
5th SJOM – Bejing, 2011

Cone Linear Optimization (CLO)

From LO, SOCO and SDO

Towards Mixed-Integer CLO

Tamás Terlaky
George N. and Soteria Kledaras ’87 Endowed Chair Professor.

Chair, Department of Industrial and Systems Engineering

Lehigh University



Outline

• Motivation:
Data uncertainty in linear inequalities-Robust LO
Data uncertainty in linear inequalities
Ellipsoidal uncertainty set ⇒ norm constraint
Eigen- and singular value optimization problems
Relaxing integer variables

• Conic Linear Optimization (CLO):
General Convex Cones
Second Order Conic Optimization (SOCO)
Semidefinite Optimization (SDO)

• Interior Point Algorithms for SOCO and SDO:

• MISOCO: Mixed Integer Second Order Conic Optimization

Sisyphus got stuck with a suboptimal solution;

don’t let it happen to you! http://www.optimize.com
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Robust Linear Optimization
Classic – Polyhedral (scenario) approach

(P ) min cTx

s.t. aTj x− bj ≥ 0 ∀ j

Let (aj, bj) be uncertain, it is com-
ing from a polyhedral set (e.g. con-
vex combination of ”scenario” data
points):

 aj

−bj

 =

nj∑
i=1

 aij

−bij

λi
j

∣∣∣∣ nj∑
i=1

λi
j = 1, λi

j ≥ 0


The inequality aTj x ≥ bj
must be true for all possi-
ble values of (aTj ,−bj): nj∑

i=1

 aij

−bij

λi
j

T  x

1

 ≥ 0 for all

nj∑
i=1

λi
j = 1, λi

j ≥ 0 Infinitely many
constraints!

iff [aij]
Tx− bij ≥ 0 for i = 1, . . . , njFinally the problem stays linear as:

(RP ) min cTx

s.t. [aij]
Tx− bij ≥ 0 for i = 1, . . . , nj ∀ j

Disadvantages: – Huge number of linear inequalities

– Polyhedral uncertainty set not realistic.
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Robust Linear Optimization

(P ) min cTx

s.t. aTj x− bj ≥ 0 ∀ j

Let (aj, bj) be uncertain, it is coming
from an ellipsoid (e.g. level set of a
distribution):

 aj

−bj

 =

 a0j

−b0j

+ Pu

∣∣∣∣ u ∈ IRk, uTu ≤ 1


The inequality aTj x ≥ bj
must be true for all possi-
ble values of (aTj ,−bj): a0j

−b0j

+ Pu

T  x

1

 ≥ 0 ∀u : uTu ≤ 1 iff [a0j ]
Tx−b0j+min

uTu≤1

(Pu)T

 x

1

 ≥ 0

[a0j ]
Tx− b0j −

∥∥∥∥P T

 x

1

∥∥∥∥
2

≥ 0

This is a nondifferentiable norm constraint: (See second order cones)∥∥∥∥P T

 x

1

∥∥∥∥
2

≤ [a0j ]
Tx− b0j .

Single nonlinear, norm-constraint!
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Eigenvalue Optimization

Given n× n symmetric matrices A1, . . . , Am.

Problem: Find a nonnegative combination of the matrices that has

the maximal smallest eigenvalue.

Solution: max

λ
∣∣∣∣∣

m∑
i=1

Aiyi − λI is positive semidefinite

yi ≥ 0 i = 1, . . . ,m


Problem: Find a nonnegative combination of the matrices that has the

smallest maximal eigenvalue.

Solution: min

λ

∣∣∣∣ λI −
m∑

i=1

Aiyi is positive semidefinite

yi ≥ 0 i = 1, . . . ,m


The semidefiteness constraint is not differentiable, not easy to calcu-

late when formulated by explicit functions, e.g., min-eigenvalue, deter-

minant (of minors). See Semidefinite Optimization.
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Relaxing Binary Variables

Given z1, . . . , zn binary, i.e., {0,1} variables with other, e.g., linear constraints.
Problem: Find convex, continuous relaxations of the binary constraints.
Old solution: Let 0 ≤ zi ≤ 1 for all i = 1, . . . , n and use branch and bound, branch
and cut schemes.

