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Problem setup

Consider a convex primal problem
minimize f(z)+ g(x)
and its dual problem

maximize —f*(y) — g* (—y).

f, g can be nonsmooth and indicator functions of constraints.

(D)
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Douglas-Rachford splitting: “reflect, reflect, average”

Let us find a point in C1 N C2. We apply Douglas-Rachford splitting (DRS) to

minimize d¢, (z) + dc, (@)
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Proximal mapping

To minimize f(x) + g(z), DRS replaces projection by proximal mapping.

The proximal mapping of a function f is defined as

. 1
prox ¢ () = arg min {f(v) + 2—||v - xHQ}
vER™ Y

When f = ¢ (indicator of a set '), prox,; is projection to C.
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Douglas-Rachford splitting method?

DRS applied to (P):

k+1/2 _ k
x = prox,,;(z")
k+1 _ k+1/2 _ _k
z = prox, (2 —2")
B R e

Main sequence: 2°, 2%, 22, ...
f is evaluated at the shadow sequence: x1/2, g T2 g2

g is evaluated at the shadow sequence: z!, 22, 23,

! Lions-Mercier'79
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DRS generalizes Spingarn’s, classic ADMM, Prox-ADMM, Chambolle-Pock,
and so on. (However, the transforms are not obvious.)

Once we understand the behavior of DRS, we can translate the results to other

algorithms in principle.
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DRS convergence (classical)

Classical fixed-point analysis:

= If DRS (more generally, a firmly nonexpansive operator) has a fixed point,

k

then z% converges to a fixed point;

= Otherwise, ||2*|| — oco.
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When we apply DRS to minimization

minimize  f(x) + g(z) (P)
maximize — f*(y) — g"(~y) (D)
Here, DRS has a fixed point if, and only if?
1. (P) has a solution,

2. (D) has a solution, and

3. strong duality holds, i.e., p* = d*.

If 1-3 are all satisfied, DRS converges and returns a primal-dual solution pair.

Otherwise, DRS diverges. In this case, we say (P) is pathological.

2Bauschke, Bot, Hare, Moursi'12
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DRS convergence (new)?

DRS “still works” when
» {P}-has-aselution;
v {BY-has-aselution—and

» strong duality holds, i.e., p* = d* (—oco and oo are allowed).

3Ryu, Liu, and Yin. arXiv:1801.06618.
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Extended optimal value (definition)

eS) (P) is infeasible
p* = (inf, f(z) +g(z) (P) is feasible, bounded
—00 (P) is feasible, unbounded

Define d* similarly for (D).

We always have d* < p*. If "<”, we lose strong duality.
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Example 1

. . 2
minimize subject to x2 =1, 2xox3 > x1, T2,23 >0
T ERS

rotated second-order cone Q
<= minimize z1 + dzp=1(x)+ 0 (x)
N——— N~

z€ER3
f(z) 9(x)

This problem is feasible and unbounded*, but has no improving direction®.

It dual problem is infeasible, so p* = d* = —o0.

4by letting £3 — oo and 1 — —o0
reason: any improving direction u has form (w1, 0, u3), but by the cone constraint 2ugusz = 0 > u%, so
w1 = 0, which implies ¢T w1 = 0 (not improving).
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Example 2

The primal problem:

minimize 1/v/—z —logz
zER N—— N~ —~
f(=) g(z)

is weakly infeasible since domf = (—o0, 0] and domg = (0, c0).

The dual problem:

maximize clyl/3 +1—1log(1/y),
yeR

where ¢; > 0, is feasible and unbounded.

We have p* = d* = oco.
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Example 3

The primal problem

mlnlmlze m Y1+ dyy=1(—y)

Y1,Y2€
is feasible but has no solution to attain p* = 0.
This dual problem
maximize — 0§ 2+Iz<1(x) — T2 — 0z, =1(2)
z1,x2€R

is feasible and has a solution (1,0), which attains d* = p* = 0.
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What do we want DRS to do for pathological problems?

DRS generates iterates that are
= asymptotically feasible, if dist(domf,domg) = 0,
= tracking an improving direction, if one exists,

= asymptotically optimal, if p* = d*.
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DRS convergence (new): examples

Theorem
If (P) is weakly infeasible, then

Pt — xk+1/2 — 0.

Theorem

If (P) is feasible but does not have a solution and p* = d* € [—o00, ), then

Pt gkt 0, likm inf f(l:kH) + g(mk+1/2) ="
— 00

18/41



Theorem
If (P) is feasible and unbounded, then

liminf f(z") + g(z" /%) = p* = —o.
k—oco

Moreover, if there exists an improving direction d, then z"™' — z* = d + o(1).

