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Standard form

We aim to solve

(P) min{cT x | Ax = b, x ∈ Ln̄+},

(D) max{bT y | AT y + s = c, s ∈ Ln̄+},

where

I Ln̄+ := Ln1
+ × . . .× Lnp+ ,

Lni+ := {xi := (xi1, . . . , x
i
ni

)T ∈ Rni : xi1 ≥ ‖xi2:ni
‖}, i = 1, . . . , p,

I A ∈ Rm×n̄, c ∈ Rn̄, b ∈ Rm,

I A := (A1, . . . , Ap), x := (x1; . . . ;xp), s := (s1; . . . ; sp), and c := (c1; . . . ; cp),

I n̄ :=

p∑
i=1

ni.
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Regularity conditions

Assumption

A is assumed to be a full row rank matrix.

Assumption (Interior point condition)

There exists a primal-dual feasible (x; y; s) so that x, s ∈ int(Ln̄+).

I As a result, the optimal set is written as the set of solutions of

Ax = b, x ∈ Ln̄+,

AT y + s = c, s ∈ Ln̄+,
x ◦ s = 0,

where x ◦ s = (x1 ◦ s1; . . . ;xp ◦ sp), and

xi ◦ si =

(
(xi)T si

xi1s
i
2:ni

+ si1x
i
2:ni

)
, ∀ i = 1, . . . , p.

Quadratic convergence of Newton’s method (5 of 40)
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Interior point methods

For µ > 0, we solve a system of perturbed optimality conditions:

Ax = b, x ∈ int(Ln̄+),

AT y + s = c, s ∈ int(Ln̄+),
x ◦ s = µe.

where ei = (1;0) ∈ Rni , and e = (e1; . . . ; ep).

I This system has a unique solution, the so called central solution.

I As µ→ 0, the trajectory converges to a maximally complementary solution.

Let P∗ and D∗ be the sets of primal and dual optimal solutions.

Definition

An optimal solution (x∗; y∗; s∗) ∈ P∗ ×D∗ is maximally complementary if

(x∗; y∗; s∗) ∈ ri(P∗ ×D∗).

Quadratic convergence of Newton’s method (6 of 40)
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Illustration of the central path
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Quadratic convergence of Newton’s method

The optimality conditions can be written as F ((x; y; s)) = 0 and x, s ∈ Ln̄+, where

F ((x; y; s)) :=

(
Ax− b

AT y + s− c
x ◦ s

)
.

The Jacobian of F is given by

∇F ((x; y; s)) :=

(
A 0 0
0 AT I

L(s) 0 L(x)

)
.

L(x) is a block diagonal matrix:

L(x) := diag(L(x1), . . . , L(xp)),

L(xi) :=

(
xi1 (xi2:ni

)T

xi2:ni
xi1Ini−1

)

I ∇F is Lipschitz continuous with global constant τ1 = 2.
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Sufficient conditions for nonsingularity
The Jacobian ∇F is nonsingular (Alizadeh and Goldfarb) at (x∗; y∗; s∗) if

I (x∗; y∗; s∗) is strictly complementary,

I (x∗; y∗; s∗) is primal-dual nondegenerate.

Definition (Strict complementarity)

An optimal solution (x∗; y∗; s∗) ∈ P∗ ×D∗ is strictly complementary if

x∗ + s∗ ∈ int(Ln̄+).

Let tan(xi,Lni+ ) be the tangent space to Lni+ at xi.

Definition (Nondegeneracy)

A primal-feasible solution x is called nondegenerate if

tan(x1,Ln1
+ )× . . .× tan(xp,Lnp+ ) + Ker(A) = Rn̄.

A dual feasible solution (y; s) is called nondegenerate if

tan(s1,Ln1
+ )× . . .× tan(sp,Lnp+ ) +R(AT ) = Rn̄.

Quadratic convergence of Newton’s method (10 of 40)
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Distance to the optimal set

Let (x̂; ŷ; ŝ) be a primal-dual optimal solution.

The primal and dual optimal sets can be equivalently written asx ∈ x̂+ Ker(A),
ŝT x = 0,
x ∈ Ln̄+,

s ∈ ŝ+R(AT ),
x̂T s = 0,
s ∈ Ln̄+.

