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Overview

@ Xiantao Xiao, Yongfeng Li, Zaiwen Wen, Liwei Zhang, Semi-Smooth
Second-order Type Methods for Composite Convex Programs, Journal
of Scientific Computing

@ Yongfeng Li, Zaiwen Wen, Chao Yang, Yaxiang Yuan, A Semi-smooth
Newton Method for Semidefinite programming in electronic structure
calculation, https://arxiv.org/abs/1708.08048

@ Andre Milzarek, Xiantao Xiao, Shicong Cen, Zaiwen Wen, Michael
Ulbrich, A Stochastic Semismooth Newton Method for Nonsmooth
Nonconvex Optimization
https://arxiv.org/abs/1803.03466
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Outline

@ Basic Concepts of Semi-smooth Newton method
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Composite convex program

Consider the following composite convex program

min  f(x) + h(x),

XERM

where f and h are convex, f is differentiable but h may not

Many applications:

@ Sparse and low rank optimization: h(x) = ||x|ly or || X|l. and many
other forms.

@ Regularized risk minimization: f(x) = }}; fi(x) is a loss function of
some misfit and h is a regularization term.

@ Constrained program: his an indicator function of a convex set.

4/43



A General Recipe

Goal: study approaches to bridge the gap between first-order and
second-order type methods for composite convex programs. J

key observations:

@ Many popular first-order methods can be equivalent to some
fixed-point iterations: x**1 = T(x¥);
e Advantages: easy to implement; converge fast to a solution with
moderate accuracy.

o Disadvantages: slow tail convergence.

@ The original problem is equivalent to the system
F(x):=(I-T)(x)=0.

@ Newton-type method since F(x) is semi-smooth in many cases

@ Computational costs can be controlled reasonably well
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An SDP From Electronic Structure Calculation
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Forward-backward splitting (FBS)

@ proximal mapping:

, 1
prox,(x) := argmin {h(u) + =llu — xI[3}.
UERN 2t

@ FBS is the iteration
XK1 = prox,,(xK - tvf(x¥)), k =0,1,---,
= argmin (VH(xXF), x = xK) + 2lt||x — X2 + h(x)
@ Equivalent to a fixed-point iteration
XK1 = Tegs(x9).

where
TFBS i= Proxy, o (I - tVf)
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Douglas-Rachford splitting (DRS)/ADMM

@ DRS is the following update:

Xkt = proxth(zk),
yk+1 — prOth(2Xk+1 _ Zk),
2R gk gkt ket

@ Equivalent to a fixed-point iteration
2K = Tprs(29),

where
Tprs := | + prox;s o (2proxs, — /) — proxy,.

@ The ADMM to the primal is equivalent to the DRS to the dual
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Semi-smoothness

@ Solving the system
F(z) =0,

where F(z) = T(z) — z and T(z) is a fixed-point mapping.
@ F(z) fails to be differentiable in many interesting applications.

@ but F(z) is (strongly) semi-smooth and monotone.
(a) F is directionally differentiable at x; and

(b) forany d e R"and J € dF(x + d),
IF(x +d) - F(x)—Jdl> = o(lldllz) asd — 0.
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A regularized semi-smooth Newton method

@ The Jacobian Jx € dgF(z¥) is positive semidefinite

@ Let ux = A4||F¥|l». Constructe a Newton system:
(Jk +pxl)d = —F*,
@ Solving the Newton system inexactly:
= (i + ukl)d* + F¥.
We seek a step d* approximately such that
Ir¥ll2 < = min{1, AlIFX|lalld¥]le),  where 0 < 7 < 1

@ Newton Step: zK+1 = zK 4 ¥
@ Faster local convergence is ensured
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Outline

e Semi-smooth Newton method for SDP
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Semidefinite Programming

Consider the SDP

min(C, X),st. AX=b,X>0

f(X) =(C. X) + 1 ax=p(X).
h(X) = 1x(X), where K = {X : X = 0}.
Proximal Operator: prox,(Z) = argminy 3[IX - Z||f__ + th(X)

Let Z = QX QT be the spectral decomposition

proxy(Y) = (Y +1C)-A(AY + tAC - b),
prox;(Z) = Q.X.Q,

Fixed-point mapping from DRS:

F(Z) = prox;y(Z) - proxy(2prox;s(Z) - Z) = 0.
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Semi-smooth Newton System

@ assumption: AA* = |
@ The SMW theorem yields the inverse matrix
(Jk +uk) " =HV+ HTAT(I - AWHTAT) ' AWH!

