity bound

Two other schemes :
One requires past history of all gradients + 2 prox: one quadratic, and one
based on ψ;
the other also requires past history of all gradients, and 2 prox based on ψ.

See, Nesterov. Smooth minimization of non-smooth functions. Math.
Program. Series A, Vol. 103, 127–152, (2005); Gradient methods for
minimizing composite objective function. CORE Technical report,(2007).
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3. Gradient Schemes via Variational Inequalities

X ⊂ Rn closed convex set
F : X → Rn monotone map on X , i.e.,

〈F (x)− F (y), x− y〉 ≥ 0, ∀x, y ∈ X .

VI Problem

Find x∗ ∈ X such that 〈F (x∗), x− x∗〉 ≥ 0 ∀x ∈ X .

VI extend and encompass a broad spectrum of problems:
Complementarity, Optimization, Saddle point, Equilibrium...

Here, X is assumed ”simple” for the VI.
This is exploited to derive schemes with explicit formulas for general
constrained smooth convex problems as well as some structured
nonsmooth problems.
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Starting Idea: The Extra-Gradient Method

Korpelevich, G. M. Extrapolation gradient methods and their relation to
modified Lagrange functions. Ekonom. i Mat. Metody, 19 (1976), no. 4,
694–703.

Provides a ”simple cure” to difficulties, and strong assumptions needed in
the usual Projection methods for VI (e.g., F strongly monotone on X)

xk = ΠX (xk−1 − tk F (xk−1)), tk > 0.

Extragradient Method-Korpelevich (76):

yk−1 = ΠX (xk−1 − βk F (xk−1)), xk = ΠX (xk−1 − αk F (yk−1)),

with βk = αk = 1
L (L is the Lipschtiz constant for F )

No complexity results.../or potential implications to solve
NSO/constrained problems.
Does not exploit the geometry of set X .
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Basic Model Algorithm is Very Simple

Pick some suitable prox-distance d(·, ·) and let

p(g, x) = argmin
v
{〈v, g〉+ d(v, x)}.

Extra-Gradient-Like: EGL
Given x 1 ∈ C ∩ V , compute:

yk = p(βk F (xk ), xk )

xk+1 = p(αk F (yk ), xk )

zk =

k∑
l=1

αl yl∑k
l=1 α

l
← average comp.

with αk , βk > 0 determined within algorithm, or fixed in terms of L.
Main Computational Object: The Projection-Like Map p(·, ·) with
respect to the choice of d(·, ·).
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Convergence Results for EGL

Convergence Result (Auslender-Teboulle (05)
Let {xk , yk , zk} the sequences generated by EGL. Then,

1 The sequences {xk}, {zk} are bounded and each limit point of {zk} is a
solution of (VI).

2 If H(x, y) = σ
2 ‖x− y‖2 for Φ-div. distance, then the whole sequence {xk}

converges to a solution of (VI).

3 If F is L-Lipschitz on X , we have the complexity estimate

θ(zk ) = O(
1
k ),

• where θ(z) = sup{〈F (ξ), z − ξ〉 : ξ ∈ X} is the gap function.

Related independent result (only with d(·, ·) ≡ Bregman and for rate of
convergence), Nemirovsky (04).
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Applying EGL to Convex Minimization

(P) f∗ = inf{f (x) : −G(x) ∈ K , Ax = a, x ∈ S}.

Rn, Rm, and Rp finite dim. v.s. with inner products, 〈·, ·〉n,m,p
f convex; G : Rn → Rp , K− convex; a ∈ Rp , A : Rn → Rp

S ”simple” closed convex
K closed convex cone, int K 6= ∅; e.g .,K = Rm

+, Sm
+ , Lm

+

Possible, thanks to the theory of duality for variational inequalities.
Produce methods with explicit formulas at each iteration that does not
require the solution of any subproblem.
Yields algorithms with low computational cost very easy to implement,
and with improved iteration complexity bounds.
Naturally applied to Structured and Nonsmooth Convex Problems: SDP,
SOC, Saddle point/minimax
Again, “structure” helps to get better complexity results with EGL with a
complexity estimate ∼ O( 1

k ) for various NSO.
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Primal-Dual Variational Inequality Associated to (P)

(P) f∗ = inf{f (x) : −G(x) ∈ K , Ax = a, x ∈ S}

One can show: x∗ solves (P) iff ∃(u∗, v∗) s.t. (x∗, u∗, v∗) solves (PDVI):

Find z∗ = (x∗, u∗, v∗) ∈ Ω : 〈T (z∗), z− z∗〉 ≥ 0, ∀z ∈ Ω

Ω := S × (K × Rp)= ”simple” × ”Hard” × ”Affine”
The primal-dual operator is defined by

T (z) := (∇f (x) + 〈u,∇G(x)〉m + A∗v,−G(x),−(Ax− a))

≡ (T1(z),T2(z),T3(z)).

