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Part 1.
Combination of limited memory and trust region techniques

Oleg Burdakov, Lujin Gong, Spartak Zikrin and Ya-xiang Yuan.
On efficiently combining limited-memory and trust-region techniques.
Math. Prog. Comp. (2017) 9, pp. 101-134.
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Unconstrained minimization

min
x∈Rn

f (x)

Trust region framework
xk+1 = xk + sk

Trust region subproblem

min
s∈Rn: ‖s‖≤∆k

qk(s) = gT
k s +

1

2
sTBks

Trial point xk + s∗

If successful, xk+1 = xk + s∗
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Hessian approximation

Quasi-Newton approximation

Bk+1 = Bk + ∆B(Bk , sk , yk , . . .)

sk = xk+1 − xk ,
yk = ∇f (k+1)−∇f (k) = gk+1 − gk

Limited memory approximation

Bk+1 = γk I + Vk Wk V T
k︸ ︷︷ ︸
n

}
m m� n
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Limited memory approximation in TR framework

Straightforward implementation of limited memory approximation in TR
framework deteriorates its efficiency.

Aim:
to develop a norm which would simplify the solution of the TR subproblem
and which would retain the low-cost property of limited memory iterations.
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Oleg Burdakov (Linköping University) Spectrum-based limited memory algorithms MOA, Beijing, June 16-18, 2018 6 / 53



New basis

V = QR︸ ︷︷ ︸
QR-decomposition

=⇒ B = γI + VWV T = γI + Q(RWRT )QT

RWRT = UDUT︸ ︷︷ ︸
eigenvalue decomposition

=⇒ B = γI + P‖DP
T
‖
,

where P‖ = QU ∈ Rn×m is orthonormal (PT
‖
P‖ = I ).

P = [P‖ ,P⊥ ] ∈ Rn×n is an orthonormal basis in Rn.
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Oleg Burdakov (Linköping University) Spectrum-based limited memory algorithms MOA, Beijing, June 16-18, 2018 7 / 53



Eigendecomposition

B = γI + V W V T︸ ︷︷ ︸
n

}
m m� n

Bu = γu, ∀u ∈ P⊥ =⇒ n −m eigenvalues γ with eigenspace P⊥

Bui = (γ + di )ui , ∀ui , the i-th column of P‖ =⇒ m eigenvalues

λi = γ + di , where di is the i-th eigenvalue of RWRT
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Model function in the new basis

s = P‖v‖ + P⊥v⊥
g = P‖g‖ + P⊥g⊥

New variables
v = (v‖ , v⊥) = PT s

Decomposition
qP(v) = q(P‖v‖ + P⊥v⊥) = q‖(v‖) + q⊥(v⊥)

where
q‖(v‖) = gT

‖
v‖ + vT

‖
Λv‖/2 =

∑m
i=1[(g‖)i (v‖)i + λi (v‖)2

i /2]

q⊥(v⊥) = gT
⊥
v⊥ + γ‖v⊥‖2

2/2
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Oleg Burdakov (Linköping University) Spectrum-based limited memory algorithms MOA, Beijing, June 16-18, 2018 9 / 53



Model function in the new basis

s = P‖v‖ + P⊥v⊥
g = P‖g‖ + P⊥g⊥

New variables
v = (v‖ , v⊥) = PT s

Decomposition
qP(v) = q(P‖v‖ + P⊥v⊥) = q‖(v‖) + q⊥(v⊥)

where
q‖(v‖) = gT

‖
v‖ + vT

‖
Λv‖/2 =

∑m
i=1[(g‖)i (v‖)i + λi (v‖)2

i /2]

q⊥(v⊥) = gT
⊥
v⊥ + γ‖v⊥‖2

2/2
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New vector norm

Norm definition

‖s‖
P,∞ = max{‖PT

‖
s‖∞, ‖PT

⊥
s‖2} = max{‖v‖‖∞, ‖v⊥‖2}

Norm equivalence
‖s‖2√
m + 1

≤ ‖s‖
P,∞ ≤ ‖s‖2

The norm doesn’t depend on n or k

Trust region

‖s‖
P,∞ ≤ ∆ ⇐⇒

{
|(v‖)i | ≤ ∆, i = 1, . . . ,m

‖v⊥‖2 ≤ ∆
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Oleg Burdakov (Linköping University) Spectrum-based limited memory algorithms MOA, Beijing, June 16-18, 2018 10 / 53



