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This talk is dedicated to the memory of my friend and colleague
Chris Floudas
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What are the limits of Computation?

You will not find out the limits of the soul
when you go, traveling on every road, so
deep a logos does it have.
Whosoever wishes to know about the world
must learn about it in its particular details.
Knowledge is not intelligence. In searching
for the truth be ready for the unexpected.
Change alone is unchanging. The same
road goes both up and down. The
beginning of a circle is also its end. Not I,
but the world says it: all is one. And yet
everything comes in season.

- Heraclitus (c.540 - c.475 BC)
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Some Fundamental Questions

What are the limits of what humans can compute?

What are the limits of what machines can compute?

Are these limits the same?

What are the physical foundations and limitations of
computation?

Charles H. Bennet and Rolf Landauer, The fundamental physical
limits of computation, Scientific American (June 1, 2011).
Igor L. Markov, Limits of fundamental limits to computation,
Nature (Aug 1, 2014), vol 512, pp. 147-154.
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Analog and Digital Computers

The Antikythera mechanism is an ancient analog computer
designed to predict astronomical positions and and eclipses
(recovered from a shipwreck off the Greek island of Antikythera in
1900).
http://www.antikythera-mechanism.gr/
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Digital computers

Mechanical analog computers

Electronic analog computers

Turing computability (1936)

Theorem (Church Theorem)

An analog computer with finite resources can be simulated by a
digital computer.

Anastasios Vergis, Kenneth Steiglitz, and Bradley Dickinson, The
Complexity of Analog Computation, Mathematics & Computers in
Simulation 28 (1986) 91-113.
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Biocomputers

Biocomputers perform computational tasks using biologically
derived materials. For example, DNA, proteins, peptides etc
to perform computational tasks involving storing, retrieving,
and processing data.

Since biological organisms have the ability to self-replicate and
self-assemble into functional components, biocomputers could
be produced in large quantities from cultures (without
machinery needed to assemble them).
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DNA Computers

Adleman, L. M. (1994). Molecular computation of solutions to
combinatorial problems, Science 266, pp. 1021-1024.

This is the first DNA computing paper. It presents a
proof-of-concept use of DNA as a form of computation to
solve a seven-point Hamiltonian path problem.
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Recent Development

A three-terminal device architecture, termed the transcriptor,
that uses bacteriophage serine integrases to control the flow
of RNA polymerase along DNA has been developed.

Jerome Bonnet, Peter Yin, Monica E. Ortiz, Pakpoom
Subsoontorn, Drew Endy (2013). Amplifying Genetic Logic Gates,
Science 340, pp. 599-603

Biochemical, Bioelectronic, and Biochemical computers

Biochemical and DNA nanocomputers
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Ongoing exciting research.

First conference on DNA Based Computers (DIMACS,
Princeton 1995)

20th International Conference on DNA Computing and
Molecular Programming (2014)
http://link.springer.com/openurl.asp?genre=issue&

issn=0302-9743&volume=8727
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Next Information Revolution

Quantum Computing?

Quantum computation and quantum information is the study
of the information processing tasks that can be accomplished
using quantum mechanical systems.

Michael A. Nielsen, Isaac L. Chuang, Quantum Computation and
Quantum Information (Cambridge Series on Information and the
Natural Sciences) 2000.

Quantum computers use quantum-mechanical phenomena
(superposition, entanglement) to operate on data.
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Very early concepts in Greek philosophers (Democritus, Zeno, etc.)

Yuri Mann (1980)
Richard Feyman (1982)
Tomasso Toffoli (1982)
David Deutsch (1985) . . .
Quantum mechanics (early 1920s. . . )
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What is global optimization?
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Challenging Questions

Do we find a globally optimal solution?

We need a certificate of optimality

Do we compute “good” locally optimal solutions? (or points
that satisfy the optimality conditions?)

Do we compute “better” solutions than “known” solutions?
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When only global optimization matters

(P)

{
Minimize f (A) := rank of A

subject to A ∈ C .