• Given z = (x, u, v) ∈ Ω, Ω ≡ S × (K × Rp)
• let Z := (X ,U,W ) = T (z̄) for some other given z̄ ∈ Ω.
To apply EGL for solving (PDVI), and hence for solving (P) all we need is to
compute the projection-like map

z+ := p(Z , z) = argmin
ζ

{〈Z , ζ〉+ d(ζ, z)}

for some chosen distance d(ζ, z).
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Projection-like Map z+ := p(Z , z) is Easy to Compute!
We choose d defined by:

d(z′, z) := d1(x′, x) + d2(u′, u) +
1
2‖v

′ − v‖2,

1 d1 captures the ”simple” constraints described by S
2 d2 captures the ”hard” constraints through projections-like maps on K
3 Last distance captures the affine equality constraints (if any).
4 Since d is separable, the computation of p decomposed accordingly, and

hence z+ = (x+, u+, v+) are computed independently and easily as follows.

x+ = p1(T1(z̄), x) := p1(X , x) = argmin{〈w,X〉+ d1(w, x) : w ∈ S},
u+ = p2(T2(z̄), u) := p2(U, u) = argmin{〈w,U〉+ d2(w, u) : w ∈ K},

v+ = p3(T3(z̄), v) := p3(W , v) = argmin{〈w,W 〉+
1
2‖w− v‖2 : w ∈ Rp}

In particular, note that one always has: v+ = v−W .

For computing x+, u+ we use the results given in the previous tables, e.g.
for S = Rn,Rn

+, Sn
+, Ln

+. Similarly, for K = Rn
+, Sn

+, and Ln
+.

No matter how complicated the constraints are in the ground set
S ∩ Q , the resulting projections-like maps are given by analytical
formulas!
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Nonsmooth and Nonconvex Problems

...No miracles here...!....

Again, look for problems with special structures that can beneficially exploited.

The Single Source Sensor Localization Problem
Sparse PCA Problems
Nonconvex Affine Feasibility Problems
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The Source Localization Problem
SL Problem: Locate a single radiating source from noisy range
measurements collected using a network of passive sensors.
The SL problem has received significant attention in the signal processing
literature, specifically in the field of mobile phones localization.

Consider an array of m sensors with
1 aj ∈ Rn coordinates of the jth sensor (in practical applications n = 2 or 3)
2 dj > 0 the noisy observation of range between source and jth sensor:

dj = ‖x− aj‖+ εj , j = 1, . . . ,m,
x ∈ Rn is the unknown source’s coordinate vector; ε unknown noise vector.

Many possible mathematical formulations. Given the observed range
measurements dj > 0, find a ”good” approximation of the source x. A natural
and common optimization formulation:

(SL) min
x∈Rn

{
f (x) ≡

m∑
j=1

(‖x− aj‖ − dj )
2

}
.

Has also a statistical interpretation: when ε follows a Gaussian distribution with
a covariance matrix ∼ Id , the optimal solution of (SL) is in fact a maximum
likelihood estimate.

The SL problem is a nonsmooth nonconvex problem and as such, not easy to
solve.
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A Simple Gradient-Based Algorithm

The derivation is inspired from Weiszfeld’s algorithm (1939) for the
classical convex location problem

Algorithm SWLS:

xk+1 ∈ argmin
x∈Rn

m∑
j=1

(
‖x− aj‖2

‖xk − aj‖
− dj

)2

.

Can be re-formulated for each k as a Weighted Least Squares (WLS)
Denote the set of sensors by A := {a1, . . . , am}.
The scheme is not well defined if xk ∈ A for some k !
Eliminate non-smoothness difficulty by choosing a ”good” initial point!

