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Abstract

The heterogeneous multiscale method gives a general framework for the analysis of
multiscale methods. In this paper, we demonstrate this by applying this framework to
two canonical problems: The elliptic problem with multiscale coefficients and the quasi-
continuum method.
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1. Introduction

In recent years we have seen a tremendous growth of activity on multiscale modelling and
computation. Many of these problems and numerical algorithms involve multi-physics [16], i.e.
the models at different scales are of very different nature, for example, molecular dynamics
at the microscale and continuum mechanics at the macroscale. By coupling the macro-scale
and micro-scale models, one hopes to obtain numerical algorithms that have the accuracy
of microscale models at a cost comparable to the macroscale models. Many methods have
been developed along these lines, including the Car-Parrinello method [12], the quasicontinuum
method [39, 27] and more recently the heterogeneous multiscale method (HMM) [15].

The analysis of multiscale methods presents new challenges in numerical analysis. This
is particularly true when multi-physics is involved. First of all, there is the issue of what one
should take as the “exact solution” that the numerical solution should be compared with. Since
multiscale methods typically involve several different components, the error also has several
different contributions. Therefore one important point in the analysis of these methods is to be
able to separate out these different contributions.

The framework of the heterogeneous multiscale method provides a general strategy both for
the design and the analysis of multiscale methods. In this article we will discuss the application
of HMM to two different problems. The first is the elliptic PDE with multiscale coefficients.
The second is the quasicontinuum method for crystalline solids. We will focus on the analysis
of these methods. For other applications and analysis of HMM, we refer to [32].
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2. General Strategy for the Analysis of Multiscale Methods

A general principle for analyzing HMM has been established in [15] and later elaborated
in [17, 19, 34] on a variety of homogenization problems, ODEs [14] and stochastic ODEs [18, 41],
and on quasicontinuum methods [21]. The common feature of all these problems is that there
exists a closed macroscopic model, which may not be explicitly available or are very inefficient
to use directly in numerical computations. We can then design multiscale methods using the
microscale model and known qualitative features of the macroscale process in order to capture
efficiently the macroscale behavior.

There are two main ingredients in HMM: An overall macroscopic scheme for the macroscopic
state variable U , and estimating the missing macroscopic data by the microscopic model. Even
though the HMM procedure is far more general, rigorous error estimates can only be expected
in cases for which a lot is known about the macroscale model, even though it is not explicitly
used in the numerical methods.

To analyze HMM, we begin by defining a macroscopic approximation method with the
same macroscopic solver as that in HMM. The error between this approximate solution and the
macroscopic solution can be analyzed using standard numerical analysis techniques (see [13]
for finite element methods, [37] for finite difference methods, [24] for finite volume methods,
and [1] for discontinuous Galerkin methods). Next we estimate the error between the HMM
solution and the approximate solution of the macroscopic model, due to the fact some of the
macroscopic data are estimated using the microscopic model, instead of being given by the
macroscopic model itself, this gives us a general statement of the following type:

‖U − UHMM‖ ≤ C
(
Hk + e(HMM)

)
, (2.1)

where UHMM is the HMM solution, U is the exact solution of the macroscopic model, k is
the order of the macroscopic solver, and H is the step size of the macroscale numerical grid.
The norm ‖ · ‖ should be chosen according to the specific problem at hand. The second term
e(HMM) is the new source of error due to the data estimation. Typically, the error e(HMM)
depends on the rate of relaxation of the microscopic state to the local equilibrium, the accuracy
of the microscopic solver, and the accuracy of the data-processing step.

Observe that (2.1) bears some similarity to Strang’s Lemma in finite element methods [13].

3. Application to the Elliptic Homogenization Problem

Consider the classical elliptic problem{
− div

(
aε(x)∇uε(x)

)
= f(x) x ∈ D ⊂ R

d,
uε(x) = 0 x ∈ ∂D.

