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Multivariate Polynomial Optimization

Given polynomials f(z), h;(z), g;j(z), solve problem

min  f(x)
reR"
st. hi(x)=---=hp(x) =0,

There are standard numerical methods for solving the problem
globally based on semidefinite programming (SDP) and sum of
squares (SOS) approximations (Lasserre, Parrilo, Sturmfels, ...)

Goal of This talk: Jacobian SDP Relaxation, the first method
that can compute the global minimum exactly by SDP.



Outline of the Talk

Some Backgrounds

Jacobian SDP Relaxation

Certifying Exactness

Numerical Examples



SOS polynomials

A poly p(x) is sum of squares (SOS) if p(z) = 3 ¢?(x).

Example: 3. (:Ui' -+ a:g' + acg' + xj — 4x1x2x3x4)
= (27 — 25 — a5 + 23)° + (27 + 25 — 2§ — 23)°+
(2% — 25 — 23 + 23)? + 2(z174 — T223)°+

2(z122 — x324)% + 2(2123 — T2T4)?

SOS implies nonnegativity, but not conversely.

Theorem (Hilbert, 1888) Every nonnegative poly is SOS iff

(# var,degree) = (1,2d), (x,2), or (2,4).

Hilbert’'l 17th Problem: Is every nonnegative poly is a sum of
squares of rational functions? (Yes, by Artin).



Testing SOS Membership

A polynomial p(x) is SOS if and only if
3X : p(z) = [2]} X[z];, X=X >0

The X is called a Gram matrix.
23:‘11 + 2:13:'1”332 — CB%ZE% + 5:1:‘21
21 20 17 22 ]

T T
_:1:1902_ _1 O —1_ _QUlZEQ_
_:132—T_2 — 1 17 22
= :c% —a b 0 :c%
z122| |1 0 —1+42a| [z120

When o = 3, the Gram matrix is positive semidefinite.



SOS Program and SDP

e A typical SOS program is:

max dw st fot+wifi+ -+ wmfm is SOS
w m

where fo, f1,..., fm are given polynomials.

e SOS program is reducible to SDP

max —w Wo — W MmaX —wi1 + wo — w3
weRS3 1 + 2 3 weR3,acR

s.t. wlalr;‘l1 -+ 2w2m:f:c2 = w, —o wo
—x%x% —+ w3x§' s.t ~ 0

is SOS




Semidefinite Programming (SDP)

SDP has the standard form

min
s.t.

where A4; € RM*M 3re symmetric.

T he feasible region of SDP is convex.

c1x1 + -+ cnxn
Ag + Zf?:l z;A; = O

Example:
(3 — 221 + x5 rq —z1 — x> |

x1 34+ 1 —2xo o ~ 0.
| —x1 — 22 i) 14+ xz1 + a2




Lasserre’s Hierarchy of SOS Relaxations

fmin := min f(x)
st. hj(x) =0(1<i<r)
g;(@) > 0(1 < j < m)

For each integer N (relax. order), solve the SOS program
fny :=max v

T m
st. f(x)—v— Z d;h; — Z ojg; 1S SOS
i=1 =1

deg(qbihi),deg(ajgj) < 2N with o SOS
We get a sequence of lower bounds for N =1,2,...

1< o< fz3< < frnin-

Lasserre’s Relaxation is reducible to SDP.



Convergence of Lasserre’s Hierarchy

The original prob. N-th Lasserre’'s relax.
R fn i= max v
Jmin _ mln_f(x) _ st. f(x)—~v—>X¢ih; —> 0,9, SOS
st. hi(x)=---=hy(x) =0
JINE)s - GmAL) = each o;(z) is SOS

Theorem (Lasserre, 2001) Under archimedean condition (AC)

lim — .
N—>oofN fmzn

AC is almost equivalent to compactness of the feasible set.



A Negative Result By Scheiderer

Scheiderer (1999) discovered a negative result: whenever the
feasible set has dimension > 3, there exists a “bad’ polynomial
f such that Lasserre’'s Relax. is never exact:

im fnv = fimin, but  fny < fimin VIV.
N—00

Scheiderer proved a positive one: In the 2-D case, finite conver-
gence holds under some general non-singularity assumptions.