(G) ∃x0 s.t. f (x0) <
1
4 min

j=1,...,m
d2

j

The analysis is quite unusual...[Beck-Teboulle’(08)]
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Convergence of SWLS

Theorem Let {xk} be generated by SWLS such that x0 satisfies (G). Then,
(a) xk /∈ A for every k ≥ 0.
(b) The sequence {xk} is bounded. Any limit point of {xk} is a stationary

point of f .
(c) The sequence of function values {f (xk )} converges to f∗, where f∗ is the

function value at some stationary point of f .
(d) Assuming all stationary points are isolated, i.e.,

x∗ is an isolated s.p. of f if there are no other s.p. in some N(x∗),
the sequence {xk} converges to a stationary point.

We have performed Monte Carlo runs and observed
The algorithm appears very robust: # of iterations constant ≈ 30,
independently of size (m, n) with stopping rule ‖∇f (xk )‖ ≤ 10−5

Convergence to a ”global minimum” was almost always observed..
A probabilistic analysis of the algorithm seems worthwhile......
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Sparse PCA

Principal Component Analysis solves

max{xT Ax : ‖x‖2 = 1, x ∈ Rn}

while sparse Principal Component Analysis solves

max{xT Ax : ‖x‖2 = 1, ‖x‖0 ≤ k, x ∈ Rn}, k ∈ (1, n] sparsity

‖x‖0 counts the number of nonzero entries of x
Issues:

1 Maximizing a Convex objective.
2 Hard Nonconvex Constraint ‖x‖0 ≤ k.

Possible Approaches:
1 SDP Convex Relaxations [D’aspremont et al. 2008]
2 Approximation/Modified formulations: Many proposed approaches
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Sparse PCA: The Big Picture

♠ Our problem of interest is the difficult sparse PCA problem as is

max{xT Ax : ‖x‖2 = 1, ‖x‖0 ≤ k, x ∈ Rn}

♠ Literature has focused on solving various modifications:
l0-penalized PCA max {xT Ax − s‖x‖0 : ‖x‖2 = 1}, s > 0
Relaxed l1-constrained PCA max {xT Ax : ‖x‖2 = 1, ‖x‖1 ≤

√
k}

Relaxed l1-penalized PCA max {xT Ax − s‖x‖1 : ‖x‖2 = 1}
Approx-Penalized max {xT Ax − sgp(|x‖) : ‖x‖2 = 1} gp(x) ' ‖x‖0

SDP-Convex Relaxations max{tr(AX) : tr (X) = 1,X � 0, ‖X‖1 ≤ k}

Convex relaxations are too computationally expensive for large problems.
No algorithm give bounds to the optimal solution of the original problem.
Even when ”Simple”, the algorithms for modifications:
♣ do not solve the original problem of interest
♣ do require unknown penalty parameter s to be tuned.
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No algorithm give bounds to the optimal solution of the original problem.
Even when ”Simple”, the algorithms for modifications:
♣ do not solve the original problem of interest
♣ do require unknown penalty parameter s to be tuned.
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Quick Highlight of Simple Algorithms for Modified SPCA
Type Iteration Per-Iteration References

Complexity

l1-constrained xj+1
i =

sgn(((A+σ2 )xj )i )(|((A+σ2 )xj )i |−λ
j )+√∑

h
(|((A+σ2 )xj )h|−λj )2

+

O(n2), O(mn) Witten et al. (2009)

l1-constrained xj+1
i =

sgn((Axj )i )(|(Axj )i |−sj )+√∑
h

(|(Axj )h|−sj )2
+

where O(n2), O(mn) Sigg-Buhman (2008)

sj is (k + 1)-largest entry of vector |Axj |

l0-penalized zj+1 =

∑
i

[sgn((bT
i zj )2−s)]+(bT

i zj )bi

‖
∑

i
[sgn((bT

i zj )2−s)]+(bT
i zj )bi‖2

O(mn) Shen-Huang (2008),

Journee et al. (2010)

l0-penalized xj+1
i =

sgn(2(Axj )i )(|2(Axj )i |−sϕ′p (|xj
i |))+√∑

h
(|2(Axj )h|−sϕ′p (|xj

h|))2
+

O(n2) Sriperumbudur et al. (2010)

l1-penalized yj+1 = argmin
y
{
∑

i

‖bi − xj yT bi‖
2
2 + λ‖y‖2

2 + s‖y‖1} Zou et al. (2006)

xj+1 =
(
∑

i
bi bT

i )yj+1

‖(
∑

i
bi bT

i )yj+1‖2

l1-penalized zj+1 =

∑
i

(|bT
i zj |−s)+sgn(bT

i zj )bi

‖
∑

i
(|bT

i zj |−s)+sgn(bT
i zj )bi‖2

O(mn) Shen-Huang (2008),

Journee et al. (2010)