(3.1)

Here ε is a small parameter that signifies the multiscale nature of the coefficient aε(x). Several
classical multiscale methodologies have been developed for the numerical solution of (3.1),
the most well-known among which is the multigrid technique [10]. These classical multiscale
methods are designed to resolve the details of the fine scale problem and are applicable for
general problems, i.e., no special assumptions are required for the coefficient aε(x). In contrast
modern multiscale methods are designed specifically for recovering partial information about
uε at a sublinear cost, i.e. the total cost grows sublinearly with the cost of solving the fine scale
problem [16]. This is only possible by exploring the special features that aε(x) might have, such
as scale separation or self-similarity. The simplest example is when aε(x) = a(x, x/ε), where
a(x, y) can either be periodic in y, in which case we assume the period to be I = [−1/2, 1/2]d,
or random but stationary under shifts in y, for each fixed x ∈ D. In both cases, it has been
shown that [5, 36]

‖uε(x) − U(x)‖L2(D) → 0, (3.2)
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where U(x) is the solution of a homogenized equation:{
− div

(
A(x)∇U(x)

)
= f(x) x ∈ D,

U(x) = 0 x ∈ ∂D.
(3.3)

The homogenized coefficient A(x) can be obtained from the solutions of the so-called cell
problem. In general, there are no explicit formulas for A(x), except in one dimension.

For (3.1) the macroscopic solver can be chosen as a conventional Pk finite element method
on a triangulation TH of element size H . The missing data is the effective stiffness matrix
at this scale. This stiffness matrix can be estimated as follows. Assuming that the effective
coefficient at this scale is AH(x), we approximate

(
∇V ·AH∇V

)
(x�) for any V ∈ XH by solving

the problem: {
− div

(
aε(x)∇vε

� (x)
)

= 0 in Iδ(x�),
vε

� (x) = V�(x) on ∂Iδ(x�),
(3.4)

where Iδ(x�) is a cube of size δ centered at x�, and V� is the linear approximation of V at x�.
We then let (

∇V · AH∇V
)
(x�) �

1
δd

∫
Iδ(x�)

∇vε
� (x) · aε(x)∇vε

� (x) dx. (3.5)

The above two gives the approximate stiffness matrix at the scale H . For convenience, we define
the corresponding bilinear form: For any V, W ∈ XH

AH(V, W ): =
∑

K∈TH

|K|
δd

∫
Iδ(x�)

∇vε
� (x) · aε(x)∇wε

� (x) dx,

where wε
� is defined for W ∈ XH in the same way as vε

� in (3.4) was defined for V .
We used Dirichlet boundary condition in (3.4). Other boundary conditions are possible, such

as Neumann and periodic boundary conditions. In order to reduce the effect of the imposed
boundary condition on ∂Iδ(x�), we may choose a smaller cell Iδ′ (x�) with δ′ < δ in order to
compute the averages in (3.5). For example, we may choose δ

′
= δ/2.

In practice, x� are the quadrature points of appropriate order (see Figure 1 and (3.7) below),
and (3.4) is solved for the basis functions in the finite element space. In addition, Iδ(x�) does
not have to be a cube and does not have to have the same sizes at different locations.

So far the algorithm is completely general. The savings compared with solving the full fine
scale problem comes from the fact that we can choose Iδ(x�) to be smaller than K. The size of
Iδ(x�) is determined by many factors, including the accuracy and cost requirement, the degree
of scale separation, and the microstructure in aε(x). If aε(x) = a(x, x/ε) and a(x, y) is periodic
in y, we can simply choose Iδ(x�) to be x� + εI, i.e., δ = ε. If a(x, y) is random, then δ should
be a few times larger than the local correlation length of aε. In the former case, the total cost
is independent of ε. In the latter case, the total cost depends only weakly on ε [33].

The final problem is to solve

min
V ∈XH

1
2
AH(V, V ) − (f, V ). (3.6)

We introduce the following accuracy conditions for kth-order numerical quadrature scheme [13]:
∫

K

p(x) dx =
L∑

�=1

ω�|K|p(x�) ∀p(x) ∈ P2k−2. (3.7)

Here ω� > 0 for � = 1, · · · , L are the weights. For k = 1, we assume the above formula to be
exact for p ∈ P1.

Our main results for the linear problem are as follows. Similar results with some modifica-
tions hold for the nonlinear homogenization problems, we refer to [19, §5] for details.
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K

Figure 1: Illustration of HMM for solving (3.1). The dots are the quadrature points. The squares are

the microcell Iδ(x�).