New opportunity to get tighter relaxations: Let xi =
2z1−1

2 for all
i = 1, . . . , n. Thus gives xi as a {−1,1} variable. Now

n =
n∑

i=1

x2
i = xTx = Tr(xTx) = Tr(xxT) = Tr(X),

where X = xxT is a rank-1 positive semidefinite matrix with diag(X) = e.

Thus, for xi ∈ {−1,1} ∀i we may use the relaxation:

Xii = 1 ∀i and X is positive semidefinite

The semidefiteness constraint is not differentiable, not easy to calculate when for-

mulated by explicit functions, e.g., min-eigenvalue, determinant (of minors). See

Semidefinite Optimization.
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Stability of Optimal Power Flow

The stability of the Power Flow

is ensured by a lower bound on

the singular value of the Jacobian

Jpf of the power flow equations:

σmin(Jpf) ≥ σcpf
equivalently

λmin(JpfJ
T
pf) ≥ σcpf

by substitution

X − JpfJ
T
pf = 0

and

X − σcpfI is positive semidefinite

Again a semidefinite constraint!

One may want maximize σcpf .
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New/Old Convex Optimization Problems
Cone Linear Optimization Problems

Primal-dual pair of CLO problems is given as

(P ) min cTx

s.t. Ax− b ∈ C1
x ∈ C2

(D) max bTy

s.t. c−ATy ∈ C∗2
y ∈ C∗1,

where b, y ∈ IRm, c, x ∈ IRn, A : m × n matrix, C1, C2 are convex cones

and C∗i = {s ∈ IRn : xT s ≥ 0, ∀x ∈ Ci} are the dual cones for i = 1,2.

These are solvable efficiently (in polynomial time) by using

Interior Point Methods. LO is based on polyhedral cones.

Be careful! Perfect duality, strict complementarity lost.

Are all convex cones good???
NOT
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– New Convex Optimization Problems –
Second Order Conic Optimization (SOCO)

The second order cone in IRn is defined as

Sn
2 :=

 x ∈ IRn : ∥x2:n∥ =

√√√√ n∑
i=2

x2
i ≤ x1

 .

The name “ice cream cone” is coming from the
3-dimensional shape of the cone.

The second order cone is self-dual: (Sn
2)

∗ = Sn
2 .

Optimization problems, where cones C1 and C2 are
polyhedral or products of second order cones, are
second order cone optimization (SOCO) problems.

Significance

Norm minimization, robust optimization,

quadratic, and thus portfolio optimization .
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SOCO – Optimality

The primal-dual SOCO problem is defined as

(SP ) min cTx

s.t. Ax = b,

x ∈ ×k
j=1S

nj

2

(SD) max bTy

s.t. ATy + s = c

s ∈ ×k
j=1S

nj

2 .

xT = ((x1)T , ..., (xj)T , ..., (xk)T) ∈ IRn; and sT = ((s1)T , ..., (sj)T , ..., (sk)T) ∈ IRn.

Optimality:
Ax = b, x ∈ ×k

j=1S
nj
2 , ATy + s = c, s ∈ ×k

j=1S
nj
2

(xj)Tsj = 0 ⇔ xj ◦ sj = 0 ⇔ Arr(xj)sj = Arr(sj)xj = 0 ∀j
Here we have used the notation:

u ◦ v =

 uTv

u1v2:n + v1u2:n

 and Arr(u) =


u1 u2 . . . un

u2 u1

... . . .

un u1



9



Notes on SOCO

• Convex (conic) optimization problem with ”vectors”

• Vector calculus not associative

• Duality gap may exists (next page)

• Strong duality with interior point (Slater) condition

• Second order cones cannot be ”combined” into larger second order

cones, i.e., Sn1
2 × Sn2

2 ̸= Sn1+n2
2

• Generalization of LO: S1
2 = IR1

+

• Rotated cone ∥x2:n∥2 ≤ x0x1, x0, x1 ≥ 0
n∑

i=2

x2i ≤
(
x0 + x1

2

)2
−
(
x0 − x1

2

)2
• Efficiently solvable by IPMs.
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SOCO: Duality gap example

Primal Problem Dual Problem

(SP ) min x2

s.t. x1 − x3 = 0,√
x22 + x23 ≤ x1

(SD) max 0 · y

s.t. y + s1 = 0

0 · y + s2 = 1

−y + s3 = 0√
s22 + s23 ≤ s1

Primal Optimal solutions: Dual problem is infeasible!!

x1 = x3 ≥ 0; x2 = 0

Slater not satisfied =⇒ Zero duality gap may not hold
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– New Convex Optimization Problems –
Semidefinite Optimization – I

The semidefinite cone in IRn×n is defined as

Sn :=
{
X ∈ IRn×n : X = XT , zTXz ≥ 0∀z ∈ IRn

}
i.e. the matrices X are symmetric and positive
semidefinite, denoted as X ≽ 0. The semidefi-
nite cone is self-dual: (Sn)∗ = Sn.