The distance between (x(µ); y(µ); s(µ)) and the affine space in the above system:
I can be bounded by Hoffman error bound.
I θ1 and θ2 are Hoffman condition numbers for the primal and dual systems.

Lemma (Mohammad-Nezhad and Terlaky 2017)

Let
(
x(µ); y(µ); s(µ)

)
be a central solution with

µ ≤ µ̂ := min
{ 1

θ1p
,

1

θ2p

}
.

Then there exists (x; y; s) ∈ P∗ ×D∗, γ > 0, and κ > 0 so that

‖x(µ)− x‖ ≤ κ(pµ)γ , ‖y(µ)− y‖ ≤ κ(pµ)γ , ‖s(µ)− s‖ ≤ κ(pµ)γ .

Quadratic convergence of Newton’s method (11 of 40)
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Quadratic convergence to a strictly complementary solution

Theorem (Mohammad-Nezhad and Terlaky 2017)

Assume that there exists β1 > 0 so that

‖∇F ((x∗; y∗; s∗))−1‖ ≤ β1.

Let a central solution (x(µ); y(µ); s(µ)) with

µ < min

{
p−1

(
4
√

3β1κ
)− 1

γ , µ̂

}
be given.

From (x(µ); y(µ); s(µ)) Newton’s method is quadratically convergent to (x∗; y∗; s∗).

I (x(µ); y(µ); s(µ)) needs to be in the convergence region of Newton’s method.

Quadratic convergence of Newton’s method (12 of 40)
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Failure of strict complementarity

Without the strict complementarity condition:

I ∇F is singular at an optimal solution;

I Newton’s method is not applicable;

I Convergence to an optimal solution is not better than linear.

We can release the dependence on the strict complementarity condition:

I We need to identify the optimal partition of the problem.

Quadratic convergence of Newton’s method (14 of 40)
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Back to the complementarity condition

The complementarity condition xi ◦ si = 0 implies:

xi si Strictly complementary

∈ ∈

int(Lni+ ) {0} Yes
{0} int(Lni+ ) Yes

bd(Lni+ ) \ {0} bd(Lni+ ) \ {0} Yes

{0} {0} No
bd(Lni+ ) \ {0} {0} No

{0} bd(Lni+ ) \ {0} No

I The complementarity for linear optimization reduces to only three cases.

Quadratic convergence of Newton’s method (15 of 40)
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Optimal partition

The index set is partitioned into four subsets B,N ,R, and T := (T1, T2, T3):

B :=
{
i | xi1 > ‖xi2:ni

‖, for some x ∈ P∗
}
,

N :=
{
i | si1 > ‖si2:ni

‖, for some s ∈ D∗
}
,

R :=
{
i | xi1 = ‖xi2:ni

‖ > 0, si1 = ‖si2:ni
‖ > 0, for some (x; y; s) ∈ P∗ ×D∗

}
,

T1 :=
{
i | xi = si = 0, for all (x; y; s) ∈ P∗ ×D∗

}
,

T2 :=
{
i | si = 0, for all (y; s) ∈ D∗, xi1 = ‖xi2:ni

‖ > 0, for some x ∈ P∗
}
,

T3 :=
{
i | xi = 0, for all x ∈ P∗, si1 = ‖si2:ni

‖ > 0, for some (y; s) ∈ D∗
}
.

I Note that B,N ,R, and T are mutually disjoint.

I We call (B,N ,R, T ) the optimal partition.

Quadratic convergence of Newton’s method (16 of 40)
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Example (R, T2 6= ∅)

I The cone in pink is weakly inactive, i.e.,
the cone constraint is active with zero Lagrange multiplier.

I This is a nondegenerate optimal solution

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

c rg1

rg2

Quadratic convergence of Newton’s method (17 of 40)



Second-order cone optimization (SOCO) Strict complementarity Failure of strict complementarity Extension

Example (B,R 6= ∅)

I The optimal solution is in the interior of the blue cone.

I The optimal solution is on the boundary of the pink cone.
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Optimal partition

I The optimal partition is invariant on ri(P∗ ×D∗).

I xi = 0 if i ∈ N .

I si = 0 if i ∈ B.

