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Multivariate Polynomial Optimization

Given polynomials f(x), hi(x), gj(x), solve problem

min
x∈Rn

f(x)

s.t. h1(x) = · · · = hr(x) = 0,

g1(x) ≥ 0, · · · , gm(x) ≥ 0.

There are standard numerical methods for solving the problem

globally based on semidefinite programming (SDP) and sum of

squares (SOS) approximations (Lasserre, Parrilo, Sturmfels, ...)

Goal of This talk: Jacobian SDP Relaxation, the first method

that can compute the global minimum exactly by SDP.
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SOS polynomials

A poly p(x) is sum of squares (SOS) if p(x) =
∑

q2i (x).

Example: 3 · (x4
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)
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2 +2(x1x3 − x2x4)

2

SOS implies nonnegativity, but not conversely.

Theorem (Hilbert, 1888) Every nonnegative poly is SOS iff

(# var, degree) = (1,2d), (∗,2), or (2,4).

Hilbert’1 17th Problem: Is every nonnegative poly is a sum of

squares of rational functions? (Yes, by Artin).
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Testing SOS Membership

A polynomial p(x) is SOS if and only if

∃X : p(x) = [x]TdX[x]d, X = XT º 0.

The X is called a Gram matrix.

2x41 +2x31x2 − x21x
2
2 +5x42

=




x21
x22

x1x2



T 

2 0 1
0 5 0
1 0 −1







x21
x22

x1x2




=




x21
x22

x1x2



T 


2 −α 1
−α 5 0
1 0 −1+ 2α







x21
x22

x1x2




When α = 3, the Gram matrix is positive semidefinite.
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SOS Program and SDP

• A typical SOS program is:

max
w∈Rm

cTw s.t. f0 + w1f1 + · · ·+ wmfm is SOS

where f0, f1, . . . , fm are given polynomials.

• SOS program is reducible to SDP

max
w∈R3

−w1 + w2 − w3

s.t. w1x4
1 +2w2x3

1x2

−x2
1x

2
2 + w3x4

2
is SOS

⇔

max
w∈R3,α∈R

−w1 + w2 − w3

s.t.



w1 −α w2

−α w3 0
w2 0 2α− 1


 º 0
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Semidefinite Programming (SDP)
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1.5
SDP has the standard form

min c1x1 + · · ·+ cnxn
s.t. A0 +

∑n
i=1 xiAi º 0

where Ai ∈ RM×M are symmetric.

The feasible region of SDP is convex.

Example:


3− 2x1 + x2 x1 −x1 − x2

x1 3+ x1 − 2x2 x2
−x1 − x2 x2 1+ x1 + x2


 º 0.
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Lasserre’s Hierarchy of SOS Relaxations

fmin := min f(x)
s.t. hi(x) = 0 (1 ≤ i ≤ r)

gj(x) ≥ 0 (1 ≤ j ≤ m)

For each integer N (relax. order), solve the SOS program

fN := max γ

s.t. f(x)− γ −
r∑

i=1

φihi −
m∑

j=1

σjgj is SOS

deg(φihi),deg(σjgj) ≤ 2N with σj SOS

We get a sequence of lower bounds for N = 1,2, . . .

f1 ≤ f2 ≤ f3 ≤ · · · ≤ fmin.

Lasserre’s Relaxation is reducible to SDP.
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Convergence of Lasserre’s Hierarchy

The original prob. N-th Lasserre’s relax.

fmin := min f(x)
s.t. h1(x) = · · · = hr(x) = 0

g1(x), . . . , gm(x) ≥ 0

fN := max γ
s.t. f(x)− γ − ∑

φihi −
∑

σjgj sos
deg(φihi),deg(σjgj) ≤ 2N

each σj(x) is SOS

Theorem (Lasserre, 2001) Under archimedean condition (AC)

lim
N→∞

fN = fmin.

AC is almost equivalent to compactness of the feasible set.
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A Negative Result By Scheiderer

Scheiderer (1999) discovered a negative result: whenever the

feasible set has dimension ≥ 3, there exists a “bad” polynomial

f such that Lasserre’s Relax. is never exact:

lim
N→∞

fN = fmin, but fN < fmin ∀N.

Scheiderer proved a positive one: In the 2-D case, finite conver-

gence holds under some general non-singularity assumptions.

Question: Can we solve polynomial optimization globally and

exactly by a single SDP relaxation?
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1-Equality-1-Inequality (1E1I) Constraints

To describe Jacobian SDP relaxation, consider 1E1I case:

fmin := min
x∈Rn

f(x)

s.t. h(x) = 0, g(x) ≥ 0.

The N-th Lasserre’s SOS relaxation is

fN := max γ
s.t. f − γ − φh− σg is SOS

σ is sos, deg(φh),deg(σg) ≤ 2N.