Optimization problems where the cones C1
and C2 are either polyhedral, second order or

semidefinite cones are called semidefinite opti-

mization (SDO) problems.

12



– New Convex Optimization Problems –
Semidefinite Optimization

Let Ai, i = 1, · · · , n and C,X be n×n symmetric real matrices, b, y ∈ IRm

and let Tr(·) denote the trace of a matrix.

The primal-dual SDO problem is defined as

(SP ) min Tr(CX)

s.t. Tr(AiX)− bi ≥ 0, ∀ i

X ≽ 0

(SD) max bTy

s.t. C −
m∑

i=1

Aiyi ≽ 0

y ≥ 0.
Optimality: Tr(CX)− bTy = Tr(XS) = 0 ⇔ XS = 0

Significance

Robust optimization, eigenvalue and singular value optimization

Linear matrix inequalities, trust design

Convex relaxation of nonconvex/integer problems

13



Notes on SDO

• Convex (conic) optimization problem with ”matrices”

• Matrix calculus not commutative

• Product of symmetric matrices is not smmetric

• Duality gap may exists

• Strong duality with interior point (Slater) condition

• Semidefinite cones can be ”combined” into larger semidefinite cones,

i.e., Sn1 × Sn2 ⊂ Sn1+n2

• Generalization of LO: S1 = IR1
+ – diagonal matrices

• Not proper generalization of SOCO: x ∈ Sn
2 ⇔ Arr(x) ∈ Sn,

– BUT arrow-head structure cannot be preserved

• Efficiently solvable by IPMs.
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Linear Optimization v/s Conic LO
LO Conic LO

linear objective linear objective

linear equality constraints linear equality constraints

linear inequality constraints conic inequality constraints

perfect duality perfect duality only with IPC

strictly complementary opt.sol. maximally complementary opt.sol.

Euclidean linear algebra matrix and Jordan algebra

xT s = 0 ⇔ xs = 0 xT s = 0 ⇔ x ◦ s = 0 (SOCO)

Tr(XS) = 0 ⇔ XS = 0 (SDO)

Tr(XS) = 0 ⇔ X
1
2SX

1
2 = S

1
2XS

1
2 = 0

≈ ⇔ (PXP T)
1

2(P−TSP−1)(PXP T)
1

2 = µI

≈ ⇔ (PSP T)
1

2(P−TXP−1)(PSP T)
1

2 = µI
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Solvability of CLO problems – Use IPMs
Classic Linear Optimization

Large scale LO problems are solved efficiently.
High performance packages, like (CPLEX, GuRoBi, XPRESS-MP, MOSEK) offer
simplex and interior point solvers as well.
Problems solved with 107 variables.

SOCO and SDO

Polynomial solvability established.
Traditional software is unable to handle conic constraints.
Specialized software is developed. (SeDuMi, SDPA, SDPT3, CSDP, DSDP, SDP-
pack, MOSEK etc.)
SOCO: MOSEK - commercial
SDO: SDPA, CSDP, DSDP
LO-SOCO-SDO: SeDuMi, SDPT3
SOCO: Problems solved with O(106) variables.
SDO: solved with O(104) dimensional matrices.

http://sedumi.ie.lehigh.edu
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The Primal–Dual LO Problems,
Central Path

The primal-dual LO problems is given as:

min cTx

Ax = b, x ≥ 0,

max bTy

ATy + s = c, s ≥ 0,

where c, x, s ∈ Rn, b, y ∈ Rm, A ∈ Rm×n, rank(A) = m.

Optimality conditions and the central path are given as:

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0,

xs = 0,

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0,

xs = µe,
where e = (1, . . . ,1)T ∈ Rn.

We assume that the Interior Point Condition holds.
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Primal-Dual Search-directions for LO

The central path and the Classical Newton direction:

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0,

xs = µe.