C is a subset of Mm,n(R)

(Q)

{
Minimize c(x)

subject to x ∈ S

c(x) is the number of nonzero components of x .
S is a subset of Rn

Every admissible point in (P) is a local minimizer.

J.-B. Hiriart-Urruty: When only global optimization matters.
J. Global Optimization 56(3): 761-763 2013
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Section 1

Introduction
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Some History

Greek mathematicians solved optimally some problems related to their
geometrical studies.

Euclid considered the minimal distance between a point and a line.

Heron proved that light travels between two points through the
path with shortest length when reflecting from a mirror.

Optimality in Nature

Fermat’s principle (principle of least time)

Hamilton’s principle (principle of stationary action)

Maupertuis’ principle (principle of least action)

1951: H.W. Kuhn and A.W. Tucker, Optimality conditions for nonlinear
problems.
F. John in 1948 and W. Karush in 1939 had presented similar conditions
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Optimality in Biology

Optimality principles in biology (R. Rosen, New York:
Plenum Press, 1967).

Optimality theory in evolutionary biology (G. Parker and
J. Maynard Smith, Nature 348. 27 - 33, 1990)

Optimization models help us to test our insight into the
biological constraints that influence the outcome of evolution

Optimization models serve to improve our understanding
about adaptations, rather than to demonstrate that natural
selection produces optimal solutions.

Example: What determines the radius of the aorta? The
human aortic radius is about 1.5cm (minimize the power
dissipated through blood flow)
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Section 2

Complexity Issues
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Challenging Problems

Obtain general optimality conditions.

For large constrained global optimization.

feasibility problem.
sparsity/structure.
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Complexity of Kuhn-Tucker Conditions

Consider the following quadratic problem:

min f (x) = cT x +
1

2
xTQx

st. x ≥ 0,

where Q is an arbitrary n× n symmetric matrix, x ∈ Rn. The KKT
optimality conditions for this problem become so-called linear
complementarity problem (LCP(Q, c))
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Complexity of Kuhn-Tucker Conditions

Linear complementarity problem LCP(Q, c) is formulated as
follows.
Find x ∈ Rn (or prove that no such an x exists) such that:

Qx + c ≥ 0, x ≥ 0

xT (Qx + c) = 0.
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Theorem

Theorem (Horst, Pardalos, Thoai, 1994 - [2])

The problem LCP(Q, c) is NP-hard.

Proof.

Consider the following LCP(Q, c) problem in Rn+3 defined by

Q(n+3)×(n+3) =


−In en −en 0n

eT
n −1 −1 −1
−eT

n −1 −1 −1
0T
n −1 −1 −1

 , cT
n+3 = (a1, . . . , an,−b, b, 0),

where ai , i = 1, . . . , n, and b are positive integers, In is the n × n-unit
matrix and the vectors en ∈ Rn, 0n ∈ Rn are defined by

eT
n = (1, 1, . . . , 1), 0T

n = (0, 0, . . . , 0).
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Theorem (Continue)

Proof.

Consider the following knapsack problem. Find a feasible solution to the
system

n∑
i=1

aixi = b, xi ∈ {0, 1} (i = 1, . . . , n).

This problem is known to be NP-complete. We will show that LCP(Q, c)
is solvable iff the associated knapsack problem is solvable.
If x solves the knapsack problem, then y = (a1x1, . . . , anxn, 0, 0, 0)T

solves LCP(Q, c).