I xi = α

(
1
hi

)
, si = β

(
1
−hi

)
, if i ∈ R, where

hi =
x2:ni

‖x2:ni‖
= −

s2:ni

‖s2:ni‖
∈ Rni−1 ∀(x; y; s) ∈ P∗ ×D∗.

A solution (x∗; y∗; s∗) is strictly complementary if and only if T = ∅.

A solution (x∗; y∗; s∗) is maximally complementary if

xi ∈ int(Lni+ ), i ∈ B,

si ∈ int(Lni+ ), i ∈ N ,

xi1 > 0, i ∈ R,

si1 > 0, i ∈ R.

Quadratic convergence of Newton’s method (19 of 40)
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Identification of the optimal partition

We define the following condition numbers:

σB := min
i∈B

max
x∈P∗

{xi1 − ‖xi2:ni
‖},

σN := min
i∈N

max
(y,s)∈D∗

{si1 − ‖si2:ni
‖},

σ1 := min{σB, σN },

σ2 := min
i∈R

max
(x;y;s)∈P∗×D∗

{xi1 + si1 − ‖xi2:ni
+ si2:ni

‖},

σ3 := max
(x;y;s)∈P∗×D∗

{∥∥(x; y; s)
∥∥}.

Theorem (Terlaky and Wang, 2017)

Let (x(µ); y(µ); s(µ)) be a central solution with

µ < µ̃ := min

{
σ2
1

2p2
,
σ1σ2

4p2
,

1

p

(
1

4κ
min

{
σ1

2p
,
σ2

2p

}) 1
γ
, µ̂

}
.

The optimal partition (B,N ,R, T ) can be identified from (x(µ); y(µ); s(µ)).

Quadratic convergence of Newton’s method (20 of 40)
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Quadratic convergence to the unique optimal solution

We prove quadratic convergence to the unique optimal solution.

I We need the optimal partition (B,N ,R, T ) to be known.

I We need (T1, T2, T3) to be correctly identified.

Assumption

It is assumed that µ < µ̃ allows for a complete identification of (T1, T2, T3).

I The optimal partition is used to reformulate the dual problem.

Quadratic convergence of Newton’s method (21 of 40)
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Existence of R

Assume that the primal and dual nondegeneracy conditions hold.

Lemma (Mohammad-Nezhad and Terlaky 2017)

Let (x∗; y∗; s∗) be the unique optimal solution. Then R = ∅ implies T = ∅.

As a consequence, if R = ∅, then

I The unique optimal solution can be obtained by solving two linear systems of
equations.

I The primal and dual problems are easy to solve.

In the sequel, we assume that R 6= ∅.

Quadratic convergence of Newton’s method (22 of 40)
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Problem reduction

Assume that T1, T3 6= ∅.

I If we drop ci −ATi y ∈ Lni+ for i ∈ T1 ∪ T3, then we get

(D′) max
{
bT y : ATi y + si = ci, si ∈ Lni+ , i ∈ {1, . . . , p} \ {T1 ∪ T3}

}
,

and its dual is written as

(P′) min
{ ∑
i∈{1,...,p}\{T1∪T3}

(ci)T xi :

∑
i∈{1,...,p}\{T1∪T3}

Aix
i = b, xi ∈ Lni+ , i ∈ {1, . . . , p} \ {T1 ∪ T3}

}
.

Let (x̄; ȳ; s̄) be an optimal solution of (P′) and (D′).

Lemma (Mohammad-Nezhad and Terlaky 2017)

(x̄; ȳ; s̄) is primal-dual nondegenerate.

Quadratic convergence of Newton’s method (23 of 40)



Second-order cone optimization (SOCO) Strict complementarity Failure of strict complementarity Extension

Problem reduction

It follows from the optimality conditions that

(x∗)i = x̄i, i ∈ B ∪R ∪ T2,
(x∗)i = 0, i ∈ N ∪ T1 ∪ T3,
y∗ = ȳ,

(s∗)i = ci −ATi ȳ, i ∈ N ∪R ∪ T3,
(s∗)i = 0, i ∈ T1 ∪ T2.

Thus, if we remove the columns of T1 and T3
I we can recover the unique optimal solutions of (P) and (D).