A∆x = 0,

AT∆y +∆s = 0,

s∆x+ x∆s = µe− xs,

Scaled Newton direction:

Āpx = 0,

ĀT∆y + ps = 0,

px + ps = v−1 − v

Proximity Functions:

Ψ(v) =
n∑

i=1

(
v2i − 1

2
− log vi

)

Ψ(v) =
1

2
∥v − v−1∥2.

where Ā = 1
µAV −1X, V = diag (v), X = diag (x) with

v :=

√
xs

µ
, v−1 :=

√
µ

xs
, px :=

v∆x

x
, ps :=

v∆s

s
.
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The Newton System for SDO

(SP ) min Tr(CX)

s.t. Tr(AiX) = bi, ∀ i

X ≽ 0

(SD) max bTy

s.t.
m∑

i=1

Aiyi + S = C

S ≽ 0.

The Newton System for the NT-direction: P = S−1
2(S

1
2XS

1
2)−

1
2S−1

2

Tr(AiX) = bi, ∀ i X ≽ 0
m∑

i=1

Aiyi + S = C S ≽ 0

Tr(Ai∆X) = 0, ∀ i
m∑

i=1

Ai∆yi +∆S = 0

Tr(XS) = 0 ≈⇔ XS = µI X∆S +∆XS = µI −XS

⇔ ∆X +X∆SS−1 = µS−1 −X

HP (·) is a symmetrization: HP (X∆S +∆XS) = µI −HP (XS)
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The Newton System for SOCO

(SOP ) min cTx

s.t. Ax = b,

x ∈ ×k
j=1S

nj
2

(SOD) max bTy

s.t. ATy + s = c

s ∈ ×k
j=1S

nj
2 .

The Newton System for the NT-direction in arrow-head formulation:

P = S−1
2(S

1
2XS

1
2)−

1
2S−1

2

Ax = b, ∀ i x ∈ ×k
j=1S

nj
2

ATy + s = c, s ∈ ×k
j=1S

nj
2

A∆x = 0,

AT∆y +∆s = 0,

xj ◦ sj = 0 ≈⇔ xj ◦ sj = µej xj ◦∆sj +∆xj ◦ sj = µej − xj ◦ sj

⇔ HP (x
j ◦∆sj +∆xj ◦ sj) = µej −HP (x

j ◦ sj)

HP (·) is a symmetrization operator.
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Primal-Dual Interior Point Methods with
small and large updates

Input:
A proximity parameter τ ; an accuracy parameter ϵ > 0;
an update parameter 0 < θ < 1; a variable damping factor α;
(x0, s0), µ0 = 1 s.t. Ψ(v0) ≤ τ .

begin
x := x0; s := s0; µ := µ0;

while nµ ≥ ϵ do

begin
µ := (1− θ)µ;

while Ψ(v) ≥ τ do

begin
Calculate ∆x,∆s;

Do line search for Ψ(v(α));

x := x+ α∆x;

s := s+ α∆s;
end

end
end
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Complexity of IPMs for LO

Method Practice Large update Small update

θ adaptive 1− 1/100 1/
√
n

Iter. bound max 100 O(ϑ log ϑ
ϵ) O(

√
ϑ log ϑ

ϵ)

Performance Efficient Efficient Very poor

”Almost” constant (< 100) number of iterations in practice!

CLO ϑ = cost/iteration

LO # of variables O(n3) sparse

SOCO # of second order cones O(n3)+update

SDO dimension of matrix X O(n2m3) dense
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Several IPM Solvers for CLO Problems

What made this major advance possible?
Advances in Computers and Software

Computers

• processor speed

• memory

• disk space

• floating point arithmetic

• architecture (cash ...)

Software component/Algorithms

• presolve

• LINEAR ALGEBRA

• sparse factorizations

• symmetric square root

• IPMs, predictor-corrector

• dense and sparse versions

SeDuMi, SDPT3 SDPA-xxx tuned to all three cones

CSDP, DSDP tuned to SDO only

MOSEK, CPLEX are commercial solves for SOCO .

Parallel implementations exist – coming.

MODELING languages – YALMIP (Löfberg); CVx (Boyd/Grant).
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Further notes

• Norm and convex quadratic (including portfolio) optimization prob’s

can be solved with almost the same efficiency as LO.

• Efficient tools to eigenvalue, singular value optimization, LMI’s

• CLO based approximation algorithms for nonconvex and combina-

torial optimization problems.