Conversely, assume y solves the considered LCP(Q, c). This implies that∑n
i=1 yi = b and 0 ≤ yi ≤ ai . Finally, if yi < ai , then yT (Qy + c) = 0

enforces yi = 0. Hence, x = ( y1
a1
, . . . , ynan ) solves the knapsack

problem.
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Complexity of local minimization

Consider following quadratic problem:

min f (x)

s.t. Ax ≥ b, x ≥ 0

where f (x) is an indefinite quadratic function. We showed, that
the problem of checking local optimality for a feasible point and
the problem of checking whether a local minimum is strict are
NP-hard.
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3-satisfiability problem

Consider the 3-satisfiability (3-SAT) problem: given a set of
Boolean variables x1, . . . , xn and given a Boolean expression S (in
conjunctive normal form) with exactly 3 literals per clause,

S =
m∧
i=1

(
3∨

j=1

lij), lij ∈ {xi , x̄i |i = 1, . . . , n}

is there a truth assignment for the variables xi which makes S true?

The 3-SAT problem is known to be NP-complete.
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A Global Optimization Approach

Given a CNF formula F (x) from {0, 1}m to {0, 1} with n clauses
C1, . . . ,Cn, we define a real function f (y) from Em to E that
transforms the SAT problem into an unconstrained global
optimization problem

min
y∈Em

f (y) (1)

where

f (y) =
n∑

i=1

ci (y) (2)

A clause function ci (y) is a product of m literal functions qij(yi )
(1 ≤ j ≤ m):

ci =
m∏
j=1

qij(yi j) (3)
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A Global Optimization Approach

where

qij(yi ) =


|yi − 1|, if literal xj is in clause Ci

|yi + 1|, if literal x̄j is in clause Ci

1, if neither xj nor x̄j is in Ci

(4)

The correspondence between x and y is defined as follows
(for1 ≤ i ≤ m):

xi =


1, if yi = 1

0, if yi = −1

undefined , otherwise

(5)

F (x) is true iff f (y) = 0 on the corresponding y ∈ {−1, 1}m
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A Global Optimization Approach

Next consider a polynomial unconstrained global optimization
formulation:

min
y∈Em

f (y) (6)

where

f (y) =
n∑

i=1

ci (y). (7)

A clause function ci (y) is a product of m literal functions
qij(yj), (1 ≤ j ≤ m):

ci =
m∏
j=1

qij(yj) (8)
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A Global Optimization Approach

where

qij(yj) =


|yj − 1|2p, if xj is in clause Ci

|yj + 1|2p, if x̄j is in clause Ci

1, if neither xj nor x̄j is in Ci

(9)

The correspondence between x and y is defined as follows
(for1 ≤ i ≤ m):

xi =


1, if yi = 1

0, if yi = −1

undefined , otherwise

(10)

F (x) is true iff f (y) = 0 on the corresponding y ∈ {−1, 1}m
Limits of Nonconvex Optimization



Introduction
Complexity Issues

Heuristics
Black-Box Optimization

Software for Global Optimization
References

Complexity of Kuhn-Tucker Conditions
Complexity of local minimization
Complexity of checking convexity of a function
Computational Approach

A Global Optimization Approach

These models transform the SAT problem from a discrete,
constrained decision problem into an unconstrained global
optimization problem

A good property of the transformation is that these models
establish a correspondence between the global minimum
points of the objective function and the solutions of the
original SAT problem

A CNF F (x) is true if and only if f takes the global minimum
value 0 on the corresponding y
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Complexity and Phase Transitions

Random 3-SAT problem:
Three variables per clause are chosen randomly from
{x1, . . . , xN} and negated randomly with probability 1

2

Example: (x1 ∨ x20 ∨ x̄13) ∧ (x̄21 ∨ x1 ∨ x9) ∧ . . . (x95 ∨ x̄8 ∨ x̄15)

Define the threshold: α = Number of Clauses
Number of Variables

Phase transition threshold: αC ≈ 4.26

Research in the intersection of Computer Science, Information
Theory and Statistical Physics
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Complexity and Phase Transition

Turing’s algorithmic lens: From computability to complexity theory
(J. Diza and C. Torras) Arbor - Ciencia, Pensamiento y Cultura, Vol. 189
No. 764(2013). http://dx.doi.org/10.3989/arbor.2013.764n6003

Limits of Nonconvex Optimization



Introduction
Complexity Issues

Heuristics
Black-Box Optimization

Software for Global Optimization
References

Complexity of Kuhn-Tucker Conditions
Complexity of local minimization
Complexity of checking convexity of a function
Computational Approach

Phase Transitions References

Felderhof, B.U., Do phase transition exist?. Nature, volume 225, 1970.

