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Recovery on the sphere Sphere

Recovery of sparse signals on the unit sphere

S
2 := {x ∈ R

3 : ‖x‖2 = 1}
Applications

astrophysics, geophysics, climate modelling
gravitational sensing, global navigation
3D face recognition

For polar angle θ ∈ [0, π], azimuthal angle φ ∈ [0, 2π)

x = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ))T , x ∈ S
2
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Recovery on the sphere Fourier coefficients

Fourier coefficients

Let PL(S
2) denote the space of all spherical polynomials of degree at most

L on S
2. Let Yℓ,k, ℓ = 0, . . . , L, k = 1, . . . , 2ℓ+ 1 be an orthonormal basis

for PL(S
2).

The signal F : S2 → R is observed via the Fourier coefficients

cℓ,k =

∫

S2

F (x)Yℓ,k(x)dµ(x) + ηℓ,k, (1)

ℓ = 0, . . . , L, k = 1, . . . , 2ℓ+ 1, with noise ηℓ,k.
Use a cubature rule for S2 with weights and nodes

wj > 0, Xn := {xj ∈ S
2, j = 1, . . . , n},

which is exact for all spherical polynomials of degree at most 2L. Applying
such a cubature rule to (1), we have the discrete approximation

cℓ,k =

n∑

j=1

wjF (xj)Yℓ,k(xj) + ηℓ,k, (2)

for F ∈ PL(S
2).
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Recovery on the sphere Fourier coefficients

In matrix notation, (2) is
c = YWf + η (3)

c ∈ R
m is the noisy Fourier coefficient vector

Y := Y (Xn) ∈ R
m×n is the spherical harmonic basis matrix

W= diag(w) ∈ R
n×n is the diagonal matrix of cubature weights

η ∈ R
m is the noise vector

f = (F (x1), . . . , F (xn))
T ∈ R

n is the signal vector which we want to
recover.

m = (L+ 1)2 is the dimension of PL(S
2)

Let
A = YW 1/2 and v = W 1/2f.

Since the nodes Xn and weights W form a positive weight cubature rule
on the sphere that is exact for all spherical polynomials of degree at most
2L, the matrix A satisfies

AAT = YWY T = I ∈ R
m×m (4)
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Models Minimization problem

Optimization model

Optimization problem

(P ) Minimize ‖v‖qq
Subject to ‖Av − c‖2 ≤ σ,

0 < q ≤ 1

Given A ∈ R
m×n, c ∈ R

m, σ ≥ 0

σ = 0 ⇐⇒ Av = c (Basis Pursuit)

σ > 0 (Basis Pursuit De-Noising)
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Models Minimization problem

Quadrature rules

Quadrature rule Qn for S2:

nodes Xn = {xj ∈ S
2, j = 1, . . . , n}

weights wj > 0, j = 1, . . . , n

Qn(f) :=
n∑

j=1

wjf(xj) ≈
∫

S2

f(x) dµ(x),

Pt(S
2) = spherical polynomials of degree at most t on S

2

Degree of precision t:

Qn exact for polynomials p ∈ Pt(S
2)

not exact for some polynomial p̄ ∈ Pt+1(S
2)

Degree of precision 0 ⇐⇒ exact for constants

n∑

j=1

wj = |S2| = 4π,
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Models Minimization problem

Spherical t-design

Xn = {x1, . . . ,xn} spherical t-design Delsarte, Goethals, Seidel[1977]

1

n

n∑

j=1

p(xj) =
1

|S2|

∫

S2

p(x)dµ(x) ∀ p ∈ Pt(S
2),

Equal weight wj = 4π/n, j = 1, . . . , n, degree of precision t

Yℓ,k, k = 1, . . . , 2ℓ+ 1, ℓ = 0, . . . , t orthonormal basis Pt(S
2)

Spherical harmonic basis matrix Y (Xn) ∈ R
(t+1)2×n

Spherical t-design ⇐⇒ Xn is a solution of

Y (Xn)e =
n√
4π

e1

[Chen-Womersley, SINUM2006]