T+ AT s I+ ATAT) T A(=—2—1- T)).

ulu+1) 2u+ 1 2u+ 1
° ATATd = AQ(Q o (QT(D)Q))QT, where D = A*d,
Ea/a la&
QO N [ I(Z;_l 0 ]’
pki

and E,, is a matrix of ones and /; = s s

@ computational cost O(|a|n?)
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Semi-smooth Newton method

@ SelectO<v<1,0<pi<m<tand1<y; <y2.4>0
@ A trial point UK = ZkK + S¥

@ Define a ratio

~(F(U9). 8)
Pk = ———FF5.
I1S¥I12
@ Update the point
K AfIF(UR)IIF < F(Z))llg, [Newt
Zk+1 — Un it (U )||F_Vmax(1,lT?i(1)§jsk|l ( )HF [ ew OI’]]
Zk, otherwise. [failed]

@ Update the regularization prameter

(LL /lk)’ if px > 12,
Ak41 € [/lk’ Y1 ﬂ'k]’ if 71 < pk < no,
(v1dk,y24k], otherwise,.
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Switching between the ADMM and Newton steps

the reduced ratios of primal and dual infeasibilities

B meank_5§/§k77’p K meaﬂk—Ssjsk’fq
wy = — and Wy, = —.
meank_25sjsk_207fp meank—25§jﬁk—2077jq

Repeat:

@ Semi-smooth Newton steps (doSSN == 1)
Compute UX = ZK + SX. Then update Z¥*1 and Ay +.
If Newton step is failed, set Ny = N¢ + 1.
If N; > N; or the Newton step performs bad
Set doSSN = 0 and parameters for the ADMM steps

@ ADMM steps (doSSN == 0)
Perform an ADMM step.
If the ADMM step performs bad
Set doSSN = 1, Nf = 0 and parameters of the Newton steps
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Global Convergence

Suppose that {Z} is a sequence generated by the semismooth
Newton method. Then the residuals of {Z¥} converge to 0, i.e.,
limy e [IF(Z¥)1l = 0.

e If {Z¥} is bounded, Then any accumulation point of {Z}
converges to some point Z such that F(Z) = 0.

@ This algorithm can solve the general composite optimization.
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Comparison on electronic structure calculation

@ The data set are used in the paper of Nakata, et al. Thanks Prof.
Nakata Maho and Prof. Mituhiro Fukuta for sharing all data sets on
2RDM

@ solver:

o SDPNAL: Newton-CG Augmented Lagrangian Method proposed
by Zhao, Sun and Toh

o SDPNAL+: Enhanced version of SDPNAL by Yang, Sun and Toh

o SSNSDP: the semi-smooth Newton method using stop rules
np<3x10%andny <3x1077.

@ all experiments were performed on a computing cluster with an Intel
Xeon 2.40GHz CPU that processes 28 cores and 256GB RAM.

@ main criteria:

— lA(X) - bll2 ng = Ay — C—Sllr
P max(1,1bll2) max(1,[IClIF)
bTy —tr(CTX
ng = o7y —w(C” X ( ) err = b’ y — energygicr

max(1,tr(CT X))
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Compuational Results: C2
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Comparison on electronic structure calculation
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Comparison on electronic structure calculation

success: max{np,nq} < 1078

SSNSDP SDPNAL SDPNAL+
case number percentage | number percentage | number  percentage
sliceess 276 100% 53 192% | 265 9%
fastest 0 T43% 30 109% | # 14.9%
fastest under success 12 841% ] 1.09% 41 14.9%
not slower 1.2 times B 8BS | T 25.7% §1 31.5%
not slower 1.2 times under success | 251 90.9% ) 1.81% §1 31.5%