Monasson, M. and Zechina, R. and Kirkpatrick, S. and Selman, B. and Troyansky, L., Determining

computational complexity from characteristic ’phase transitions’. Nature, volume 400, 1999.

Achlioptas, D. and Naor, A. and Peres, Y., Rigorous location of phase transitions in hard optimization

problems. Nature, volume 435, 2005.

Barbosa, V.C. and Ferreira, R.G., On the phase transitions of graph coloring and independent sets. Physica

A, volume 343, pages 401 -423, 2004.

Malyshev, D.S., Analysis pf the impact of the number of edges in connected graphs on the time complexity

of an independent set problem. Journal of Applied and Industrial Mathematics, volume 1, number 1, pages
1 -4, 2012.
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Challenging Problems

Phase transition in continuous optimization.

What is the boundary between polynomially solvable and
NP-hard problems in global optimization?
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Construction of indefinite quadratic problem instances

For each instance of a 3-SAT problem we construct an instance of an
optimization problem in the real variables x0, . . . , xn. For each clause in S
we associate a linear inequality in a following way:

If lij = xk , we retain xk

If lij = x̄k we use 1− xk

We add an additional variable x0 and require that the corresponding sum
is greater than or equal to 3

2 . Thus, we associate to S a system of linear
inequalities Asx ≥ (3/2 + c). Let D(S) ⊂ Rn+1 be a feasible set of
points satisfying these constraints.
With a given instance of the 3-SAT problem we associate the following
indefinite quadratic problem:

min
x∈D(S)

f (x) = −
n∑

i=1

(xi − (1/2− x0))(xi − (1/2 + x0)).
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Complexity of local minimization

Theorem (Pardalos, Schnitger, 1988 - [3])

S is satisfiable iff x∗ = (0, 1/2, . . . , 1/2)T is not a strict minimum
S is satisfiable iff x∗ = (0, 1/2, . . . , 1/2)T is not a local minimum

Corollary

For a quadratic indefinite problem the problem of checking local
optimality for a feasible point and the problem of checking whether
a local minimum is strict are NP-hard.
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Challenging Problems I

Average-case complexity

Parameterized complexity

For large-scale problems, we need a measure of complexity
that considers sparsity

Pardalos, P.M. and Rebennack, S., Computational Challenges
with Cliques, Quasi-cliques and Clique Partitions in Graphs.
Experimental Algorithms (SEA 2010), Lecture Notes in
Computer Science Vol. 6049 Springer-Verlag, (Editor Paola
Festa), pp. 13-22, 2010.
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Challenging Problems II

Pardalos, P.M. and Vavasis, S.A., Open questions in
complexity theory for numerical optimization. Mathematical
Programming, Volume 57, Issue 1-3, pp 337-339, 1992.

Cao, F., Du, D.-Z., Gao, B., Wan, P.-J. and Pardalos P.M.,
Minimax Problems in Combinatorial Optimization. In Minimax
and Applications (Edited by D.-Z. Du and P.M. Pardalos),
Kluwer Academic Publishers, pp. 262-285 1995.
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Complexity of checking convexity of a function

The role of convexity in modern day mathematical
programming has proven to be fundamental

The great watershed in optimization is not between linearity
and nonlinearity, but convexity and nonconvexity
(R. Rockafellar)

The tractability of a problem is often assessed by whether the
problem has some sort of underlying convexity.

