Jacobian SDP Relaxation for Polynomial Optimization

Jiawang Nie
Sino-Japan Optimization Meeting
Department of Mathematics, UCSD

September 28, 2011

Multivariate Polynomial Optimization

Given polynomials $f(x), h_{i}(x), g_{j}(x)$, solve problem

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}} & f(x) \\
\text { s.t. } & h_{1}(x)=\cdots=h_{r}(x)=0 \\
& g_{1}(x) \geq 0, \cdots, g_{m}(x) \geq 0
\end{array}
$$

There are standard numerical methods for solving the problem globally based on semidefinite programming (SDP) and sum of squares (SOS) approximations (Lasserre, Parrilo, Sturmfels, ...)

Goal of This talk: Jacobian SDP Relaxation, the first method that can compute the global minimum exactly by SDP.

Outline of the Talk

- Some Backgrounds
- Jacobian SDP Relaxation
- Certifying Exactness
- Numerical Examples

SOS polynomials

A poly $p(x)$ is sum of squares (SOS) if $p(x)=\sum q_{i}^{2}(x)$.

$$
\text { Example: } \begin{aligned}
& 3 \cdot\left(x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}-4 x_{1} x_{2} x_{3} x_{4}\right) \\
= & \left(x_{1}^{2}-x_{2}^{2}-x_{4}^{2}+x_{3}^{2}\right)^{2}+\left(x_{1}^{2}+x_{2}^{2}-x_{4}^{2}-x_{3}^{2}\right)^{2}+ \\
& \left(x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+x_{4}^{2}\right)^{2}+2\left(x_{1} x_{4}-x_{2} x_{3}\right)^{2}+ \\
& 2\left(x_{1} x_{2}-x_{3} x_{4}\right)^{2}+2\left(x_{1} x_{3}-x_{2} x_{4}\right)^{2}
\end{aligned}
$$

SOS implies nonnegativity, but not conversely.
Theorem (Hilbert, 1888) Every nonnegative poly is SOS iff

$$
(\# \text { var }, \text { degree })=(1,2 d),(*, 2), \text { or }(2,4) .
$$

Hilbert'1 17th Problem: Is every nonnegative poly is a sum of squares of rational functions? (Yes, by Artin).

Testing SOS Membership

A polynomial $p(x)$ is SOS if and only if

$$
\exists X: \quad p(x)=[x]_{d}^{T} X[x]_{d}, \quad X=X^{T} \succeq 0
$$

The X is called a Gram matrix.

$$
\begin{aligned}
& 2 x_{1}^{4}+2 x_{1}^{3} x_{2}-x_{1}^{2} x_{2}^{2}+5 x_{2}^{4} \\
= & {\left[\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
x_{1} x_{2}
\end{array}\right]^{T}\left[\begin{array}{ccc}
2 & 0 & 1 \\
0 & 5 & 0 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
x_{1} x_{2}
\end{array}\right] } \\
= & {\left[\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
x_{1} x_{2}
\end{array}\right]^{T}\left[\begin{array}{ccc}
2 & -\alpha & 1 \\
-\alpha & 5 & 0 \\
1 & 0 & -1+2 \alpha
\end{array}\right]\left[\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
x_{1} x_{2}
\end{array}\right] }
\end{aligned}
$$

When $\alpha=3$, the Gram matrix is positive semidefinite.

SOS Program and SDP

- A typical SOS program is:

$$
\max _{w \in \mathbb{R}^{m}} c^{T} w \quad \text { s.t. } \quad f_{0}+w_{1} f_{1}+\cdots+w_{m} f_{m} \text { is } \mathrm{SOS}
$$ where $f_{0}, f_{1}, \ldots, f_{m}$ are given polynomials.

- SOS program is reducible to SDP

$$
\begin{array}{|ccccc}
\hline \max _{w \in \mathbb{R}^{3}} & -w_{1}+w_{2}-w_{3} \\
\text { s.t. } & w_{1} x_{1}^{4}+2 w_{2} x_{1}^{3} x_{2} \\
& -x_{1}^{2} x_{2}^{2}+w_{3} x_{2}^{4}
\end{array} \Leftrightarrow \quad\left[\begin{array}{ccc}
w_{1} & -\alpha & w_{2} \\
-\alpha & w_{3} & 0 \\
w_{2} & 0 & 2 \alpha-1
\end{array}\right] \succeq 0
$$

Semidefinite Programming (SDP)

SDP has the standard form

$$
\begin{array}{cl}
\min & c_{1} x_{1}+\cdots+c_{n} x_{n} \\
\text { s.t. } & A_{0}+\sum_{i=1}^{n} x_{i} A_{i} \succeq 0
\end{array}
$$

where $A_{i} \in \mathbb{R}^{M \times M}$ are symmetric.