Figure: Comparison between SDPNAL, SDPNAL+ and SSNSDP
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Outline

9 Stochastic Semi-smooth Newton Method
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Examples and Applications

@ Consider
mXin f(x) + h(x) =: ¢(x)

@ Expected and Empirical Risk Minimization:

N
100 = BIF(x.8)] = [ FOxe) dP(o). x) = D (0

i=1

Applications and Typical Situation:

@ Large-scale machine learning problems, LASSO, sparse and
bilinear logistic regression, low-rank matrix completion, sparse
dictionary learning, ...

@ P is not known (completely) or N is very large.
~» Full evaluation of f and Vf is impractical or even not possible.
~» Use stoch. optimization techniques and sampling strategies!
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First-Order Optimality Conditions

First Order Optimality Conditions for min, y(x):
A point x € dom his a stationary point iff
0 € VF(x) + dh(x),

where dh(x) is the convex subdifferential of h at x.

The optimality conditions can be rewritten as follows:

Optimality Conditions as Nonsmooth Equation:
FA(X) =X — proxﬁ(x - /\‘1Vf(x)) =0,

where R™ > A > 0 is symmetric and positive definite and proxAh is
the proximity operator [Moreau ’65]:

. 1
prox(y) := argmin, h(z) + Slly - |12
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Algorithmic Background

@ In [Fukushima, Mine '81; Tseng, Yun'09] —F"(x) is used as a
descent direction and an Armijo-type line search is included to
ensure global convergence.

~» This defines the basic proximal gradient method.

@ In our setting, f and Vf have to be estimated or sub-sampled.

@ General idea of first-order stochastic optimization methods: use
a stochastic oracle (S¥0) to estimate the gradient:

G(x¥; s¥) ~ VF(x¥),
where s¥ is a collection of random variables or samples.
~» This leads to stochastic variants of the mapping F:
F2(x) = x — proxp(x = A" G(x; 5))

and to different stochastic proximal gradient methods.
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Related Work and Literature

First Order Methods:

@ [Robbins, Monro ’51]: Foundations of the classical SGD.

@ [Polyak '90; Nemirovski et al. '09; Friedlander, Schmidt '12], [...]

@ [Ghadimi, Lan (et al.) '13, '16, '16]: (Accelerated) Proximal gradient
schemes for nonconvex problems.

@ [Xiao, Zhang '14; Reddi et al. '16]: Proximal SVRG and SAGA.

@ [Xu, Yin’15]: Block prox-SGD for nonconvex problems.

Quasi-Newton Methods:

@ [Schraudolph et al. '07; Mokhtari, Ribeiro 14, °15]: Sub-sampled
(L)BFGS for online optimization.

@ [Byrdetal. '11,’16; Gower et al. '16]: Stochastic Quasi-Newton.
@ [Wang et al. '17]: Stochastic Quasi-Newton for nonconvex prob.
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Related Work and Literature (Cont’)

Second Order Methods:

@ [Agarwal et al. '16]: LiISSA; Hessian sampling for convex prob.

@ [Bollapragada et al. ’16]: Sub-sampled Newton; convergence in
expectation; f; strongly convex.

@ [Xu et al. '16]: Sub-sampled Newton with nonuniform sampling.

@ [Roosta-K., Mahoney '16; Xu et al. 17, ’17]: Sub-sampled Newton;
convergence results in probability.

@ [Pilanci, Wainwright '17]: Newton sketch.

@ [Ye et al. '17]: Local conv. of approximate Newton methods.
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Algorithmic ldea

Basic idea based on x* 1 = Tigs(xX) = prox)(x* — tVF(x¥)).
@ The proximity operator [Moreau '65]

’
proxp(y) := argmin, h(z) + §||y—z||,2\.

@ We incorporate second order information and use stochastic
Hessian oracles (SSO)

H(xX; tK) ~ V2f(x¥)
to estimate the Hessian V2f and compute the Newton step.