Can we decide in an efficient manner if a given optimization
problem is convex?
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Complexity of checking convexity of a function

One of seven open problems in complexity theory for numerical
optimization (Pardalos, Vavasis, 1992):

Given a degree-4 polynomial in n variables, what is the complexity
of determining whether this polynomial describes a convex
function?
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Theorem

Theorem

Deciding convexity of degree four polynomials is strongly NP-hard.
This is true even when the polynomials are restricted to be
homogeneous (all terms with nonzero coefficients have the same
total degree).

Corollary

It is NP-hard to check convexity of polynomials of any fixed even
degree d ≥ 4.
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Theorem

Theorem

It is NP-hard to decide strong convexity of polynomials of any
fixed even degree d = 4.

Theorem

It is NP-hard to decide strict convexity of polynomials of any fixed
even degree d = 4.
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Theorem

Theorem

For any fixed odd degree d, the quasi-convexity of polynomials of
degree d can be checked in polynomial time.

Corollary

For any fixed odd degree d, the pseudoconvexity of polynomials of
degree d can be checked in polynomial time.
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Theorem

Theorem

It is NP-hard to check quasiconvexity/pseudoconvexity of degree
four polynomials. This is true even when the polynomials are
restricted to be homogeneous.

Corollary

It is NP-hard to decide quasiconvexity of polynomials of any fixed
even degree d ≥ 4.

Amir Ali Ahmadi, Alex Olshevsky, Pablo A. Parrilo, John N.
Tsitsiklis, NP-hardness of deciding convexity of quartic polynomials
and related problems, Mathematical Programming February 2013,
Volume 137, Issue 1-2, pp 453-476)
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The complexity results described above can be summarized in the
following table [1]:
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Challenging Problems

Is convexity a “decidable problem” for a general function?

DC optimization? In general can we characterize the “best”
DC decomposition of a function f = f1 − f2, where f1, f2 are
convex?
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Computational Approaches

Exact Algorithms
Exact algorithms are of limited use for global optimization
problems
However, exact algorithms can be very useful for “special
cases” of global optimization problems

Approximate Algorithms
For many problems (e.g. max clique), finding an ε-approximate
solution is also intractable
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Heuristics
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Heuristics

heuristic (adj.), “serving to discover or find out,” irregular
formation from Gk. heuretikos “inventive,” related to
heuriskein “to find”

The word “Eureka” comes from ancient Greek eurika, “I have
found (it)”.
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General Global Minimization Problems

Consider a general problem of the form:

global min
x∈S

f (x),

where the objective function f is nonconvex and the feasible
domain S is a nonempty bounded polyhedron in Rn.

Problems of this general form are very difficult to solve

Heuristics based on local search techniques can be used
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Frank-Wolfe method

Consider problem (1) where the objective f (x) is concave

Supplose we have a set D, a subset of S , of ’starting points’
α1, ..., αM .

For each y = ai , i = 1, ...,M, we have the following
algorithm:

Initial point x0 = y ∈ D
Given xk compute the gradient gk = ∇f (xk)
Solve the linear program

min
x∈S

gT
k x

Denote the solution of the linear program by xk+1. If
xk+1 = xk stop (xk+1 is a local minimum). If not, xk ← xk+1

and go to step 2
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Space Covering Techniques

Theorem

Consider the spheres Svi (ri ) with center vi and radius
ri = (f (vi )− f (v))/L, i = 1, ...,N, and suppose that ∪Ni=1Svi ⊇ S .
Then v is the global minimum.

Proof.

If x ∈ S then x ∈ Svj for some j ∈ {1, ...N} and therefore

|f (x)− f (vj)| ≤ L|x − vj | ≤ Lri = f (vj)− f (v)

Then f (x)− f (vj) ≥ −f (vj) + f (v) and so f (x) ≥ f (v) for all
x ∈ S .
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Space Covering Techniques

Corollary

Suppose that ∪Ni=1Svi does not necessarily contain S. Let
ri ← ri + ε/L, and call the new spheres Sε

vi
. Assume that

∪Ni=1Sε
vi
⊇ S for some ε ≥ 0. Then f (v) is an ε-approximate

solution in the sense that f (v)− f ∗ ≤ ε, where f ∗ is the global
minimum.
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Black-Box Optimization