The feasible region of SDP is convex. Example:

$$
\left[\begin{array}{ccc}
3-2 x_{1}+x_{2} & x_{1} & -x_{1}-x_{2} \\
x_{1} & 3+x_{1}-2 x_{2} & x_{2} \\
-x_{1}-x_{2} & x_{2} & 1+x_{1}+x_{2}
\end{array}\right] \succeq 0 .
$$

Lasserre's Hierarchy of SOS Relaxations

$$
\begin{aligned}
f_{\min }:=\min & f(x) \\
\text { s.t. } & h_{i}(x)=0(1 \leq i \leq r) \\
& g_{j}(x) \geq 0(1 \leq j \leq m)
\end{aligned}
$$

For each integer N (relax. order), solve the SOS program

$$
\begin{aligned}
f_{N}:=\max & \gamma \\
\text { s.t. } & f(x)-\gamma-\sum_{i=1}^{r} \phi_{i} h_{i}-\sum_{j=1}^{m} \sigma_{j} g_{j} \text { is SOS } \\
& \operatorname{deg}\left(\phi_{i} h_{i}\right), \operatorname{deg}\left(\sigma_{j} g_{j}\right) \leq 2 N \text { with } \sigma_{j} \mathrm{SOS}
\end{aligned}
$$

We get a sequence of lower bounds for $N=1,2, \ldots$

$$
f_{1} \leq f_{2} \leq f_{3} \leq \cdots \leq f_{\text {min }} .
$$

Lasserre's Relaxation is reducible to SDP.

Convergence of Lasserre's Hierarchy

$$
\begin{array}{lcc}
& \text { The original prob. } & N \text {-th Lasserre's relax. } \\
& f_{\min }:=\min f(x) & f_{N}:=\max \gamma \\
\text { s.t. } & h_{1}(x)=\cdots=h_{r}(x)=0 & \text { s.t. } \\
& g_{1}(x), \ldots, g_{m}(x) \geq 0 & \\
& & \operatorname{deg}\left(\phi_{i} h_{i}\right), \operatorname{deg}\left(\phi_{i} h_{i} g_{j}\right) \leq 2 N \\
\text { each } \sigma_{j}(x) \text { is SOS }
\end{array}
$$

Theorem (Lasserre, 2001) Under archimedean condition (AC)

$$
\lim _{N \rightarrow \infty} f_{N}=f_{\min }
$$

AC is almost equivalent to compactness of the feasible set.

A Negative Result By Scheiderer

Scheiderer (1999) discovered a negative result: whenever the feasible set has dimension ≥ 3, there exists a "bad" polynomial f such that Lasserre's Relax. is never exact:

$$
\lim _{N \rightarrow \infty} f_{N}=f_{\min }, \quad \text { but } \quad f_{N}<f_{\min } \quad \forall N .
$$

Scheiderer proved a positive one: In the 2-D case, finite convergence holds under some general non-singularity assumptions.

Question: Can we solve polynomial optimization globally and exactly by a single SDP relaxation?

Outline of the Talk

- Some Backgrounds
- Jacobian SDP Relaxation
- Certifying Exactness
- Numerical Examples

1-Equality-1-Inequality (1E1I) Constraints

To describe Jacobian SDP relaxation, consider 1E1I case:

$$
\begin{array}{rl}
f_{\min }:=\min _{x \in \mathbb{R}^{n}} & f(x) \\
\text { s.t. } & h(x)=0, g(x) \geq 0
\end{array}
$$

The N-th Lasserre's SOS relaxation is

$$
\begin{aligned}
f_{N}:=\max & \gamma \\
\text { s.t. } & f-\gamma-\phi h-\sigma g \text { is SOS } \\
& \sigma \text { is sos, } \operatorname{deg}(\phi h), \operatorname{deg}(\sigma g) \leq 2 N .
\end{aligned}
$$

Under the archimedean condition on $\{h=0, g \geq 0\}$ (general for compact sets), we typically have only asymptotic convergence:

$$
\lim _{N \rightarrow \infty} f_{N}=f_{\min }, \quad f_{N}<f_{\min } \quad \forall N
$$

First Order Optimality Condition

Suppose x^{*} is an optimizer of

$$
\text { Minimize } \quad f(x) \quad \text { s.t. } \quad h(x)=0, g(x) \geq 0 .
$$

The first order condition is

$$
\nabla f\left(x^{*}\right)=\lambda_{1} \nabla h\left(x^{*}\right)+\lambda_{2} \nabla g\left(x^{*}\right), \quad \lambda_{2} g\left(x^{*}\right)=0 .
$$

There are two possibilities:

Case I: $g\left(x^{*}\right)>0$.
Case II: $g\left(x^{*}\right)=0$.