Theorem 3.1.[19, Theorem 1.1] Denote by U and UHMM the solution of (3.3) and the HMM
solution, respectively. Let

e(HMM) = max
x�∈K
K∈TH

‖A(x�) −AH(x�)‖,

where ‖ · ‖ is the Euclidean norm. If U is sufficiently smooth, aε is symmetric and uniformly
elliptic, and (3.7) holds, then there exists a constant C independent of ε, δ and H, such that

‖U − UHMM‖H1(D) ≤ C
(
Hk + e(HMM)

)
, (3.8)

‖U − UHMM‖L2(D) ≤ C
(
Hk+1 + e(HMM)

)
. (3.9)

If there exits a constant C0 such that e(HMM)|ln H | < C0, then there exists a constant H0

such that for all H ≤ H0,

‖U − UHMM‖W 1,∞(D) ≤ C
(
Hk + e(HMM)

)
|ln H |. (3.10)

At this stage, no assumption on the form of aε(x) is necessary. U can be the solution of
an arbitrary macroscopic equation with the same right-hand side as in (3.1). If UHMM were
to converge to U , i.e., e(HMM) → 0, U must be chosen as the solution of the homogenized
equation, which we now assume exist [32]. To obtain quantitative estimates on e(HMM), we
must restrict ourselves to more specific cases.

Theorem 3.2.[19, Theorem 1.2] For the periodic homogenization problem, we have

e(HMM) ≤
{

Cε if Iδ(x�) = x� + εI,

C
(ε

δ
+ δ

)
otherwise.

In the first case, we should replace the boundary condition in (3.4) by a periodic boundary
condition: vε

� − V� is periodic with period εI. For the second case we do not need to assume
that the period of a(x, ·) is a cube: In fact it can be of arbitrary shape as long as its translation
tiles up the whole space.

To discuss the random case, we will use the set-up in [36] and [42]. First we introduce the
mixing condition [25]. Let B be a domain in R

d. Denote by F(B) the σ−algebra generated by
{a(y, ω), y ∈ B}. Let ξ, η be two random variables that are measurable with respect to F(B1)
and F(B2), respectively, then

|Eξη − EξEη|
(Eξ2)1/2(Eη2)1/2

≤ e−λq, (A)

where q = dist(B1, B2), λ > 0 is a fixed constant.
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Theorem 3.3.[19, Theorem 1.3] For the random homogenization problem, assuming that the
mixing condition (A) holds, then we have

E e(HMM) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C(κ)
(ε

δ

)κ

, d = 3

remains open, d = 2

C(κ)
(ε

δ

)1/2

, d = 1

where
κ =

6 − 12γ

25 − 8γ

for any 0 < γ < 1/2. By choosing γ small, κ can be arbitrarily close to 6/25.

To prove this result, we assume that the cell size in (3.5) is δ ′ = δ/2.
In many applications, the microstructure information in uε(x) is very important. UHMM by

itself does not give this information. However, this information can be recovered using a simple
post-processing technique. For the general case, having UHMM, one can obtain locally the
microstructural information using an idea in [35]. Assume that we are interested in recovering
uε and ∇uε only in the subdomain Ω ⊂ D. Consider the following auxiliary problem:{

− div
(
aε(x)∇ũ ε(x)

)
= f(x) x ∈ Ωη,

ũ ε(x) = UHMM(x) x ∈ ∂Ωη,
(3.11)

where Ωη satisfies Ω ⊂ Ωη ⊂ D and dist(∂Ω, ∂Ωη) = η. We then have

Theorem 3.4.[19, Theorem 1.4] There exists a constant C such that(∫
−

Ω

|∇(uε − ũ ε)|2 dx
)1/2

≤ C

η

(
‖U − UHMM‖L∞(Ωη) + ‖uε − U‖L∞(Ωη)

)
. (3.12)

For the random problem, the last term was estimated in [42].
A much simpler procedure exists for the periodic homogenization problem. Consider the

case when k = 1 and choose Iδ = xK + εI, where xK is the barycenter of K. Here we have
assumed that the quadrature point is at xK .

Let ũ ε be defined piecewise as follows:

1. ũ ε|Iδ
= vε

K , where vε
K is the solution of (3.4) with the boundary condition that vε

K−UHMM
is periodic with period εI and

∫
Iδ

(ũ ε − UHMM)(x) dx = 0.