New vector norm

Norm definition

‖s‖
P,∞ = max{‖PT

‖
s‖∞, ‖PT

⊥
s‖2} = max{‖v‖‖∞, ‖v⊥‖2}

Norm equivalence
‖s‖2√
m + 1

≤ ‖s‖
P,∞ ≤ ‖s‖2

The norm doesn’t depend on n or k

Trust region

‖s‖
P,∞ ≤ ∆ ⇐⇒

{
|(v‖)i | ≤ ∆, i = 1, . . . ,m

‖v⊥‖2 ≤ ∆

Oleg Burdakov (Linköping University) Spectrum-based limited memory algorithms MOA, Beijing, June 16-18, 2018 10 / 53



TR subproblem decomposition

min
‖s‖

P,∞≤∆
q(s) = min

‖v‖‖∞≤∆
q‖(v‖) + min

‖v⊥‖2≤∆
q⊥(v⊥)

=
m∑
i=1

min
|(v‖ )i |≤∆

[(g‖)i (v‖)i + λi (v‖)2
i /2]

+ min
‖v⊥‖2≤∆

[gT
⊥
v⊥ + γ‖v⊥‖

2
2/2]

⇓

(v∗
‖

)i =


−(g‖)i/λi , if |(g‖)i | < λi∆

−∆, if (g‖)i = 0 and λi < 0

−sign((g‖)i )∆, otherwise

i = 1, . . . ,m

v∗
⊥

= −min{1/γ,∆/‖g⊥‖}g⊥ = −αg⊥
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Solution to TR subproblem

s∗ = Pv∗ = −P‖diag(a)PT
‖
g − αP⊥P

T
⊥
g

= −αg − P‖ (diag(a)− αI )PT
‖
g
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Convergence properties

Theorem

Let f : Rn 7→ R1 be twice continuously differentiable and bounded from
below on Rn. Suppose that there exists a scalar c > 0 such that

‖f ′′(x)‖ ≤ c , ∀x ∈ Rn.

Then
lim
k→∞

‖∇f (xk)‖ = 0.
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Implementation issues for L-BFGS

In L-BFGS update B = γI + VWV T ,
V = [S ,Y ] ∈ Rn×m, up to m/2 couples {si , yi} are stored,
W ∈ Rm×m involves scalar products sTi sj and yTi sj

Important observations

available V TV ⇒ cheap Cholesky factorization V TV = RTR
(updating is even cheaper)

implicit Q (= VR−1) ⇒ PT
‖
g = UTR−TV Tg

available V Tg ⇒ cheap V T y =

[
ST y
Y T y

]
s = −αg − P‖w ,

where w = (diag(a)− αI )PT
‖
g and P‖ = QU = VR−1U

available V Tg ⇒ cheap V T s =

[
ST s
Y T s

]
= −αV Tg − (V TV )R−1Uw
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Oleg Burdakov (Linköping University) Spectrum-based limited memory algorithms MOA, Beijing, June 16-18, 2018 14 / 53



Implementation issues for L-BFGS

In L-BFGS update B = γI + VWV T ,
V = [S ,Y ] ∈ Rn×m, up to m/2 couples {si , yi} are stored,
W ∈ Rm×m involves scalar products sTi sj and yTi sj

Important observations

available V TV ⇒ cheap Cholesky factorization V TV = RTR
(updating is even cheaper)

implicit Q (= VR−1) ⇒ PT
‖
g = UTR−TV Tg

available V Tg ⇒ cheap V T y =

[
ST y
Y T y

]
s = −αg − P‖w ,

where w = (diag(a)− αI )PT
‖
g and P‖ = QU = VR−1U

available V Tg ⇒ cheap V T s =

[
ST s
Y T s

]
= −αV Tg − (V TV )R−1Uw
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Computational cost of one iteration