Case I: $g\left(x^{*}\right)>0$

Suppose x^{*} is an optimizer of

$$
\text { Minimize } \quad f(x) \quad \text { s.t. } \quad h(x)=0, g(x) \geq 0
$$

If $g\left(x^{*}\right)>0$, the optimality condition is reduced to

$$
\nabla f\left(x^{*}\right)=\lambda_{1} \nabla h\left(x^{*}\right)
$$

Thus, the rank condition

$$
\operatorname{rank} g(x) \cdot[\nabla f(x) \quad \nabla h(x)] \leq 1
$$

always holds at x^{*}, no matter $g\left(x^{*}\right)=0$ or $g\left(x^{*}\right)>0$.

Case II: $g\left(x^{*}\right)=0$
Suppose x^{*} is an optimizer of

$$
\text { Minimize } \quad f(x) \quad \text { s.t. } \quad h(x)=0, g(x) \geq 0 \text {. }
$$

The optimality condition is

$$
\nabla f\left(x^{*}\right)=\lambda_{1} \nabla h\left(x^{*}\right)+\lambda_{2} \nabla g\left(x^{*}\right), \quad \lambda_{2} g\left(x^{*}\right)=0 .
$$

Thus, the rank condition

$$
\operatorname{rank}[\nabla f(x) \quad \nabla h(x) \quad \nabla g(x)] \leq 2
$$

always holds at x^{*}, no matter $g\left(x^{*}\right)=0$ or $g\left(x^{*}\right)>0$ (if $g\left(x^{*}\right)>$ $0, \lambda_{2}=0$, the first two columns are dependant).

Characterizing Critical Points

If x^{*} is an optimizer of

$$
\text { Minimize } \quad f(x) \quad \text { s.t. } \quad h(x)=0, g(x) \geq 0,
$$

then the Jacobian matrices
are always singular at x^{*}, no matter $g\left(x^{*}\right)>0$ or $g\left(x^{*}\right)=0$.
Theorem (N. 2010) Under some generic nonsingularity conditions, a point x^{*} is critical if and only if the matrices
are all singular at x^{*}.

Jacobian Type SDP relaxation:

Let $\varphi_{1}(x), \ldots, \varphi_{K}(x)$ be a minimum set (e.g., by Bruns and Vetter's method) of defining polys for the variety:

$$
\left\{x: \operatorname{rank}\left[\begin{array}{ll}
g \cdot \nabla f & g \cdot \nabla g
\end{array}\right] \leq 1, \operatorname{rank}\left[\begin{array}{lll}
\nabla f & \nabla h & \nabla g
\end{array}\right] \leq 2\right\} .
$$

Then we get an equivalent formulation

$$
\begin{gathered}
\quad \text { Minimize } f(x) \\
\text { s.t. } \quad h(x)=0, g(x) \geq 0
\end{gathered} \Longleftrightarrow \begin{aligned}
& \text { Minimize } f(x) \\
& \text { s.t. } h(x)=0, g(x) \geq 0 \\
& \varphi_{1}(x)=\cdots=\varphi_{K}(x)=0
\end{aligned}
$$

The N-th Jacobian SDP relaxation is
$\max \quad \gamma \quad$ s.t. $\quad f-\gamma-\phi h-\sigma g-\sum_{j} \phi_{j} \varphi_{j}$ is SOS σ is $\operatorname{SOS}, \operatorname{deg}(\phi h), \operatorname{deg}(\sigma g), \operatorname{deg}\left(\phi_{j} \varphi_{j}\right) \leq 2 N$.