Question: Can we solve polynomial optimization globally and
exactly by a single SDP relaxation?
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1-Equality-1-Inequality (1E1I) Constraints

To describe Jacobian SDP relaxation, consider 1E1I case:

st. h(x) =0,g9(x) > 0.
The N-th Lasserre’'s SOS relaxation is

fn i=max -~
st. f—~v—o¢h—og is SOS
o is sos, deg(¢ph),deg(og) < 2N.

Under the archimedean condition on {h = 0,g > O0}(general for
compact sets), we typically have only asymptotic convergence:

im N = fiins IN < fmin VN
N —o0
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First Order Optimality Condition

Suppose z* is an optimizer of

Minimize f(xz) s.t. h(x) =0, g(x) > 0.

The first order condition is

Vf@®) = MVh(z") + A2Vg(zh),

There are two possibilities:
Case I: g(z*) > 0.

Case II: g(z*) = 0.

Xg(z™) = 0.

13



Case I: g(z*) >0

Suppose z* is an optimizer of
Minimize f(x) s.t. h(x) =0, g(x) > 0.
If g(z*) > 0, the optimality condition is reduced to
Vi(x*) = A Vh(z").
Thus, the rank condition
rank g(z) - [Vf(x) Vh(x)} <1

always holds at z*, no matter g(z*) = 0 or g(z*) > 0.
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Case II: g(z*) =0

Suppose z* is an optimizer of
Minimize f(x) s.t. h(x) =0, g(x) > 0.
The optimality condition is
Vf(z*) = A Vh(z™) + A2Vg(z™), Aog(z™) =0.
Thus, the rank condition
rank [Vf(a:) Vh(z) vg(a:)] <2

always holds at z*, no matter g(x*) = 0 or g(z*) > 0 (if g(z*) >
0, A> = 0, the first two columns are dependant).
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Characterizing Critical Points

If £* is an optimizer of
Minimize f(x) s.t. h(x) =0, g(x) > 0,
then the Jacobian matrices

g(x) - |[Vf(x) Var(x)|, |Vf(z) Vh(z) Vg()]

are always singular at z*, no matter g(z*) > 0 or g(z*) = 0.

Theorem (N. 2010) Under some generic nonsingularity condi-
tions, a point z* is critical if and only if the matrices

g(x) - |[Vf(x) Vai(x)|, |Vf() Vh(z) Vg()]
are all singular at z*.
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Jacobian Type SDP relaxation:

Let p1(x),...,pr(x) be a minimum set (e.g., by Bruns and Vet-
ter's method) of defining polys for the variety:

{z:rank|g-Vf g-Vg| <1rank|Vf Vh Vg| <2}.
Then we get an equivalent formulation

Minimize f(x)
<— st. h(xz)=0,9g(x) >0
p1(z) = =pg(z) =0
The N-th Jacobian SDP relaxation is

max v st f—v—¢h—0og— > ;p;p; is SOS
o is SOS, deg(¢h),deg(og),deg(¢pjp;) < 2N.

Minimize f(x)
st. h(x) =0, g(x)>0
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Exactness of Jacobian SDP relaxation:

For 1E1I polynomial optimization

fmin :==min  f(z) st h(xz) =0, g(z) >0,
we get a sequence of lower bounds fn < fin from

Jni=max vy st f—y—¢h—0og— > ;¢;p; isSOS
o is SOS, deg(¢h), deg(ag), deg(¢;ep;) < 2N.

Theorem (N., 2010) Assume the feasible set is nonsingular and
f(x) has a global minimizer, then for all N big enough

IN — Jmin-
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Jacobian SDP relaxation for General Case

For general multi-constrained polynomial optimization:

min  f(x)

st. hi(x) =0(1<i<r),gj(z) >0(1<j<m)
From the fist order optimality condition, we can get redundant
polynomial equations by using Jacobians, like 1E1I case.

e We have same finite convergence result, under some generic
nonsingularity assumptions on hi,gj.

e [ he sizes of the Jacobian SDP relaxation grow exponentially
in m ( # of inequality constraints ).

e Some efficient variations exist for special cases.
19
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How to Certify Exactness?

Jacobian SDP relaxation returns a sequence of lower bounds

<< fIN=FIN+1=""= Tnin

for the polynomial optimization (1E1I case)

fmin ;= min  f(x) s.t. h(x) =0, g(x) > 0.