• Lots of activity in exploring special structure of conic problems and

developing modeling systems that support conic formulation

• First HPC-massively parallel implementations

• Cheap first order methods for very large scale SDO problems.

• Warm start and decomposition/cutting plane algorithms.

• http://sedumi.ie.lehigh.edu

Now: Adding logarithmic objective.
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Introduction Disjunctive Conic Cuts for MISOCO Formulation of a Disjunctive Conic Cut Conclusions and Future Work

MIXED INTEGER SECOND ORDER CONE

OPTIMIZATION (MISOCO)

minimize: cTx
subject to: Ax = b (MISOCO)

x ∈ K
x ∈ Zd × Rn−d,

where,
I A ∈ Rm×n, c ∈ Rn, b ∈ Rm

I Ln = {x|x1 ≥ ‖x2:n‖}
I K = Ln1

1 × · · · × Lnk
k

I Rows of A are linearly independent
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OBJECTIVES

I Obtain the convex hull after applying a linear disjunction
to a Mixed Integer Second Order Conic Optimization
(MISOCO) problem.

I Design Disjunctive Conic Cuts for MISOCO.
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PREVIOUS WORK

I Atamtürk and Narayanan (2010), conic cuts for general
MISOCO problems.

I Drewes (2009), nonlinear cuts for 0-1 MISOCO problems.
I Krokhmal and Soberanisin(2010), Drewes (2009), Vielma et

al. (2008), branch and bound algorithm based on linear
outer approximations for Second Order Cones.

I Drewes (2009), Atamtürk and Narayanan (2009), lifting
techniques for MISOCO problems.

I Çezik and Iyengar (2005), cuts for mixed 0-1 conic
programming.

I Stubbs and Mehrotra (1999), lift-and-project method for 01
mixed convex programming.
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APPLICATIONS

I Turbine balancing problems can be modeled as MISOCOs,
White (1996).

I The euclidean Steiner tree problem can be formulated as a
MISOCO, Fampa and Maculan (2004)

I Computer Vision and Pattern Recognition, Kumar, Torr,
and Zisserman (2006).

I Cardinality-constrained portfolio optimization problems,
Bertsimas and Shioda (2009).
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SINGLE CONE PROBLEM

Let us consider the special case:

minimize: cTx
subject to: Ax = b (MISOCO)

x ∈ Ln

x ∈ Zd × Rn−d,

I This problem has a single second order cone
I All the variables are in the single second order cone
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STEP 1: SOLVE THE RELAXED PROBLEM

Find the optimal solution x∗ for the continuous relaxation of
the MISOCO problem

minimize: 3x1 +2x2 +2x3 +x4
subject to: 9x1 +x2 +x3 +x4 = 10

(x1, x2, x3, x4) ∈ L4

x4 ∈ Z.

Relaxing the integrality constraint we get the optimal solution:

x∗ = (1.36,−0.91,−0.91,−0.45),

with and optimal objective value: z∗ = 0.00.
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STEP 2: FIND A DISJUNCTION aTx ≤ β
∨

aTx ≥ β
VIOLATED BY x∗ = (1.36,−0.91,−0.91,−0.45)

The disjunction x4 ≤ −1
∨

x4 ≥ 0 is violated by x∗

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

0

2

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x
2

x
3

x
4

Relaxed optimal
solution

x
4
 ≥ 0

x
4
 ≤ −1
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STEP 3: APPLY THE DISJUNCTION AND CONVEXIFY

min: 3x1 +2x2 +2x3 +x4
s.t: 9x1 +x2 +x3 +x4 = 10

−0.04x2 −0.04x3 −3.56x4 +x5 = 10.14
−6.28x2 −6.28x3 +0.14x4 +x6 = 1.65

6.36x2 −6.36x3 +x7 = 0
(x1, x2, x3, x4) ∈ L4

(x5, x6, x7) ∈ L3

x4 ∈ Z.

The constraints in red represent the disjunctive conic cut.
An integer optimal solution is obtained after adding one cut:

x∗ = (1.32, −0.93, −0.93, 0.00, 10.06, −10.06, 0.00),

with and optimal objective value: z∗ = 0.24.
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CONVEX HULL OF THE INTERSECTION OF A

DISJUNCTION AND A CONVEX SET
Consider a closed convex set E and two halfspaces

H1 = {x ∈ Rn : a>x ≤ α} andH2 = {x ∈ Rn : b>x ≤ β},
such that they do not intersect inside E , i.e., E ∩ H1 ∩H2 = ∅.
DenoteH=

1 = {x ∈ Rn : a>x = α}, andH=
2 = {x ∈ Rn : b>x = β}.