@ The sample collections s¥ and tX are chosen independently of
each other and of the other batches s¢, ¢, ¢ € Ny \ {k}.

@ letG:R"x=—->R"and H: R"x = — S" be Carathéodory
functions. We work with the following S7 0O and SSO:

nh

1 1 O

G (X) 1= ngZst and  Hu(x ::m H(x
= k j=1

27/43



Stochastic Semi-smooth Newton Method: Idea
To accelerate the stochastic proximal gradient method, we want to
augment it by a stochastic Newton-type step, obtained from the
(sub-sampled) optimality condition:

FMx) = x - prOle)(X - A 1Gs(x)) = 0. J

The semi-smooth Newton step is given by

My d* = —F(x"), XK = x* 4 ok, J

with sample batches s*, t and My e M0 , (x¥),
M/S\,I(X) ={M=1-D+DN"Hy(x): De dprox (Ua(x))}
and u(x) = x - A 1G4(x).
~» Aim: Utilize fast local convergence to stationary points!
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Stochastic Semismooth Newton Method

Sub-sampled Semi-smooth Newton Method

0.

. Compute st\kk(xk) and choose My € M

Choose x° € dom h, batch sizes (n}), (n!

step sizes (ak). Select ind. batches s°, t°. Set k := 0.

While “not converged” do:
N« (xK). Select new

sample batches sk*1, th+1,

. Compute the semismooth Newton step via

Mid* = —Fl(xk).

If this is not possible, go to step 4.

. Set zK := xK 4+ dk. If zK e dom h and z* satisfies the growth

conditions (%), set x¥*1 := zK and go to step 5.
Compute a proximal gradient step x**' := x — a F1(x*).

. Increment k and go to step 1.

), matrices (Ax), and

y
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Algorithmic Framework (Cont’)

We use the following growth conditions (x) in step 3:
IFL (20N < (7 + vi) - 6k + & (G.1)
(2 < w(x¥) + - 0 2IFNS (212 + €2, (G.2)

where € (0,1), 8> 0, and (vk), (£2) € €1, (¢}) € £1/2.

We set k1 to ||F kkjﬂ (x**+1)|1if x**1 was obtained in step 3.

@ Calculating F' kkjﬂ (z¥) requires evaluation of G1(2¥). This

information can be reused in the next iteration if zX ~» xkt1 is

accepted as new iterate.
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Global Convergence: Assumptions

Basic Assumptions:

(A.1) Vfis Lipschitz continuous on R with constant L.
(A.2) The matrices (Ax) c '}, satisfy Am/ = Ax = Ayl for all k.
(A.3) v is bounded from below on dom h.

Stochastic Assumptions:
(S.1) For all k € N, there exists oy > 0 such that

E[IVF(x¥) = G (X)IP] < o2

(S.2) The matrices M, chosen in step 1, are random operators.
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Global Convergence

Theorem: Global Convergence [MXCW, ’17]

Suppose that (A.1)—(A.3) and (S.1)—(S.2) are fulfilled. Then, under
the additional conditions, ax < @ := min{1, A,/L},

(ak) is nonincreasing , Zak = oo, Zakfri <

it holds liminfx_,., E[IIF(x¥)I[?] = 0 and liminf,_., F\(x¥) = 0 a.s. for
any Ae ST .

@ Verify that (x¥) actually defines an adapted stochastic process.
@ The batch s and the iterate x* are not independent.
@ Derive approximate and uniform descent estimates for the terms

Y(xH) —u(x).

For strongly convex case: limg_,. E[||F(x*)|I’] = 0 and
liMke FA(X¥) =0 a.s. forany AesT .
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Assumptions for Local Convergence

~> We study local conv. of a sequence of iterates (rajectory) (x¥) of
a single run of S4N.

Let x* and A, be accumulation points of (xX) and (Ax). Let us
assume that there exists £ > 0 such that:

(C.1) There exists k € N such that A, = A, for all k > k.
(C.2) There exist v., K. > 0 such that

Inin(V2F(X)) = vey  Amax(V2f(X)) < K., ¥ x € Bs(x").