2.
(
ũ ε − UHMM

)
|K is periodic with period εI.

For this case, we can prove

Theorem 3.5.[19, Theorem 1.5] Let ũ ε be defined as above, then( ∑
K∈TH

‖∇(uε − ũ ε)‖2
0,K

)1/2

≤ C(
√

ε + H). (3.13)

Several other numerical methods have been developed to deal specifically with the case
when a(x, y) is periodic in y [2, 3, 8]. An alternative proposal for more general problems but
with higher cost is found in [26, 22]. For a more thorough discussion of the different multiscale
methods for this classical multiscale problem, we refer to [33].

4. Application to Quasicontinuum Method

In the continuum theory of nonlinear elasticity, we are interested in the displacement field
U which minimizes some variational problem of the form∫

D

W (∇v) dx −
∫

D

f(v) dx (4.1)
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subject to certain boundary condition. Here f is the potential for the external force, and W
is the stored energy functional of the material. An important problem is how to get W . It is
customary in variational methods to take for granted that W is explicitly given, while in reality
the way of getting W is quite empirical and sometimes even crude.

A different approach is quasicontinuum method (QC) proposed in [39, 27] for the analysis
of the crystalline solids. It starts with an atomistic model of the type:

E{x1, · · · , xN} =
N∑

i,j=1

V0(rij) −
N∑

j=1

f(xj), (4.2)

where V0 is the interaction potential between atoms, f is again the external potential for the
applied force, xj and yj are respectively the deformed and undeformed position of the j-th
atom, rij = |xi − xj |. More general types of atomistic models can be used (see [20] for such
examples). But we will write (4.2) to keep the presentation simple.

Let TH be again a finite element triangulation of D, and XH be the vector-valued piecewise
linear finite element space on TH . For any V ∈ XH , the energy associated with the trial
displacement field V is computed as follows. For each element K in TH , denote by EK(V ) the
energy of a unit cell in the crystal, deformed according to the constant deformation gradient
F = ∇V |K , that is:

EK(V ) =

∑
xi,xj∈∩Br(xK) V0(rij)

nr(xK)/2
,

where xK is an interior point of K, for example, the barycenter of K; Br(xK) is a small region
around xK , usually a ball centered at xK with radius r. nr(xK) is the number of unit cells in
Br(xK). In this formula, the positions of the atoms xj are obtained from uniformly deforming
the equilibrium lattice with deformation gradient F .

Let nK be a proper weighting factor, which is roughly equal to the number of the unit cells
inside the element K times the volume of deformed unit cell. Denote by Bε the unit cell. The
QC approximation to the total energy associated with V is given by:

E(V ) =
∑

K∈TH

nK

∫
Bε

EK(V ) −
∫

D

f(V ) dx. (4.3)

The QC solution UQC is obtained by minimizing E in XH .
This is the nonlocal version of QC, formulated by Knap and Ortiz [27]. It uses a cluster-

based summation rule (this is the role of the Br(xK)) instead of the Cauchy-Born rule to define
EK(V ).

It is worth mentioning that similar ideas are used in [11] for searching the global minimizers
of certain lattice models.

The only existing work on the error analysis of QC seems to be that of P. Lin [29] in which
QC in the absence of external forces (hence no deformation) was analyzed. When deformation
is present, the situation becomes quite different. Naively one might expect to prove a result
stating that the global minimizers of the atomistic model (4.2) under applied force can be
approximated to good accuracy by the QC solutions. Such a result is in general false, as can
be seen from an argument similar to the one below. The best we can do is to show that QC
solutions do indeed approximate some local minimizers of the full atomistic model to a good
accuracy. Such local minimizers are physically relevant.

To understand QC, we go back to the question: How is W obtained? One common proposal
is to use the Cauchy-Born rule [38, 7, 23]:

WCB(F ) =
∑

α∈ε�∩Bε

V0(F · α)/|Bε|, (4.4)
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Figure 2: Schematic illustration of QC (courtesy of M. Ortiz). Only the atoms in the small cluster

need to be visited during the computation

where ε is the lattice constant, � is the periodic crystal lattice, and V0 is the interaction potential
between atoms.