Limits of Nonconvex Optimization



Introduction
Complexity Issues

Heuristics
Black-Box Optimization

Software for Global Optimization
References

C-GRASP

Continuous GRASP

Continuous GRASP (C-GRASP) is a metaheuristic to finding
optimal or near-optimal solutions to

Min f (x) subject to :L ≤ x ≤ U

where x , L,U ∈ Rn

and f (x) is continuous but can, for example, have
discontinuities, be non-differentiable, be the output of a
simulation, etc
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C-GRASP

C-GRASP is a multi-start procedure, i.e. a major loop is repeated
until some stopping criterion is satisfied.
In each major iteration

x is initialized with a solution randomly selected from the box
defined by vectors L and U

a number of minor iterations are carried out, where each
minor iterations consists of a construction phase and a local
improvement phase.

Minor iterations are done on a dynamic grid and stops when
the grid has a pre-specified density.
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C-GRASP Reference

C-GRASP is based on the discrete optimization metaheuristic
GRASP

M.J. Hirsch, C.N. Meneses, P.M. Pardalos, and M.G.C. Resende, Global optimization by continuous

GRASP. Optimization Letters, vol. 1, pp. 201-212, 2007.

M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende, Speeding up continuous GRASP. European J. of

Operational Research, vol. 205, pp. 507-521, 2010.

R.M.A. Silva, M.G.C. Resende, P.M. Pardalos, M.J. Hirsch, A Python/C library for bound-constrained

global optimization with continuous GRASP. Optimization Letters: 967-984, 2013.

M.J. Hirsch, P.M. Pardalos, M.G.C. Resende, Solving Systems of Nonlinear Equations with Continuous

GRASP. Nonlinear Analysis Series B: Real World Applications, Vol. 10, No. 4, pp. 2000-2006, 2009.
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Black-Box Optimization

Related problem in machine learning:

Given f (x1), . . . , f (xN) (f is not known), predict f (xN+1)

Serafino, L., Optimizing Without Derivatives: What Does the
No Free Lunch Theorem Actually Say?. Volume 61, Number 7,
Notice of the AMS 2014.
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Software for Global Optimization
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1. Mixed Integer Linear Optimization

min cT x (11)

s.t. Ax ≤ 0 (12)

x ∈ X ⊂ Zm × Rn−m (13)

Excellent software exist for such problems.

Useful for separable global optimization.
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2. Mixed Integer Nonlinear Optimization

min f (x) (14)

s.t. g(x) ≤ 0 (15)

x ∈ X ⊂ Zm × Rn−m (16)

Several software package exist but this model is very general.
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3. Special Software

Quadratic Optimization

Quadratic Assignment

Location Problems

Graph Problems

Specialized algorithm have been implemented (exact and heuristic)
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4. Software for Heuristics

Genetic Algorithms

Simulated Annealing

Global Equilibrium Search

Tabu Search

GRASP

Variable Neighborhood Search
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References

Handbook of Applied Optimization, editors: Panos M. Pardalos
and Mauricio G. C. Resende, Oxford University Press (2002).
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Challenging Problems

Evaluation of heuristics

Experimental testing
Automatic parameter identification
Good lower/upper bound techniques
Test problems with known optimal solution
Space covering related techniques

Limits of Nonconvex Optimization



Introduction
Complexity Issues

Heuristics
Black-Box Optimization

Software for Global Optimization
References

Section 6

References

Limits of Nonconvex Optimization



Introduction
Complexity Issues

Heuristics
Black-Box Optimization

Software for Global Optimization
References

Pareto Optimality, Game Theory And Equilibria

Pareto Optimality, Game Theory And Equilibria, editors: A.
Chinchuluun, P. M. Pardalos, A. Migdalas and L. Pitsoulis , Springer,
(2008).
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