We can say something for all the pathological cases if p* = d*.
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DRS for conic programming



Conic programming

minimize ¢ T
x

subject to Ax = b

x € closed convex cone
K

generalizes many types of convex optimization: LP, convex QP/QCQP, SDP, ...
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Conic programming pathologies

Joint constraints Az = b and z € K may be infeasible.
The objective can be unbounded —oo.

Even worse, in these cases, a dual certificate and an unbounded direction may
not exist. These are called weak pathologies.
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Applying DRS to conic programming

Applying DRS® to

minimize ¢’z + da.—p(x) + 0k (2)
z ——
f(@) g(z)

can recognize infeasible, feasible, and unbounded problems.

Applying

2nd DRS to minimize 07z + 0p:az=b(T) + IK (),
z —_—

f(x) g(x)
3rd DRS to minimize ¢’ @ + 6z.40—0(2) + 0k (z),
z —_———— ——

f(x) g(z)

further classifies almost all strong and week pathologies.

6Liu, Ryu, Yin, arXiv:1706.02374. Related to Wen, Goldfarb, Yin'2010.
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Detection methods’: examples

Theorem

Run DRS. If 2 — 2**1 — v £ 0, then the conic program is infeasible and has a
strict separating hyperplane

{x cole = (vTxo)/Q},

where xo := AT(AAT) b,

Theorem
Run DRS and DRS 3. Assume DRS confirms feasibility. In DRS 3, if

2% — 2**t1 5 d £ 0, then the conic program is unbounded and d # 0 is an

improving direction.

We have a flow to detect almost all cases.

For infeasible problems, we find a minimal change to restore feasibility.

Liu, Ryu, Yin, arXiv:1706.02374
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Other detection approaches

Self-dual embedding®:

= is a reformulation that is always feasible and can produce PD solutions
= can use facial reductions to identify weak pathologies

Facial reduction®:
= generates large but less pathological problems

= theoretically identify all cases

= no efficient numerical implementation yet

8Mizuno—Todd—Ye'93, Luo-Sturm-Zhang'99 and '00, Nesterov-Todd-Ye'99, Ye'll, Skajaa'Ye'l2, etc.
9Methods: Borwein, Muramatsu, Pataki, Waki, Wolkowicz; numerical approaches:
Lourenco-Muramatsu-Tsuchiya’l5, Permenter-Friberg-Andersen’15
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Weakly-infeasible SDP detection test

m =10 m =20
Clean Messy Clean Messy
SeDuMi 0 0 1 0
SDPT3 0 0 0 0
Mosek 0 0 11 0
PP+SeDuMi 100 0 100 0

Percentage of success detections reported in Liu-Pataki'l7

1OPreProcessing by Permenter-Parilo’14
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Weakly-infeasible SDP detection test

m =10 m = 20
Clean Messy Clean Messy
Our triple-DRS 100 21 100 99

(stopping: ||2'7||2 > 800)
Our percentage is way much better!

In another strongly-infeasible SDP test, our detection is 100%.
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Theoretical components



Prior work

There has been surprisingly little work studying DRS under pathologies.

Results on fixed-point setups:
= Pazy'71, Baillon-Bruck-Reich’78. ...
= Bauschke, Hare, and Moursi, 2014 and 2016
Results in specific pathological setups:
= Bauschke, Combettes, and Luke. Two closed convex sets. 2004.
= Bauschke and Moursi. Two affine subspaces 2016; Convex feasibility 2017.
= Liu, Ryu, and Yin. Conic programming, 2017.
ADMM under specific pathological setups for conic/quadratic programs:

= Raghunathan and Cairano, 2014.
= Stellato, Banjac, Goulart, Bemporad, and Boyd, 2017.
= Banjac, Goulart, Stellato, and Boyd. 2017.
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We apply existing fixed-point analysis to get asymptotic feasibility.

Then, we add recession function analysis to get improving directions.

Next, we use objective value analysis to get asymptotic optimality.
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Fixed-point analysis



Asymptotic behavior of fixed point iteration

The infimal displacement vector'! is defined as
v := Proj———=—=0.

range(I—T)

Lemma (Pazy'71,Baillon-Bruck-Reich'78)

When T is firmly nonexpansive, then

2 —T(Z*) = v

If v =0, 2" — 2T = 0 and 2! — z"*1/2 5 0, so DRS is asymptotically
feasible.

If v # 0, we can understand the limiting behavior z* with v.

M hame coined in Bauschke-Hare-Moursi'14
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Characterization of v

Theorem (Bauschke, Hare, Moursi'16)
When T is the DRS operator,

range(I — T') = domf — domg N dom f* + domg*

Consequence (example): if (P) is infeasible, then v = Il7rr—mm(0), e v

represents the shortest distance from domg and domf. This implies
|zFt — 25712 = dist(dom f, domg).