Exactness of Jacobian SDP relaxation:

For 1E1I polynomial optimization

$$
f_{\min }:=\min \quad f(x) \quad \text { s.t. } \quad h(x)=0, g(x) \geq 0,
$$

we get a sequence of lower bounds $f_{N} \leq f_{\text {min }}$ from

$$
\begin{array}{ll}
f_{N}:=\max & \gamma \text { s.t. } f-\gamma-\phi h-\sigma g-\sum_{j} \phi_{j} \varphi_{j} \text { is } \operatorname{SOS} \\
& \sigma \text { is } \operatorname{SOS}, \operatorname{deg}(\phi h), \operatorname{deg}(\sigma g), \operatorname{deg}\left(\phi_{j} \varphi_{j}\right) \leq 2 N .
\end{array}
$$

Theorem (N., 2010) Assume the feasible set is nonsingular and $f(x)$ has a global minimizer, then for all N big enough

$$
f_{N}=f_{\text {min }}
$$

Jacobian SDP relaxation for General Case

For general multi-constrained polynomial optimization:

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & h_{i}(x)=0(1 \leq i \leq r), g_{j}(x) \geq 0(1 \leq j \leq m)
\end{aligned}
$$

From the fist order optimality condition, we can get redundant polynomial equations by using Jacobians, like 1E1I case.

- We have same finite convergence result, under some generic nonsingularity assumptions on h_{i}, g_{j}.
- The sizes of the Jacobian SDP relaxation grow exponentially in m (\# of inequality constraints).
- Some efficient variations exist for special cases.

Outline of the Talk

- Some Backgrounds
- Jacobian SDP Relaxation
- Certifying Exactness
- Numerical Examples

How to Certify Exactness?

Jacobian SDP relaxation returns a sequence of lower bounds

$$
f_{1} \leq \cdots \leq f_{N}=f_{N+1}=\cdots=f_{\min }
$$

for the polynomial optimization (1E1I case)

$$
f_{\min }:=\min \quad f(x) \quad \text { s.t. } \quad h(x)=0, g(x) \geq 0 .
$$

The equality $f_{N}=f_{\text {min }}$ is certified if a feasible x^{*} satisfies

$$
f\left(x^{*}\right)=f_{N} .
$$

Can we always find such an x^{*} by an algorithm?

This is almost always true!

Duality in Jacobian SDP Relaxation

For the 1E1I polynomial optimization

$$
\min \quad f(x) \quad \text { s.t. } \quad h(x)=0, g(x) \geq 0,
$$

the N-th Jacobian relax (SOS version) is:

$$
\begin{gathered}
\max \quad \gamma \quad \text { s.t. } f-\gamma-\phi h-\sigma g-\sum_{j} \phi_{j} \varphi_{j} \text { is SOS } \\
\sigma \text { is SOS, } \operatorname{deg}(\phi h), \operatorname{deg}(\sigma g), \operatorname{deg}\left(\phi_{j} \varphi_{j}\right) \leq 2 N .
\end{gathered}
$$

Its dual problem (moment version) is:

$$
\begin{array}{rll}
\min \quad \sum f_{\alpha} y_{\alpha} \quad \text { s.t. } & L_{h}^{(N)}(y)=0, L_{\varphi_{j}}^{(N)}(y)=0(1 \leq j \leq r) \\
& L_{g}^{(N)}(y) \succeq 0, M_{N}(y) \succeq 0, y_{0}=1
\end{array}
$$

where $L_{p}^{(N)}(y)$ denotes the N-th localizing matrix of a poly p and a moment vector y, and $M_{N}(y)$ is a moment matrix.

Rank One Case

Suppose y^{*} is a minimizer of the dual optimization problem:

$$
\begin{array}{rll}
f_{N}:=\min \sum f_{\alpha} y_{\alpha} \quad \text { s.t. } & L_{h}^{(N)}(y)=0, L_{\varphi}^{(N)}(y)=0,(1 \leq j \leq r) \\
& L_{g}^{(N)}(y) \succeq 0, M_{N}(y) \succeq 0, y_{0}=1 .
\end{array}
$$

If rank $M_{N}\left(y^{*}\right)=1$, then

$$
\begin{gathered}
x^{*}=\left(y_{e_{1}}^{*}, y_{e_{2}}^{*}, \ldots, y_{e_{n}}^{*}\right), \quad y^{*}=\left(1, x_{1}^{*}, \ldots,\left(x_{1}^{*}\right)^{2}, \ldots\right) \\
L_{h}^{(N)}\left(y^{*}\right)=0 \quad \Rightarrow \quad h\left(x^{*}\right)=0, \\
L_{g}^{(N)}\left(y^{*}\right) \succeq 0 \quad \Rightarrow \quad g\left(x^{*}\right) \geq 0 . \\
f_{\text {min }} \geq \quad f_{N}=\sum f_{\alpha} y_{\alpha}^{*}=f\left(x^{*}\right) .
\end{gathered}
$$

So x^{*} is feasible and a globally minimizer.