The equality fy = fun is certified if a feasible x* satisfies

fx*) = fn.

Can we always find such an z* by an algorithm?

This is almost always true!
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Duality in Jacobian SDP Relaxation

For the 1E1I polynomial optimization
min  f(x) s.t. h(xz) =0, g(x) >0,
the N-th Jacobian relax (SOS version) is:

max vy st f—v—¢h—o0g—>;¢;p;is SOS
o is SOS, deg(¢h), deg(ag), deg(¢;e;) < 2N.

Its dual problem (moment version) is:

min Y faya st LYV) =0, LE ) =01 <j <),
LM (y) = 0, My(y) = 0, yo = 1.

where L](,N)(y) denotes the N-th localizing matrix of a poly p and
a moment vector y, and Mpy(y) is a moment matrix.
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Rank One Case

Suppose y* is a minimizer of the dual optimization problem:

fvi=min Y faya st LYV(y) =0, LY () =0,(1 < j < 1)
LM () = 0, My(y) = 0, yo = 1.
If rank My(y*) =1, then

aj* — <y;<17y:27...7y2n)7 y* — (1,x>|]<-,...,(a’;>l]<-)2,...)
Mey=0 = n@E*) =0,
M@ =0 = g@">o0

Jmin > fN:ZfayZ — f(x*)
So z* is feasible and a globally minimizer.
23



Flat Truncation (FT)

Suppose y* is a minimizer of the dual optimization problem:

min Y fava st. L@ =0, L8 =0,a<j<r)

N
LM (y) = 0, My (y) = 0, yo = 1.
We say y* has a flat truncation (FT) or FT holds at y* if

rank My(y*) = rankM;_4(y*) for some t € [d, N]
where d = max{1, [deg(h)/2], [deg(g)/2]}.

FT = y*|o; admits a finite measure (Curto-Fialkow).

FT = global minimizers can be found (Henrion-Lasserre).
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FT Holds Generally

Suppose y* is a minimizer of the Jacobian relax.:

min Y faya st Ly () =0, LG (1) = 0,(1 <j <)

N
LM (y) = 0, My(y) = 0, yo = 1.
Theorem (N. 2011) If the optimization problem

min  f(x) s.t. h(xz) =0, g(x) >0

has finitely many global minimizers, then FT holds for every
minimizer y* of Jacobian relaxation for some N.

If #£ global minimizers = oo, then FT fails.
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Example I

: 4 2 2 4 §) 2.2 2
mlr}) r1T5 -+ T{Ts -+ r3 — 3:1:1:1:23:3
reR 5 5 5

The objective is the Motzkin polynomial (nonnegative but not
SOS). Its minimum f,,,;,, = O.

By Jacobian relaxation of order 4, we get a lower bound

fajee = —1.6948x107° =  fuin.

By Lasserre’s Relaxation of orders 4,5,6,7, 8, we get lower bounds
respectively

—2x107% -29.107°,-82-107° -42.107°% -2.3.107°.
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Example II

Minimizing Motzkin poly outside unit ball
min3 x%x% + :U%azg + :cg — 3:1:%:13%1‘%
reR

s.t. w%—l—x%—l—m% > 1.

The min. f,;, = 0. By Jacobian SDP Relax. of order 4, we get
a lower bound (its sign is false due to numerical issues):

fa,jae = 17633-107° &  frn.

By Lasserre’s relaxation of orders 5,6,7,8, we get lower bounds
respectively

—4.8567 -10°, -98.4862, —0.7079, —0.0277.

Jacobian Relax. is stronger than Lasserre’s Relax.
28



Example III

Consider the optimization

: 2 2 2
;:’QIIR?Q x7i+x5 s.t. z5—-12>0,
xi—Mxle— 1 >0,

i+ Mxixp —1 > 0.

Its MiNIMUM fiin =2 + AM(M + /M2 4 4). Let M =5,

By Jacobian Relaxation of order 4, we get a lower bound

f4, Jac = 27.9629 = fhin.
By Lasserre’'s Relaxation, we get lower bounds

fN,Las — 2 VN.
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THIS IS THE END!

THANK YOU VERY MUCH!
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