Typical values: m = 10, n ≥ 103

eigenvalue decomposition of RkWkR
T
k ∈ Rm×m ⇒ O[(m2/n)mn]

multiplication PT
‖
· g ⇒ ≈ mn

multiplication P‖ ·
(

diag(a)− 1
γ I
)
PT

‖
g ⇒ ≈ mn

multiplication V T · s ⇒ low cost

updating W ∈ Rm×m ⇒ low cost

implicit QR-factorization of V ∈ Rn×m ⇒ low cost

quadratic function evaluation q(s∗) ⇒ low cost

Conclusion: the cost is approximately the same as for LBFGS
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Alternative approach

Another vector norm

‖s‖
P,2

= max{‖PT
‖
s‖2, ‖PT

⊥
s‖2} = max{‖v‖‖2, ‖v⊥‖2}

Norm equivalence
1√
2
‖s‖2 ≤ ‖s‖P,2

≤ ‖s‖2

Trust region

‖s‖
P,2
≤ ∆ ⇐⇒

{
‖v‖‖2 ≤ ∆

‖v⊥‖2 ≤ ∆

TR subproblem decomposition

min
‖s‖

P,2
≤∆

q(s) = min
‖v‖‖2≤∆

q‖(v‖) + min
‖v⊥‖2≤∆

q⊥(v⊥)
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Performance profiles for EIG(∞, 2) and m = 10, 20, 30

1 1.2 1.4 1.6 1.8 2 2.2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

 

 

m=5
m=10
m=15

(a) Number of iterations

1 1.5 2 2.5 3 3.5 4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

 

 

m=5
m=10
m=15

(b) CPU time
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Performance profiles for EIG(∞, 2) and L-BFGS
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Performance profiles for EIG(∞, 2) and L-BFGS,
reduced test set

The reduced test set: problems (10 in total), where the step-size one was
rejected by L-BFGS in, at least, 30% of iterations
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Part 2. Combination of limited memory technique and
cubic regularization

Joint work with:
Ya-xiang Yuan and Liang Zhao

Oleg Burdakov (Linköping University) Spectrum-based limited memory algorithms MOA, Beijing, June 16-18, 2018 20 / 53



Unconstrained minimization

min
x∈Rn

f (x)

Cubic regularization framework

xk+1 = xk + sk

CR subproblem:

min
s∈Rn

mk(s) = gT
k s +

1

2
sTBks +

µ

3
(ϕk(s))3

Traditional choice: ϕk(s) = ‖s‖2

Trial point xk + s∗

If successful, xk+1 = xk + s∗

Oleg Burdakov (Linköping University) Spectrum-based limited memory algorithms MOA, Beijing, June 16-18, 2018 21 / 53



Unconstrained minimization

min
x∈Rn

f (x)

Cubic regularization framework

xk+1 = xk + sk

CR subproblem:

min
s∈Rn

mk(s) = gT
k s +

1

2
sTBks +

µ

3
(ϕk(s))3

Traditional choice: ϕk(s) = ‖s‖2

Trial point xk + s∗

If successful, xk+1 = xk + s∗
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Convergence analysis

Standard assumptions, and

c1‖s‖2 ≤ ϕk(s) ≤ c2‖s‖2, ∀k ≥ 0, s ∈ Rn,

‖Bk‖ ≤ c3,

mk(sk) ≤ c4mk(sCk )

imply
lim inf
k→∞

‖∇f (xk)‖ = 0.
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Eigendecomposition-based cubic regularization