If ∃ a convex cone K s.t. H=
1 ∩ E = K ∩H=

1 andH=
2 ∩ E = K ∩H=

2 are
bounded, then conv(E ∩ (H1 ∪H2)) = E ∩ K.
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INTERSECTION OF AN AFFINE SPACE AND A SECOND

ORDER CONE

Consider an affine subspaceH = {x|Ax = b} and x0 ∈ H.
Let H ⊥ A be s.t rank([H,AT]) = n, & columns of H are orthonormal.
We can writeH = {x|x = x0 + Hz, ∀z ∈ R}.
Then, there exist a matrix Q ∈ Rn−m×n−m, q ∈ Rn−m, ρ ∈ R, s.t.

H ∩ Ln = {y|x = x0 + Hz with z>Qz + 2q>z + ρ ≤ 0}.

Further, Q has at most one negative eigenvalue.
Define a quadric as the set Q = {z|z>Qz + 2q>z + ρ ≤ 0},
which we also denote as Q = (Q, q, ρ).
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UNI-PARAMETRIC FAMILY OF QUADRICS Q(τ)

Given two hyperplanes H1 = {z|a>1 z = α1} andH2 = {z|a>2 z = α2}.
Let Q = (Q, q, ρ) be a quadric where Q is positive definite.
The family of quadrics having the same intersection withH1 andH2
as the quadric Q is parametrized by τ ∈ R as Q(τ), where

Q(τ) = Q + τ
a1aT

2 + a2aT
1

ω

q(τ) = q− τ α2a1 + α1a2

ω

ρ(τ) = ρ+ 2τ
α1α2

ω
,

where

ω =

{
2aT

1 a2 if aT
1 a2 6= 0

1 if aT
1 a2 = 0.
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UNI-PARAMETRIC FAMILY OF QUADRICS Q(τ)

Sequence of quadrics x>Q(τ)x + 2q(τ)>x + ρ(τ) ≤ 0,
for −106.863 ≤ τ ≤ 1617
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UNI-PARAMETRIC FAMILY OF QUADRICS Q(τ)

Range Description
τ = −8.9946, τ = 1617 Paraboloid
τ = −106.863, τ = −9.581 Cones
−8.9946 < τ < 1617 Ellipsoids
τ > 1617 Two sheets hyperboloids
−106.863 < τ < −8.9946 One sheet hyperboloids
τ < −106.863, Two sheets hyperboloids

Behavior of the quadrics for different ranges of τ
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THE DISJUNCTIVE CONIC CUT FOR PARALLEL

DISJUNCTIONS

Theorem
Let A1 = {x|a>1 x = α1} and A2 = {x|a>2 x = α2},
be two parallel hyperplanes where a1 = γa2.
The disjunctive conic cut is the quadric generated by

Q(τ̂) = (Q(τ̂), q(τ̂), ρ(τ̂)),

where τ̂ is the larger root of equation

q(τ)>Q(τ)q(τ)− ρ(τ) = 0.
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OUR DISJUNCTIVE CONIC CUT IS NEW

Atamtürk and Narayanan
designed a conic mixed integer
rounding inequality.
Our disjunctive conic cut is
different, sometimes stronger.
Consider the problem:

minimize: −x −y
subject to: x +y +2t = α√

(x− 4
3 )

2 + (y− 1)2 ≤ t
x ∈ Z, y ∈ R

In this particular example our
disjunctive conic cut is stronger.
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CONCLUSIONS

I We developed a new disjunctive conic cut for MISOCO.
I It is algebraically simple to find the disjunctive conic cut

for MISOCO problems.

Next steps
I Develop disjunctive conic cuts for the case when Q is not

positive definite.
I Develop a prototype branch-and-cut framework for

solving MISOCO problems using disjunctive conic cuts.
I Develop strategies which, and how many disjunctive conic

cuts to generate when several cones are in the problem.
I Develop a comprehensive branch-and-cut framework for

solving MISOCO problems using disjunctive conic cuts.
Far future work

I Develop disjunctive conic cuts for Semidefinite Optimization.
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