Well-separated t-designs [An-Chen-Sloan-Womersley,
SINUM2010,2012], [Chen-Frommer-Lang, Numer. Math 2011]
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Models Minimization problem

Point sets on S
2

Spherical t-design: t = 31, n = 1024, |J | = 120
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Models Minimization problem

Spherical tǫ designs

Yang and Chen [Math. Comp 2017], Degree of precision t

Relaxed weights: For 0 < ǫ < 1

4π

n
(1− ǫ) ≤ wi ≤

4π

n
(1− ǫ)−1.

Extremal points Sloan and Womersley [2004])
n = (t+ 1)2 = dimPt(S

2), Degree of precision t
nodes chosen to maximize det (G), gram matrix G = Y TY
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Models Minimization problem

Well Separated

Minimal separation δ(Xn) = minj 6=k dist (xj,xk) := arccos(xj · xk)

Sequence of point sets {Xn} is well-separated if there is c such that

δ(Xn) ≥ cn−1/2 for all n ≥ n0
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Models Properties

Stability

Theorem

Let v̂ be a solution of problem (P). If there exists γ ∈ (0, 1) with
‖rJ‖q ≤ γ‖rJc‖q, then

‖v̂ − v∗‖qq ≤
2 (2βσ)q

1− γq

J support set of oracle solution v∗

Jc = {1, . . . , n}\J , complement of J
r = (I −Q)(v̂ − v∗), Q = ATA idempotent (QQ = Q)

Key: Degree of precision t ≥ 2L, orthonormal spherical harmonics

β = n
2−q

2q

v∗ oracle solution, the unique solution of

Minimize ‖v‖22
Subject to ‖Av − c‖2 ≤ σ, vJc = 0
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Models Properties

Sufficient conditions to recover 0-norm solution

Consider basis pursuit, σ = 0 =⇒ Av = c

Want conditions:

argmin{‖v‖1 : Av = c} ⊆ argmin{‖v‖0 : Av = c}

spark(A) = min{‖v‖0 : Av = 0,v 6= 0}
Mutual coherence: Donoho, Huo [2001], columns aj of A length 1

M(A) = max
i 6=j

|aT
i aj|

RIP: Candes, Romberg, Tao [2004] Smallest δs s.t.

(1− δs)‖v‖22 ≤ ‖Av‖22 ≤ (1 + δs)‖v‖22, ∀v : ‖v‖0 ≤ s

Null space (Non-RIP): Zhang [2008, 2012],

(‖v‖0)
1

2 < 1
2 min

{‖v‖1
‖v‖2

: Av = 0,v 6= 0

}
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Models Properties

Example

Chen, Ge, Wang and Ye
[MP 2014]

A = [1 1], c = 1

0 ≤ σ < 1
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Algorithms

Regularization vs penalty formulation

Constrained problem

(P ) Minimize ‖v‖qq
Subject to ‖Av − c‖2 ≤ σ,

Regularization

(PR) Minimize τ‖Av − c‖22 + ‖v‖qq

Exact penalty formulation

(PE) Minimize τ
(
‖Av − c‖22 − σ2

)
+
+ ‖v‖qq

q = 1: (PR) is equivalent to (P ) some τ > 0
q < 1: there is no τ > 0 so (PR), (P ) equivalent
q < 1: (PE) is equivalent to (P ) some τ > 0
Chen, Lu, Pong [SIOPT 2016]
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Algorithms

Stationary points

For µ > 0, consider

Minimize ‖|v|+ µe‖qq =
∑n

i=1(|vi|+ µ)q

Subject to ‖Av − c‖2 ≤ σ (5)

Theorem 2 (i) Let v∗ and vµ be global minimizers of problems (P) and
(5), respectively. Then

‖|v∗|+ µe‖qq ≤ ‖|vµ|+ µe‖qq + nµq

‖vµ‖qq ≤ ‖v∗‖qq + nµq.