Eigenvalue decomposition: B = UΛUT

Eigenvalues: Λ = diag(λ1, . . . , λn); eigenvectors: U ∈ Rn×n, UTU = I

Special choice of ϕ(s): ‖s‖U = ‖UT s‖3

Norm equivalence:
n−1/6‖s‖2 ≤ ‖s‖U ≤ ‖s‖2

Remark: the bounds doesn’t depend on U or the iteration number
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Oleg Burdakov (Linköping University) Spectrum-based limited memory algorithms MOA, Beijing, June 16-18, 2018 23 / 53



Eigendecomposition-based CR model

mU(s) = gT s +
1

2
sTBs +

µ

3
‖s‖3

U

If ϕ(s) = ‖s‖2, the corresponding CR model has, at most, two local
minima (Martinez, 1994).
It is not easy to find a global minimizer ⇒ approximate solution.

If ϕ(s) = ‖s‖U , the model mU(s) may have 2n distinct local minima,
i.e. only one of them is global.

Exact global minimizer of mU(s) is obtained in closed form.
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Decomposition of mU(s) in space of new variables

Denote s̄ = UT s (new variables) and ḡ = UTg
CR model in the space of new variables:

m̄(s̄) = ḡT s̄ +
1

2
s̄TΛs̄ +

µ

3
‖s̄‖3

3

CR subproblem decomposition:

min
s̄∈Rn

m̄(s̄) =
n∑

i=1

min
s̄i

(
ḡi s̄i +

λi
2
s̄2
i +

µ

3
|s̄i |3

)

In Martinez and Raydan (2015), s̄3
i is used instead of our |s̄i |3
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1

2
s̄TΛs̄ +

µ

3
‖s̄‖3

3

CR subproblem decomposition:

min
s̄∈Rn

m̄(s̄) =
n∑

i=1

min
s̄i

(
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Solution to CR subproblem

In the new space:
s̄∗ = −Cḡ ,

where C = diag(c1, . . . , cn) and

ci =
2

λi +
√
λ2
i + 4µ|ḡi |

In the original space:
s∗ = Us̄∗ = −UCUTg
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Oleg Burdakov (Linköping University) Spectrum-based limited memory algorithms MOA, Beijing, June 16-18, 2018 26 / 53



Numerical experiments

CUTEst set of test problems

1000 ≤ n ≤ 1500

exact Hessian

standard Euclidean norm for cubic regularization (ARC2) vs.
eigendecomposition-based cubic regularization (EDCR2)

CPU time was averaged over five runs
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CPU time
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Number of iterations
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The new norm vs the Euclidean norm

Conclusion:
the eigendecomposition-based norm is more suitable for the cubic
regularization than the Euclidean norm.

Oleg Burdakov (Linköping University) Spectrum-based limited memory algorithms MOA, Beijing, June 16-18, 2018 30 / 53



Hessian approximation

Quasi-Newton approximation

Bk+1 = Bk + ∆B(Bk , sk , yk , . . .)

sk = xk+1 − xk ,
yk = ∇f (k+1)−∇f (k) = gk+1 − gk

Compact representation for limited-memory QN approximation

Bk+1 = γk I + Vk Wk V T
k︸ ︷︷ ︸
n

}
m m� n
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Limited-memory approximation in CR framework

Straightforward implementation of limited-memory approximation in CR
framework deteriorates its efficiency.

Aim:
to make use of the norm ϕk(s) = ‖s‖U in order to simplify the solution of
the CR subproblem and retain the low-cost property of limited-memory
iterations.

Q:
How to efficiently calculate the eigendecomposition of Bk?

Tool:
Implicit eigendecomposition of limited-memory Hessian approximation
introduced in
Burdakov, Gong, Zikrin and Yuan.
On efficiently combining limited-memory and trust-region techniques.
Mathematical Programming Computation (2017)
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New basis

V = QR︸ ︷︷ ︸
QR-decomposition

=⇒ B = γI + VWV T = γI + Q(RWRT )QT

RWRT = PDPT︸ ︷︷ ︸
eigenvalue decomposition

=⇒ B = γI + U‖DU
T
‖
,

where U‖ = QP ∈ Rn×m is orthonormal (UT
‖
U‖ = I ).