Table: Cheap sparse PCA algorithms for modified problems.
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The Big Picture Revisited

1 All previous listed algorithms have been derived from various disparate
approaches/motivations to solve modifications of SPCA.

Any connection?
2 Is is possible to tackle the difficult sparse PCA problem as is?

Very recently we have shown that:(Details in Luss-Teboulle (2011))

All the previously listed algorithms are a particular realization of a
”Father Algorithm”: ConGradU
(based on the well-known Conditional Gradient Algorithm)
ConGradU CAN be applied directly to the original problem!
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Maximizing a Convex function over a Compact Nonconvex set

Classic Conditional Gradient Algorithm [Frank-Wolfe’56, Polyak’63, Dunn’79..]

solves : max {F (x) : x ∈ C}, with F is C 1; C convex compact
x 0 ∈ C , pj = argmax {〈x − x j ,∇F (x j )〉 : x ∈ C}

x j+1 = x j + αj (pj − x j ), αj ∈ (0, 1] stepsize

♠ Here : F is convex, possibly nonsmooth; C is compact but nonconvex

Based on Mangasarian (96) developed for C a polyhedral set.

ConGradU – Conditional Gradient with Unit Step Size

x 0 ∈ C , x j+1 ∈ argmax{〈x − x j ,F ′(x j )〉 : x ∈ C}

Notes:
1 F is not assumed to be differentiable and F ′(x) is a subgradient of F at x .
2 Useful when max{〈x − x j ,F ′(x j )〉 : x ∈ C} is easy to solve
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Solving Original l0-constrained PCA via ConGradU
Applying ConGradU directly to max{xT Ax : ‖x‖2 = 1, ‖x‖0 ≤ k, x ∈ Rn}
results in

x j+1 = argmax{x jT Ax : ‖x‖2 = 1, ‖x‖0 ≤ k} =
Tk (Ax j )

‖Tk (Ax j )‖2

Tk (a) := argmin
y
{‖x − a‖2

2 : ‖x‖0 ≤ k}

Despite the hard constraint, very easy to compute: (Tk (a))i = ai for the k
largest entries (in absolute value) of a and (Tk (x))i = 0 otherwise.

Iterations are cheap (e.g., in comparison to SDP convex relaxations
which require eigenvalue decompositions at every iteration)
Convergence: Every limit point of {x j} converges to a stationary point.
Complexity: O(kn) or O(mn)

The original problem can be solved using ConGradU with the same
complexity as when applied to modifications!
Penalized/Modified problems require tuning an unknown tradeoff
penalty parameter to get the desired sparsity. This can be very
computationally expensive and not needed here.
For Numerical results and Comparisons, see Luss-Teboulle (2011),
available on arXiv.
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Extensions

Again the special problem structures beneficially exploited to build a simple
scheme ConGradU:

that encompasses all currently known cheap methods for sparse PCA
can easily be applied to the solve original l0-constrained problem

Our tools can be easily extended to produce other novel simple algorithms for
other similar problems:

1 Sparse Singular Value Decomposition:

max {xT By : ‖x‖2 = 1, ‖y‖2 = 1, ‖x‖0 ≤ k1, ‖y‖0 ≤ k2}

2 Sparse Canonical Correlation Analysis:

max {xT BT Cy : xT BT Bx = 1 yT C T Cy = 1, ‖x‖0 ≤ k1, ‖y‖0 ≤ k2}

3 Sparse nonnegative Principal Component Analysis:

max {xT Ax : ‖x‖2 = 1, ‖x‖0 ≤ k, x ≥ 0}
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Summary on First Order Schemes

Powerful for constructing cheap iterations
Efficient algorithms in many applied optimization models with structures.
Further research needed for simple and efficient schemes that can cope
with curse of dimensionality and Nonconvex/Nonsmooth settings.

Thank you for listening!
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