(ii) Let v be a local minimizer of problem (P). Then there is µ̄ > 0, such
that for any µ ∈ (0, µ̄),

0 ∈ (I −Q)W(v, µ), where

W(v, µ) =




q




(|v1|+ µ)q−1α1
...

(|vn|+ µ)q−1αn


 : αi ∈





{1} if vi > 0
{−1} if vi < 0
[−1, 1] if vi = 0





.
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Algorithms

Algorithm

Choose k∗ > 1 and µ > 0. Let α0
i = 1, i = 1, . . . , n and k = 0.

1. Using SPGL1 (Berg and Friedlander 2011), solve

vk ∈ Argmin
n∑

i=1

αk
i |vi|

s.t. ‖Av − c‖2 ≤ σ.

2. If k + 1 = k∗, go to Step 3. Otherwise let

αk+1
i = q(|vki |+ µ)q−1, i = 1, . . . , n

and go to Step 1.
3. Using vk∗ as an initial point, solve problem (P) by the penalty method
(Chen, Lu and Pong 2016).
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Cubature rules Spherical designs

Spherical t-designs

Spherical t-design, equal weight, Efficient n = t2/2 +O(t)

t = 44, n = 1014, L = 15, |J | = 120

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(spherical design & nonconvex minimization) recovery of sparse signals 18 / 27



Cubature rules Extremal points

Extremal, spherical tǫ design

tǫ designs from extremal points:

n = (t+ 1)2, points chosen to maximize det
(
Y Y T

)

Computed weights bounded, provably well separated

t = 31, n = 1024, L = 15, |J | = 120
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Cubature rules Tensor product Gauss

Tensor product Gauss, equal

Gauss quadrature on [−1, 1] = [cos(π), cos(0)], Equally spaced
azimuthal [0, 2π)

t = 45, n = 1058, L = 15, |J | = 120
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Cubature rules Tensor product polar

θ, φ tensor product

Equal spacing in polar angle θ ∈ [0, π], azimuthal angle φ ∈ [0, 2π)

t = 31, n = 1024, L = 15, |J | = 120

full Y ∈ R
n×n but rank(Y ) = 768

Unscaled quadrature weights, forced to be non-negative
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Cubature rules Tensor product polar

Figure: SF nodes: function from noisy Fourier coefficients, true signal, signal
minimizing ‖v‖qq from solution of Algorithm 4.1 with k∗ = 8, and error
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Cubature rules Tensor product polar

Figure: MD nodes: function from noisy Fourier coefficients, true signal, signal
minimizing ‖v‖qq from solution of Algorithm 4.1 with k∗ = 8, and error
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Cubature rules Tensor product polar

Figure: GL nodes: function from noisy Fourier coefficients, true signal, signal
minimizing ‖v‖qq from solution of Algorithm 4.1 with k∗ = 8, and error
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Cubature rules Tensor product polar

Figure: TP nodes: function from noisy Fourier coefficients, true signal, signal
minimizing ‖v‖qq from solution of Algorithm 4.1 with k∗ = 8, and error
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Cubature rules Tensor product polar

Method ‖v̂‖qq ϕ(v̂) ||v∗ − v̂‖2 ‖v̂‖0 ‖v∗&v̂‖0 false

SPGL1 99.688 -1.1e-08 3.21 217.4 101.7 115.7
ℓq, ones 94.715 2.1e-17 7.65 150.7 42.8 107.9
ℓq, SPGL1 92.315 -1.0e-17 6.91 143.9 50.3 93.6
RWL1-8 85.262 -1.2e-11 3.16 125.3 89.5 35.8
ℓq, RWL1-8 83.999 5.9e-19 3.19 119.9 87.7 32.2

Table: SF nodes: m = 256, n = 1014, q = 0.5, |J | = 120, ‖v∗‖qq = 84.639,
averages of 100 trials with δ = 0.01, σ = 0.1604.

ϕ(v) = ‖Av − c‖ − σ
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