An obvious mathematical difficulty with this approach is that (4.1) with W given by (4.4)
gives a variational problem that seems to be badly behaved [4]. Indeed, it was proved in [6,
Proposition 7] that W (F ) is not rank-one convex. Even more disturbing is the following obser-
vation for the full atomistic model.

Let us consider a one-dimension chain of atoms. Denote by l the length of the specimen,
and {xi}N

i=0 the locations of the atoms in the reference configuration. Let {ui}N
i=0 be the

displacement of the ith atom, and u̇i: = (ui −ui−1)/λN the relative elongation of the ith atom,
where λN = l/N is the bond length. We write the strain energy as

E(u) =
N∑

i=1

λN

(
V0(1 + u̇i) − V0(1 + d/l)

)
,

where the potential V0 is Lennard-Jones potential [28]. d enters in the boundary condition:
u0 = 0 and uN = d.

It is easy to check that the uniformly deformed state with ui = id/N is a local minimizer
of E if 0 < d/l < 6

√
13/7 − 1. The total energy of this state is E(u) = 0. But there is another

state with a crack given by ui = 0 for 1 ≤ i ≤ N − 1 and uN = d, whose total energy is

E(u) = λN

(
V0(1 + Nd/l) − NV0(1 + d/l)

)
.

It is clear that V0(1+Nd/l) 
 NV0(1+ d/l) if N is large enough, and if V0 is bounded at large
distance as is typically the case. This phenomenon, namely that the fractured state has less
energy than the uniformly deformed state, is already known in the literature [40, 9].

The reason that crystals do not always crack when pulled is that the energy barrier for
breaking a large set of chemical bonds is huge. Nevertheless this example implies that we have
to think about local minimizers of the atomistic model in order to discuss coherent elastic
deformation of crystals. In light of this, the following result becomes completely natural. To
state the results, we make the following assumption:
Assumption A. For any domain D, there exists a constant KD such that for the undeformed
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configuration u and any ϕ ∈ u + W 1,∞
0 (D) with ‖ϕ − u‖W 1,∞(D) ≤ KD,∫

D

WCB(ϕ) dx ≥
∫
D

WCB(u) dx.

Theorem 4.1. If Assumption A holds, then there exists a constant κ such that for any p > d,
if ‖∇f‖Lp(D) ≤ κ, then there exists a W 1,∞-local minimizer UCB of (4.1) with the stored
energy W given by (4.4). Moreover, the full atomistic model has a local minimizer {xj} such
that ( N∑

j=1

1
N

|UCB(yj) − uj|2
)1/2

≤ Cε, (4.5)

where uj = xj − yj is the displacement of j−th atom.

Here and in the following we use Dirichlet boundary condition.
The condition on the external forcing is necessary since at large enough forcing the elastically

deformed state cease to be even a local minimizer.
Define

eQC: = max
K∈TH

∣∣∣∣ nr(xK) − nK
|Br(xK)|

|K|

∣∣∣∣ . (4.6)

In the same spirit as in (2.1), and analogous to Theorem 3.1, we have the following error
estimate for QC.

Theorem 4.2. If Assumption A holds, there exist constants κ and H0 such that for any p > d,
if ‖∇f‖Lp(D) ≤ κ and 0 < H < H0, then there exists UCB and UQC, which are respectively
the W 1,∞-local minimizers of (4.1) and (4.3), satisfying

‖UCB − UQC‖H1(D) ≤ C
(
H + e(QC)

)
. (4.7)

‖UCB − UQC‖W 1,∞(D) ≤ C
(
H + e(QC)|ln H |

)
. (4.8)

Similar to Theorem 3.2 and Theorem 3.3, we have

Theorem 4.3. If TH is quasi-uniform, then there exists a constant C such that

e(QC) ≤

⎧⎪⎪⎨
⎪⎪⎩

C
ε

H
Local QC [39]

C
ε

r
Nonlocal QC [27].

Theorems 4.2 and 4.1 are valid under Assumption A, we have verified such assumption
in [20] for several commonly used two-body potentials. Similar results with minor modification
hold for complex lattice with many-body potentials, we refer to [20] for more details.
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