Quadratic convergence of Newton’s method (24 of 40)
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Spectral decomposition of xi

A spectral decomposition of xi gives xi := λ1
i q

1
i + λ2

i q
2
i , where

λ1
i := xi1 +

∥∥xi2:ni

∥∥, λ2
i := xi1 −

∥∥xi2:ni

∥∥,
q1
i :=

1

2

[
1
hi

]
, q2

i :=
1

2

[
1
−hi

]
.

I (q1
i , q

2
i ) is called a Jordan frame.

I q1
i = Riq

2
i , where Ri is a diagonal matrix of size ni:

Ri =


1 0
−1

0
. . .

−1

 . 5

0

-5

0.5

1

1.5

0

2

0

2.5

3

3.5

4

4.5

5 xi

xi
2:ni

!xi
2:ni

q2
i

q1
i

xi
1
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Primal reformulation

Let νi ∈ Rni for i ∈ B ∪R ∪ T2.

The unique optimal solution x̄ can be obtained by solving

(PNLO) min
∑

i∈B∪R∪T2

(ci)
T νi

s.t.
∑

i∈B∪R∪T2

Aiν
i = b,

(νi)TRiν
i = 0, i ∈ R ∪ T2,
ν ∈ V,

where

V :=
{
ν | νi1 > 0, i ∈ R ∪ T2, νi ∈ int(Lni+ ), i ∈ B

}
.

I (PNLO) has a unique globally optimal solution.

Quadratic convergence of Newton’s method (26 of 40)
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Dual reformulation

Let w ∈ Rm, zi ∈ Rni for i ∈ R ∪N .

The unique optimal solution (ȳ; s̄) is the globally optimal solution of

(DNLO) min − bTw

s.t. ATi w = ci, i ∈ B ∪ T2,

ATi w + zi = ci, i ∈ R ∪N ,

(zi)TRiz
i = 0, i ∈ R,

z ∈ W,

where

W :=
{
z
∣∣ zi1 > 0, i ∈ R, zi ∈ int(Lni+ ), i ∈ N

}
.

I (DNLO) has a unique globally optimal solution.

Quadratic convergence of Newton’s method (27 of 40)
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First-order optimality conditions

Let ui ∈ Rni for i ∈ B ∪ T2 ∪R ∪N and v ∈ R|R|.

The first-order optimality conditions for (DNLO) are given by

−
∑
i∈B∪T2∪R∪N Aiu

i = b,

−ui − 2viRiz
i = 0, i ∈ R,

−ui = 0, i ∈ N ,
ATi w = ci, i ∈ B ∪ T2,
ATi w + zi = ci, i ∈ R ∪N ,
(zi)TRiz

i = 0, i ∈ R,
z ∈ W.

I It bears a striking resemblance to the optimality conditions of SOCO.

Quadratic convergence of Newton’s method (28 of 40)
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Constraint qualification

Let (w̄; z̄) be the unique globally optimal solution of (DNLO).

Lemma (Mohammad-Nezhad and Terlaky 2017)

Under the dual nondegeneracy condition, the Jacobian of the equality constraints
at (w̄; z̄) has full row rank.

I There exist unique Lagrange multipliers.

Quadratic convergence of Newton’s method (29 of 40)
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Nonsingularity of the Jacobian

The first-order optimality conditions can be written as G((w; z;u; v)) = 0 and
z ∈ W, where

G((w; z;u; v)) :=



−
∑
i∈B∪T2∪R∪N Aiu

i − b
−ui − 2viRiz

i

−ui
ATi w − ci

ATi w + zi − ci
(zi)TRiz

i

 .

Let (ū; v̄) be the unique Lagrange multipliers associated with (w̄; z̄).

Lemma (Mohammad-Nezhad and Terlaky 2017)

Under the primal and dual nondegeneracy conditions, the Jacobian ∇G is
nonsingular at (w̄; z̄; ū; v̄).

I The primal nondegeneracy leads to a second-order condition at the globally
optimal solution.

Quadratic convergence of Newton’s method (30 of 40)
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Quadratic convergence

Theorem (Mohammad-Nezhad and Terlaky 2017)

Assume that the primal and dual nondegeneracy conditions hold. Let

µ < min

{
p−1

(
4
√

2β2κ
(√

3 +
2p
√
|R|

σ2

(
1 +

2σ3

σ2

)))− 1
γ

, µ̃

}
,

in which β2 denotes an upper bound for
∥∥∇G((w̄; z̄; ū; v̄))−1

∥∥.