(C.3) y is Lipschitz continuous on Bs(x*) with constant L.
(C.4) The residual mapping F": is semismooth at x*.

@ (C.2) is satisfied if the Hessian V2f(x*) is positive definite. J
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Refined Stochastic Assumptions

We define the error terms

Sgk(x) = Vi(x) - G(x; S,I-(), 8?,((X) = V2f(x) — H(x; tX).

]
Stochastic Assumptions (Extended):

We now assume that the oracles G(-; s,’.‘) and H(; tj") are unbiased
estimators of the gradient and Hessian, i.e., for all /, j, and k,

E[agik(x)] =0, ]E[Sgk(x)] =0, VxeR"

(S.3) There are 7, p, such that for all /, j, k and x € R", it holds

E[exp(IIE°, (x)IP/5°)] < e, E[exp(na*,}(x)llz/ﬁz)] <e.
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Theorem: Transition to Fast Convergence [mxcw, '17]

Setup: Let (6x) c (0,1) be given. Let us set C := (2Ay + 3K.)/vs,
Rk = min{sz(/(ZLFC), [8,2(]2}, I'k = min{Rk_1,Rk}.

@ Let the cond. (A.1)—(A.3), (S.2)—(S.3), and (C.1)—(C.4) be
satisfied for some acc. points x*, A, of (x¥) and (A).

@ Assume that the step sizes («y) are bounded o € [, @].

Then, there exists a constant y € (0, 1) that does not depend on (s}()
and (£2) such that, if

25 |2 3log(2ns," )P
(1 a4 w/SIog(éﬁ)) m] ) n2 > ,y—2k’

for all k > ¢, we have:
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Transition to Fast Convergence (Cont’)

@ The point x* is a stationary point,

@ There exists ¢, such that x results from a stoch. semi-smooth
Newton step for all k > ¢.,

@ The whole sequence (x*) converges to x*,

with probability 6. == T1%_(1 - 26)(1 - o).

Remarks:

@ Based on concentration ineq. for vector- and matrix-valued
martingales [Juditsky, Nemirovski’09; Tropp '12; ...]

@ If the batch size n?( increases geometrically, i.e., if for some
1y € (0, 1), we redefine 'k := min{Rx_1, Rk} and

Rk == min{min(s!, 7" }/(2LFC), [2]2),

then (x¥) converges r-linearly to x* with rate Ny.
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Further Remarks and an Example

Remarks (Cont):

~» Extension to r-superlinear convergence is possible!

~» [f the full gradient is used eventually, we can obtain g-linear and
g-superlinear convergence with high probability.

Let ¢, Co, @ > 0 be given and let us set & = ¢y - k37 %) and
ek = co- k(7% for all k € N. Then, setting

n) = k*log(k) and nf =log(k)'"®,

the local convergence results hold with probability 6. > 99%.
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Numerical Results: Sparse Logistic Regression

We consider the following ¢1-regularized logistic regression problem

N
, 1
min N;f;(x)wnxm, (x) = log(1 + exp(~b; - ] X)) J

where a,.T € R" denotes the ith row of the data matrix A € RN*" and
b € {-1,1}N is a binary vector.

Specifications of the test framework:!

| dataset | data points N | features n | \

covtype 581012 54 u=5e-3
gisette 6000 5000 u=5e-2
rcvl 20242 47236 | u=1e-3

"LIBSVM - www.csie.ntu.edu.tw/ cjlin/libsvm/ 38/43



Numerical Comparisons - covtype, Epochs
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Numerical Comparisons - covtype, Time
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Numerical Comparisons - gisette, Epochs

relative sub-optimality
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Numerical Comparisons - gisette, Time
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Contact Information

Many Thanks For Your Attention!

@ Looking for Ph.D students and Postdoc
Competitive salary as U.S and Europe

@ http://bicmr.pku.edu.cn/~wenzw
@ E-mail: wenzw@pku.edu.cn
@ Office phone: 86-10-62744125
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