Flat Truncation (FT)

Suppose y^{*} is a minimizer of the dual optimization problem:

$$
\begin{array}{lll}
\min & \sum f_{\alpha} y_{\alpha} \quad \text { s.t. } & L_{h}^{(N)}(y)=0, L_{\varphi}^{(N)}(y)=0,(1 \leq j \leq r) \\
& L_{g}^{(N)}(y) \succeq 0, M_{N}(y) \succeq 0, y_{0}=1 .
\end{array}
$$

We say y^{*} has a flat truncation (FT) or FT holds at y^{*} if

$$
\operatorname{rank} M_{t}\left(y^{*}\right)=\operatorname{rank} M_{t-d}\left(y^{*}\right) \quad \text { for some } t \in[d, N]
$$

where $d=\max \{1,\lceil\operatorname{deg}(h) / 2\rceil,\lceil\operatorname{deg}(g) / 2\rceil\}$.
$\left.\mathrm{FT} \Rightarrow y^{*}\right|_{2 t}$ admits a finite measure (Curto-Fialkow).
FT \Rightarrow global minimizers can be found (Henrion-Lasserre).

FT Holds Generally

Suppose y^{*} is a minimizer of the Jacobian relax.:

$$
\begin{array}{rll}
\min \sum f_{\alpha} y_{\alpha} \quad \text { s.t. } & L_{h}^{(N)}(y)=0, L_{\varphi_{j}}^{(N)}(y)=0,(1 \leq j \leq r) \\
& L_{g}^{(N)}(y) \succeq 0, M_{N}(y) \succeq 0, y_{0}=1
\end{array}
$$

Theorem (N. 2011) If the optimization problem

$$
\min \quad f(x) \quad \text { s.t. } \quad h(x)=0, g(x) \geq 0
$$

has finitely many global minimizers, then FT holds for every minimizer y^{*} of Jacobian relaxation for some N.

If \# global minimizers $=\infty$, then FT fails.

Outline of the Talk

- Some Backgrounds
- Jacobian SDP Relaxation
- Certifying Exactness
- Numerical Examples

Example I

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{3}} & x_{1}^{4} x_{2}^{2}+x_{1}^{2} x_{2}^{4}+x_{3}^{6}-3 x_{1}^{2} x_{2}^{2} x_{3}^{2} \\
\text { s.t. } & x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \leq 1
\end{aligned}
$$

The objective is the Motzkin polynomial (nonnegative but not SOS). Its minimum $f_{\min }=0$.

By Jacobian relaxation of order 4, we get a lower bound

$$
f_{4, J a c}=-1.6948 \times 10^{-8} \approx f_{\min }
$$

By Lasserre's Relaxation of orders 4, 5, 6, 7, 8, we get lower bounds respectively

$$
-2 \times 10^{-4},-2.9 \cdot 10^{-5},-8.2 \cdot 10^{-6},-4.2 \cdot 10^{-6},-2.3 \cdot 10^{-6}
$$

Example II

Minimizing Motzkin poly outside unit ball

$$
\begin{array}{cl}
\min _{x \in \mathbb{R}^{3}} & x_{1}^{4} x_{2}^{2}+x_{1}^{2} x_{2}^{4}+x_{3}^{6}-3 x_{1}^{2} x_{2}^{2} x_{3}^{2} \\
\text { s.t. } & x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \geq 1 .
\end{array}
$$

The min. $f_{\text {min }}=0$. By Jacobian SDP Relax. of order 4, we get a lower bound (its sign is false due to numerical issues):

$$
f_{4, J a c}=1.7633 \cdot 10^{-9} \approx f_{\min } .
$$

By Lasserre's relaxation of orders 5, 6, 7, 8, we get lower bounds respectively

$$
-4.8567 \cdot 10^{5}, \quad-98.4862, \quad-0.7079, \quad-0.0277
$$

Jacobian Relax. is stronger than Lasserre's Relax.

Example III

Consider the optimization

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{2}} x_{1}^{2}+x_{2}^{2} \quad \text { s.t. } & x_{2}^{2}-1 \geq 0 \\
& x_{1}^{2}-M x_{1} x_{2}-1 \geq 0 \\
& x_{1}^{2}+M x_{1} x_{2}-1 \geq 0
\end{aligned}
$$

Its minimum $f_{\text {min }}=2+\frac{1}{2} M\left(M+\sqrt{M^{2}+4}\right)$. Let $M=5$.
By Jacobian Relaxation of order 4, we get a lower bound

$$
f_{4, J a c}=27.9629=f_{\text {min }}
$$

By Lasserre's Relaxation, we get lower bounds

$$
f_{N, \text { Las }}=2 \quad \forall N
$$

THIS IS THE END!

THANK YOU VERY MUCH!