DRS makes an effort to achieve feasibility.

30/41



Unbounded problems and improving directions



Recession function

Let f'(z;d) be d-directional derivative at z.

The recession function of f is defined as

recf(d) = lim f'(z + ad;d).

a— 00

recf characterizes the asymptotic rate of f as we go in direction d.
recf(d) invariable for z € domf, and is possibly co.

recf(d) generalizes the constant rate of a linear program along direction d.
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Recession function and improving direction

Lemma

d is an improving direction (P), i.e., for some C > 0,
flz+d)+g(x+d) < f(z)+g(x) —C, Vz € domfndomg,

if and only if
recf(d) + recg(d) < 0,

and if and only if

(P) is feasible and (D) is strongly infeasible.
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DRS under dual strong infeasibility

Using duality relationships such as recf = (oy+)*, we can get:

Theorem
If (P) is feasible and (D) is strongly infeasible, then

d(z*"? domg) — 0, d(z""',dom f) — 0

and z*+1/2 — z=Y/2 — 4 4 o(1) for some improving direction d # 0.

Similar results hold for different pathologies.
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Objective value analysis



Fixed-point analysis is not enough

Under certain pathologies, DRS iterates satisfy
2 TR = o0.
This is much alike the fact that
Vf@") =0

does not necessarily imply

f(a") = inf f(z)
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Example

Consider convex function

f(zy) =2y, y>0.

We have inf, , f(z,y) = 0.

For y := 22,

flz,a?) =1
Vi(z,z?) = (2/z,—1/z*) =0 asz — oo

So, we must separately show DRS achieves approximately optimal objective.
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Primal subvalue

Define the primal subvalue as

p~ = lim inf {f(z)+g(y)},

=0t [[z—y[[<e

i.e., p~ is the optimal value of an infinitesimally perturbed (P).

Lemma
When convex,

d"=p <p".

Convex problems with non-zero duality gap exist and are ill-posed.
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Asymptotic objective convergence

Applying convex inequalities and primal subvalue analysis, we can get:

Theorem

If (P) is feasible but has no solution and (D) is feasible, then
a:k'H/ 2 2o

and

likm inf f(z*T1/2) 4 (2"t = p*.
—00

We can say something for all pathological cases, so long as p* = d*.
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Is strong duality p* = d* necessary?

DRS can reduce the function value below p* when strong duality fails.

In numerical examples, we observed DRS finds wrong objective:

lim f(z"1%) + g(="") < p*.
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A problem with p* =1 but d* = 0:

minimize exp(—+/T172) + 0z, =0(x).

zER2

Another problem with p* = 1 but d* = 0:

minimize 551 (X)+ (X22 + 5537X33:07X22+2X13:1(X)).

3
XeSsy

For both, we observed: limy, f(z**1/2) 4 g(z"*1) € [d*, p*).
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Conjecture

If d* < p*, then DRS necessarily finds a wrong optimal value.
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Summary

= DRS pathologies: arXiv:1801.06618 (under revision)
Works whenever p* = d*, even for (strong/weak) infeasibility, unbounded
(improving dir exists/not), and solution not attainable

» DRS for conic programming: arXiv:1706.02374 (accepted by MPA)
Identify the pathologies of conic programs and generate certificates.
“Rate of divergence.” Numerically useful for weak pathologies.

Thank you!

4141



Example 1

= 3-variable problem:

.. . . 2
minimize x; subject to zo =1, 2x2x3 > 7, x2,23 > 0.

rotated second-order cone

= this problem is feasible, p* = —oo (by letting x5 — oo and z1 — —o0),

and has no improving direction®?

= existing solvers®®:
= SDPT3: “Failed”, p* no reported
= SeDuMi: “Inaccurate/Solved”, p* = —175514
= Mosek: “Inaccurate/Unbounded”, p* = —oc0

12 cason: any improving direction u has form (w1, 0, ug), but by the cone constraint 2ugusz = 0 > u%, so
w1 = 0, which implies cTu1 = 0 (not improving).
13using their default settings
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Example 2

= 3-variable problem:

011 0
minimize 0 subject to T = , T3 > \Jx2+ 2.
! L 0 0} [1] NG At
N——— zeK
zeLl

= this problem is infeasible*, dist(L£,K) =0 15 "and has no strict separating
hyperplane

= existing solvers!®:

= SDPT3: “Infeasible”, p* = co
= SeDuMi: “Solved”, p* =0
= Mosek: “Failed”, p* not reported

e € Limply z = [1, —«, a]T, a € R, which always violates the second-order cone constraint.

Baist(£, K) < ||[1, —a, a] — [1, —a, (a2 + 1)1/2]||3 = oo as o — oo.
16using their default settings
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