U = [U‖ ,U⊥ ] ∈ Rn×n is an orthonormal basis in Rn.
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Eigenvalues of B

Bu = γu, ∀u ∈ U⊥ =⇒ n −m eigenvalues γ with eigenspace U⊥

Bui = (γ + di )ui , ∀ui , the i-th column of U‖ =⇒ m eigenvalues

λi = γ + di , where di is the i-th eigenvalue of RWRT
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Induced splitting

U = [U‖ ,U⊥ ] ⇒

s̄∗‖ = UT
‖ s
∗, s̄∗⊥ = UT

⊥ s
∗

ḡ‖ = UT
‖ g , ḡ⊥ = UT

⊥ g
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Choice of U⊥

Observations:

γ is a multiple eigenvalue ⇒ U⊥ is not uniquely defined

s∗ depends on the choice of U⊥

ḡ⊥ is used for computing s̄∗⊥, and it requires UT
⊥ g

UT
⊥ g may be prohibitively too expensive,

unless to choose the large matrix U⊥ in a special way

Our suggestion:

um+1 = g⊥/‖g⊥‖2, where g⊥ = (In − U‖U
T
‖ )g

⇒ s∗ does not depend on the rest of the columns of U⊥.
If g⊥ = 0, s∗ does not depend on U⊥.
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Our suggestion:

um+1 = g⊥/‖g⊥‖2, where g⊥ = (In − U‖U
T
‖ )g

⇒ s∗ does not depend on the rest of the columns of U⊥.
If g⊥ = 0, s∗ does not depend on U⊥.
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Solution to CR subproblem

In the new space:

s̄∗‖ = −C‖ḡ‖ where C‖ = diag(c1, . . . , cm)

s̄∗⊥ = −α∗ḡ⊥ where α∗ =
2

γ +
√
γ2 + 4µ‖g⊥‖2

In the original space:

s∗ = U‖s̄
∗
‖ + U⊥s̄

∗
⊥ = −α∗g + U‖(α

∗Im − C‖)U
T
‖ g
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Predicted function value calculation

m(s∗) = q(s∗) +
µ

3

(
‖C‖ḡ‖‖3

3 + (α∗)3‖g⊥‖3
2

)
where

q(s∗) = ḡT
‖

(
C 2
‖Λ‖

2
+ C‖

)
ḡ‖ +

δ(α∗)2 − 2α∗

2
‖g⊥‖2

2

is the quadratic model value
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Alternative eigendecomposition-based cubic regularization

ϕU(s) = 3

√
‖UT
‖ s‖

3
3 + ‖UT

⊥ s‖3
2

Properties:

ϕU(s) is a vector norm

thought ϕU(s) is not identical with ‖s‖U , their global minimizers are
the same

(2m)−1/6‖s‖2 ≤ ϕU(s) ≤ ‖s‖2
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Implementation issues for L-BFGS

In L-BFGS update B = γI + VWV T ,
V = [S ,Y ] ∈ Rn×m, up to m/2 couples {si , yi} are stored,
W ∈ Rm×m involves scalar products sTi sj and yTi sj

Important observations

available V TV ⇒ cheap Cholesky factorization V TV = RTR
(updating is even cheaper)

implicit Q (= VR−1) ⇒ UT
‖
g = PTR−TV Tg

available V Tg ⇒ cheap V T y =

[
ST y
Y T y

]
s∗ = −α∗g + Vw ,
where w = R−1P(α∗Im − C‖)P

TR−TV Tg

available V Tg ⇒ cheap V T s∗ =

[
ST s∗

Y T s∗

]
= −α∗V Tg + (V TV )w
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Computational cost of one iteration

Typical values: m = 10, n ≥ 103

eigenvalue decomposition of RWRT ∈ Rm×m ⇒ O[(m2/n)mn]

multiplication UT
‖
· g ⇒ ≈ mn

multiplication U‖ ·
(
α∗Im − C‖

)
UT

‖
g ⇒ ≈ mn

multiplication V T · s ⇒ low cost

updating W ∈ Rm×m ⇒ low cost

implicit QR-factorization of V ∈ Rn×m ⇒ low cost

quadratic function evaluation q(s∗) ⇒ low cost

Conclusion: the major cost is O(2mn),
the same as for L-BFGS with line-search
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Part 3. Search over a model-based steepest descent path

Joint work with: Serge Gratton

q(s) = gT s +
1

2
sTBs

The steepest descent path s(t):

ṡ = −∇q(s(t)), s(0) = 0.