Under the archimedean condition on {h = 0, g ≥ 0}(general for

compact sets), we typically have only asymptotic convergence:

lim
N→∞

fN = fmin, fN < fmin ∀N
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First Order Optimality Condition

Suppose x∗ is an optimizer of

Minimize f(x) s.t. h(x) = 0, g(x) ≥ 0.

The first order condition is

∇f(x∗) = λ1∇h(x∗) + λ2∇g(x∗), λ2g(x
∗) = 0.

There are two possibilities:

Case I: g(x∗) > 0.

Case II: g(x∗) = 0.
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Case I: g(x∗) > 0

Suppose x∗ is an optimizer of

Minimize f(x) s.t. h(x) = 0, g(x) ≥ 0.

If g(x∗) > 0, the optimality condition is reduced to

∇f(x∗) = λ1∇h(x∗).

Thus, the rank condition

rank g(x) ·
[
∇f(x) ∇h(x)

]
≤ 1

always holds at x∗, no matter g(x∗) = 0 or g(x∗) > 0.

14



Case II: g(x∗) = 0

Suppose x∗ is an optimizer of

Minimize f(x) s.t. h(x) = 0, g(x) ≥ 0.

The optimality condition is

∇f(x∗) = λ1∇h(x∗) + λ2∇g(x∗), λ2g(x
∗) = 0.

Thus, the rank condition

rank
[
∇f(x) ∇h(x) ∇g(x)

]
≤ 2

always holds at x∗, no matter g(x∗) = 0 or g(x∗) > 0 (if g(x∗) >

0, λ2 = 0, the first two columns are dependant).
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Characterizing Critical Points

If x∗ is an optimizer of

Minimize f(x) s.t. h(x) = 0, g(x) ≥ 0,

then the Jacobian matrices

g(x) ·
[
∇f(x) ∇g1(x)

]
,

[
∇f(x) ∇h(x) ∇g(x)

]

are always singular at x∗, no matter g(x∗) > 0 or g(x∗) = 0.

Theorem (N. 2010) Under some generic nonsingularity condi-

tions, a point x∗ is critical if and only if the matrices

g(x) ·
[
∇f(x) ∇g1(x)

]
,

[
∇f(x) ∇h(x) ∇g(x)

]

are all singular at x∗.
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Jacobian Type SDP relaxation:

Let ϕ1(x), . . . , ϕK(x) be a minimum set (e.g., by Bruns and Vet-

ter’s method) of defining polys for the variety:
{
x : rank

[
g · ∇f g · ∇g

]
≤ 1, rank

[
∇f ∇h ∇g

]
≤ 2

}
.

Then we get an equivalent formulation

Minimize f(x)
s.t. h(x) = 0, g(x) ≥ 0

⇐⇒
Minimize f(x)

s.t. h(x) = 0, g(x) ≥ 0
ϕ1(x) = · · · = ϕK(x) = 0

The N-th Jacobian SDP relaxation is

max γ s.t. f − γ − φh− σg − ∑
j φjϕj is SOS

σ is SOS, deg(φh),deg(σg),deg(φjϕj) ≤ 2N.
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Exactness of Jacobian SDP relaxation:

For 1E1I polynomial optimization

fmin := min f(x) s.t. h(x) = 0, g(x) ≥ 0,

we get a sequence of lower bounds fN ≤ fmin from

fN := max γ s.t. f − γ − φh− σg − ∑
j φjϕj is SOS

σ is SOS, deg(φh),deg(σg),deg(φjϕj) ≤ 2N.

Theorem (N., 2010) Assume the feasible set is nonsingular and

f(x) has a global minimizer, then for all N big enough

fN = fmin.
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Jacobian SDP relaxation for General Case

For general multi-constrained polynomial optimization:

min f(x)
s.t. hi(x) = 0(1 ≤ i ≤ r), gj(x) ≥ 0(1 ≤ j ≤ m)

From the fist order optimality condition, we can get redundant

polynomial equations by using Jacobians, like 1E1I case.

• We have same finite convergence result, under some generic

nonsingularity assumptions on hi, gj.

• The sizes of the Jacobian SDP relaxation grow exponentially

in m ( # of inequality constraints ).

• Some efficient variations exist for special cases.
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How to Certify Exactness?

Jacobian SDP relaxation returns a sequence of lower bounds

f1 ≤ · · · ≤ fN = fN+1 = · · · = fmin

for the polynomial optimization (1E1I case)

fmin := min f(x) s.t. h(x) = 0, g(x) ≥ 0.

The equality fN = fmin is certified if a feasible x∗ satisfies

f(x∗) = fN .

Can we always find such an x∗ by an algorithm?