Then Newton’s method converges to (x̄; ȳ; s̄) with quadratic rate.

Quadratic convergence of Newton’s method (31 of 40)



Second-order cone optimization (SOCO) Strict complementarity Failure of strict complementarity Extension

Discussion

To establish quadratic convergence:

I If strict complementarity holds,

µ < min

{
p−1

(
4
√

3β1κ
)− 1

γ , µ̂

}
.

I If strict complementarity fails,

µ < min

{
p−1

(
4
√

2β2κ
(√

3 +
2p
√
|R|

σ2

(
1 +

2σ3

σ2

)))− 1
γ

, µ̃

}
.

I Quadratic convergence is harder to achieve when strict complementarity fails.

I µ has to be small enough so that the optimal partition can be identified.

Quadratic convergence of Newton’s method (32 of 40)
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Extension to parametric SOCO

We consider a parametric SOCO problem as

(Pε) min{(c+ εc̄)T x : Ax = b, x ∈ Ln̄+},

(Dε) max{bT y : AT y + s = c+ εc̄, s ∈ Ln̄+}.

where c̄ ∈ Rn̄ is a fixed direction.

I The optimal value of (Pε) is called the optimal value function.

I The optimal value function is denoted by v : Rn̄ → R ∪ {−∞,∞}.
I ∞ simply means that (Pε) is infeasible.

Quadratic convergence of Newton’s method (34 of 40)
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Assumptions

Let M be the domain of the optimal value function v(.).

I It is proven that M is closed (possibly unbounded) interval.

I The optimal value function is convex on M .

I The optimal value function is subdifferentiable at every ε ∈M .

We assume that:

I the interior point condition holds for (Pε) and (Dε) for all ε ∈ int(M).

Then P∗(ε)×D∗(ε) is the set of solutions of

Ax = b, x ∈ Ln̄+,

AT y + s = c+ εc̄, s ∈ Ln̄+,
x ◦ s = 0.

I π(ε) := (B(ε),N (ε),R(ε), T (ε)) is called the optimal partition at ε, where

T (ε) :=
(
T1(ε), T2(ε), T3(ε)

)
.

Quadratic convergence of Newton’s method (35 of 40)
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Example

A parametric SOCO problem:

min − εx2 − (1− ε)x3

s.t. x1 = 1,

x3 − x4 = 0,

x2 − x5 = 1,

x1 ≥
√
x2

2 + x2
3,

x4 ≥ |x5|.
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Change in the optimal partition

We are interested in the behavior of the optimal partition with respect to ε.

There exist subintervals of int(M), where the optimal partition

I stays constant;

I changes, but the index sets in B(ε), N (ε), R(ε), and T (ε) remain unchanged;

or there may exist ε ∈ int(M), where in every neighborhood of ε

I there exists ε′ such that π(ε) 6= π(ε′).

These are called a linearity interval, nonlinearity interval, and a transition point.

I The optimal value function is piecewise algebraic (Nie et al., 2010).

I The optimal value function behaves linearly in a linearity interval.

Quadratic convergence of Newton’s method (37 of 40)
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The second-order cone example

I (ε1, ε3) is a nonlinearity interval.
I ε1 and ε3 are transition points.
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Conclusions:

Under the primal and dual nondegeneracy conditions:

I We proved quadratic convergence of Newton’s method to the strict
complementarity solution.

I We proved quadratic convergence of Newton’s method to a maximally
complementary solution.

Future directions:

I Strong second-order conditions to release the assumption on the identification
of (T1, T2, T3).

I We are applying methods from numerical algebraic geometry to exactly
compute a nonlinearity interval.

You may access the technical report at
http://www.optimization-online.org/DB_HTML/2017/10/6300.html.

Quadratic convergence of Newton’s method (39 of 40)

http://www.optimization-online.org/DB_HTML/2017/10/6300.html


Second-order cone optimization (SOCO) Strict complementarity Failure of strict complementarity Extension

Thank you for your attention

Any questions?
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