Let P be eigenvectors of B. New variables: v = PT s.

The components of v(t) = PT s(t) are calculated as

vi (t) = − ḡi
λi

(
1− e−λi t

)
,

where λi are eigenvalues of B, and ḡ = PTg .
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Trial points produced by the steepest descant path

A curvilinear search along the path

An approximate solution to the TR subproblem

An approximate solutions to the model with cubic regularization
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Part 4.
Dense initialization for limited memory algorithms

Johannes Brust, Oleg Burdakov, Jennifer B. Erway, and Roummel F.
Marcia.
Dense initializations for limited-memory quasi-Newton methods.
arXiv:1710.02396 [math.OC]
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Dense initialization

Diagonal initialization:

B0 = γk I = γkPP
T = γkP‖P

T
‖ + γkP⊥P

T
⊥ .

Dense initialization:

B̂0 = γkP‖P
T
‖ + γ⊥k P⊥P

T
⊥ .
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Eigendecomposition

B̂k = B̂0 −
[
B̂0Sk Yk

] [
ST
k B̂0Sk Lk
LTk −Dk

]−1 [
ST
k B̂0

Y T
k

]

Bu = γ⊥k u, ∀u ∈ P⊥ =⇒
n −m eigenvalues γ⊥ with eigenspace P⊥

Bui = (γk + di )ui , ∀ui , the i-th column of P‖ =⇒
m eigenvalues λi = γ + di , where di is the i-th eigenvalue of RWRT
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Convergence analysis

The dense initialization B̂0 allows for retaining global convergence
property, provided that γ⊥k is uniformly bonded above.
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Some possible choices of γ⊥k

Parametrized family of choices:

γ⊥k (c, λ) = λcγmax
k + (1− λ)γk ,

where

γmax
k = max

1≤i≤k
γi = max

1≤i≤k

yTi yi

sTi yi
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Numerical experiments for γ⊥k (c , λ) (iterations)

1 1.1 1.2 1.3 1.4 1.5

τ

0.5

0.6

0.7

0.8

0.9

1
ρ

s
(τ

)

B̂0(1, 1)
∗

B̂0(2, 1)
∗

B̂0(1,
1
2 )

∗

B̂0(1,
1
4 )

∗
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Numerical experiments for γ⊥k (c , λ) (CPU time)

1 1.1 1.2 1.3 1.4 1.5

τ

0.2

0.4

0.6

0.8

1
ρ

s
(τ

)

B̂0(1, 1)
∗

B̂0(2, 1)
∗

B̂0(1,
1
2 )

∗

B̂0(1,
1
4 )

∗
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Numerical experiments: dense vs. diagonal initialization

1 1.2 1.4 1.6

τ

0.6

0.7

0.8

0.9

1

ρ
s
(τ

)

B̂0(1,
1
2 )

∗

B0(γk)

1 1.2 1.4 1.6

τ

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
s
(τ

)

B̂0(1,
1
2 )

∗

B0(γk)

The dense initialization with γ⊥k (1, 1
2 ) vs. the conventional initialization;

number of iterations (left) and CPU time (right)
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Dense vs. diagonal initialization (cont.)
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The dense initialization with γ⊥k (1, 1
2 ) vs. the conventional initializationon

the subset of 14 problems in which the unconstrained minimizer is rejected
at over 30% of the iterations; number of iterations (left) and CPU time
(right)
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Part 5. Future plans

SR1 quasi-Newton updating formula

Multipoint symmetric secant updates
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