This is almost always true!
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Duality in Jacobian SDP Relaxation

For the 1E1I polynomial optimization

min f(x) s.t. h(x) = 0, g(x) ≥ 0,

the N-th Jacobian relax (SOS version) is:

max γ s.t. f − γ − φh− σg − ∑
j φjϕj is SOS

σ is SOS, deg(φh),deg(σg),deg(φjϕj) ≤ 2N.

Its dual problem (moment version) is:

min
∑

fαyα s.t. L
(N)
h (y) = 0, L(N)

ϕj (y) = 0(1 ≤ j ≤ r),

L
(N)
g (y) º 0,MN(y) º 0, y0 = 1.

where L
(N)
p (y) denotes the N-th localizing matrix of a poly p and

a moment vector y, and MN(y) is a moment matrix.
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Rank One Case

Suppose y∗ is a minimizer of the dual optimization problem:

fN := min
∑

fαyα s.t. L
(N)
h (y) = 0, L(N)

ϕj (y) = 0, (1 ≤ j ≤ r)

L
(N)
g (y) º 0,MN(y) º 0, y0 = 1.

If rankMN(y∗) = 1, then

x∗ = (y∗e1, y
∗
e2
, . . . , y∗en), y∗ = (1, x∗1, . . . , (x∗1)2, . . .)

L
(N)
h (y∗) = 0 ⇒ h(x∗) = 0,

L
(N)
g (y∗) º 0 ⇒ g(x∗) ≥ 0.

fmin ≥ fN =
∑

fαy
∗
α = f(x∗).

So x∗ is feasible and a globally minimizer.
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Flat Truncation (FT)

Suppose y∗ is a minimizer of the dual optimization problem:

min
∑

fαyα s.t. L
(N)
h (y) = 0, L(N)

ϕj (y) = 0, (1 ≤ j ≤ r)

L
(N)
g (y) º 0,MN(y) º 0, y0 = 1.

We say y∗ has a flat truncation (FT) or FT holds at y∗ if

rankMt(y
∗) = rankMt−d(y

∗) for some t ∈ [d,N ]

where d = max{1, ddeg(h)/2e, ddeg(g)/2e}.

FT ⇒ y∗|2t admits a finite measure (Curto-Fialkow).

FT ⇒ global minimizers can be found (Henrion-Lasserre).
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FT Holds Generally

Suppose y∗ is a minimizer of the Jacobian relax.:

min
∑

fαyα s.t. L
(N)
h (y) = 0, L(N)

ϕj (y) = 0, (1 ≤ j ≤ r)

L
(N)
g (y) º 0,MN(y) º 0, y0 = 1.

Theorem (N. 2011) If the optimization problem

min f(x) s.t. h(x) = 0, g(x) ≥ 0

has finitely many global minimizers, then FT holds for every

minimizer y∗ of Jacobian relaxation for some N .

If # global minimizers = ∞, then FT fails.
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Example I

min
x∈R3

x41x
2
2 + x21x

4
2 + x63 − 3x21x

2
2x

2
3

s.t. x21 + x22 + x23 ≤ 1.

The objective is the Motzkin polynomial (nonnegative but not

SOS). Its minimum fmin = 0.

By Jacobian relaxation of order 4, we get a lower bound

f4, Jac = −1.6948× 10−8 ≈ fmin.

By Lasserre’s Relaxation of orders 4,5,6,7,8, we get lower bounds

respectively

−2× 10−4,−2.9 · 10−5,−8.2 · 10−6,−4.2 · 10−6,−2.3 · 10−6.
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Example II

Minimizing Motzkin poly outside unit ball

min
x∈R3

x41x
2
2 + x21x

4
2 + x63 − 3x21x

2
2x

2
3

s.t. x21 + x22 + x23 ≥ 1.

The min. fmin = 0. By Jacobian SDP Relax. of order 4, we get

a lower bound (its sign is false due to numerical issues):

f4, Jac = 1.7633 · 10−9 ≈ fmin.

By Lasserre’s relaxation of orders 5,6,7,8, we get lower bounds

respectively

−4.8567 · 105, −98.4862, −0.7079, −0.0277.

Jacobian Relax. is stronger than Lasserre’s Relax.
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Example III

Consider the optimization

min
x∈R2

x21 + x22 s.t. x22 − 1 ≥ 0,

x21 −Mx1x2 − 1 ≥ 0,
x21 +Mx1x2 − 1 ≥ 0.

Its minimum fmin = 2+ 1
2M(M +

√
M2 +4). Let M = 5.

By Jacobian Relaxation of order 4, we get a lower bound

f4, Jac = 27.9629 = fmin.

By Lasserre’s Relaxation, we get lower bounds

fN,Las = 2 ∀N.
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THIS IS THE END!

THANK YOU VERY MUCH!

30


