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Introduction

Review of Gauss-Seidel Algorithm for Linear System

• Consider solving a n × n linear system Ax = b.
• The classical G-S algorithm uses one equation to update one variable at a time:

x+i =
bi −

∑
j ̸=i aijxj

aii
. (1)

Using a step-size α > 0, this strategy leads to the following successive over-relaxed
(SOR) update rule:

xr+1
i = (1 − α)xr

i + α
bi −

∑
j ̸=i aijxr

j

aii
, (2)

where aij is the (i, j)-th element of A; bi is the i-th element of b.
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Introduction The G-S Type Algorithms for Linear Systems

An Illustrative Example

Consider the following example.

A =

[
1 −τ
−τ 1

]
and b =

[
0
0

]
,

where τ > 1 is some given constant.

xr+1
1 = (1 − α)xr

1 + ατxr
2, when x1 is updated before x2 (3)

xr+1
2 = (1 − α)xr

2 + ατxr
1, when x2 is updated before x1. (4)

Assume x0
1 = x0

2 > 0.
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Introduction The G-S Type Algorithms for Linear Systems

Variants of the G-S Algorithms

Let us consider the following five different update rules which are all of the G-S type.
1 Cyclic Successive Over Relaxation (SOR): At iteration r + 1, we perform

xr+1
1 = (1 − α)xr

1 + ατxr
2, xr+1

2 = (1 − α)xr
2 + ατxr+1

1 . (5)

2 Symmetric SOR: At iteration r + 1, the variables are updated using a
forward-sweep G-S step followed by a back-sweep G-S step:

xr+1/2
1 = (1 − α)xr

1 + ατxr
2, xr+1/2

2 = (1 − α)xr
2 + ατxr+1/2

1 .

xr+1
2 = (1 − α)xr+1/2

2 + ατxr+1/2
1 , xr+1

1 = (1 − α)xr+1/2
1 + ατxr+1

2 .

3 Uniformly Randomized (UR) SOR: At iteration r + 1, uniformly randomly pick
one variable from x1 and x2. Update according to (3) or (4) based on which
variables are selected, while fixing the remaining variable at its previous value.
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Introduction The G-S Type Algorithms for Linear Systems

Variants of the G-S Algorithms

4 Non-Uniformly Randomized (NUR) SOR: At iteration r + 1, let pr+1
1 > 0 and

pr+1
2 > 0 satisfy pr+1

1 + pr+1
2 = 1; randomly pick xi according to pr+1

i . Update
according to (3) or (4) based on which variables are selected, while fixing the
remaining variable at its previous value.

5 Random Permutation (RP) SOR: At iteration r + 1, randomly select a
permutation π of the index set {1, 2}; The variables are updated according to

xr+1
π(1) = (1 − α)xr

π(1) + ατxr
π(2), xr+1

π(2) = (1 − α)xr
π(2) + ατxr+1

π(1). (6)

This method is referred to as the shuffled SOR in [Oswald15b].

It is easily seen that for any update order listed above, the resulting algorithm have the
following property:

min{xr
1, xr

2} > min{x0
1, x0

2} > 0, ∀r, ∀α > 0.

On the other hand, the solution of the system of linear equation is x∗1 = x∗2 = 0; hence
none of these algorithms will find the solution. �
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Introduction The G-S Type Algorithms for Linear Systems

Convergence of the G-S Algorithms
• For 0 < α < 2, the G-S algorithm converges linearly for the special cases

◃ A is symmetric and positive definite (coordinate descent for the
potential function 1

2 xTAx + bTx)
◃ A is diagonally dominant (the distance function ∥x − x∗∥2 is

contracting)

Figure: Gauss-Seidel Algorithm in 2-D
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Introduction The G-S Type Algorithms for Linear Systems

Convergence of the G-S Algorithms
For general A (possibly non-square), the G-S algorithm may diverge

• lack of a potential function when A is asymmetric
• the distance to x∗ may diverge without diagonal dominance

Figure: Divergence of G-S algorithm in 2-D
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Introduction The G-S Type Algorithms for Linear Systems

Fixing G-S algorithm for a general linear system Ax = b?
How to design a variable-equation association and the updating order to ensure G-S
convergence?

In the G-S schemes mentioned earlier, the indices of the variables and equations follow a
fixed (ad hoc) association. That is, if variable i is chosen, then equation i has to be
chosen as well.
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Introduction The G-S Type Algorithms for Linear Systems

Fixing the G-S algorithm for a general linear system
Ax = b?
Will also need to adjust the stepsize α to ensure G-S convergence!
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Introduction The G-S Type Algorithms for Linear Systems

Is Linear Convergence Possible?

For general m × n linear system Ax = b, consider the linear squared error residual

f(x) =
m∑

i=1

1
2 |a

T
i x − bi|2 (7)

Then the G-S algorithm can be viewed as the coordinate-wise incremental minimization
algorithm where

• each error term 1
2 |a

T
i x − bi|2 is associated with one variable xi

• each iteration minimizes 1
2 |a

T
i x − bi|2 (i.e., setting aT

i x − bi = 0) by adjusting
variable xi

It is well-known that
• the incremental gradient descent algorithm with diminishing stepsizes converges to

an minimizer of the LS function
• but the convergence is not linear
• for constant stepsize, convergence to the neighborhood of x∗ only (may get away

from x∗)
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Introduction The G-S Type Algorithms for Linear Systems

Other Related Work

The existing literature has
• Random Reordering in SOR-Type Methods [Oswald-Zhou16]
• Randomized Block Kaczmarz Method (RK) [Strohmer-Vershynin09]
• Semi-Stochastic Gradient Descent Methods [Konecny-Richtarik15]
• SVRG [Johnson-Zhang13], Semi-Stochastic Coordinate Descent

[Konecny-Qu-Richtarik15]
Linear convergence requires

• full gradient at each iteration, or
• at each epoch (SVRG, S2CD)
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System of Linear Equations

Outline

1 Introduction
The G-S Type Algorithms for Linear Systems

2 System of Linear Equations
A Double Stochastic Algorithm

3 System of Linear Inequalities
A Double Stochastic Alternating Projection Algorithm
Gradient Based Method

4 Proof Sketch
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System of Linear Equations

Simultaneously Selecting Equations and Variables

Will unlocking the paring between the variables and the equations ensure convergence of
G-S type algorithm for arbitrary A?

• select a pair (i, j) at each iteration where i is an index for an equation while j is an
index for the variable to be updated

• after picking the pair (i, j), one can update the variable j by

xr+1
j = (1 − α)xr

j + α
bi −

∑
k ̸=j aikxr

k

aij
. (8)
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System of Linear Equations

Divergence!

Consider the same (A, b) as given in Example 1.

A =

[
1 −τ
−τ 1

]
and b =

[
0
0

]
.

After selecting the pair (i, j), we can use one of the following four update rules:
1 Case 1. i = 1, j = 1 → xr+1

1 = (1 − α)xr
1 + ατxr

2;
2 Case 2. i = 1, j = 2 → xr+1

2 = (1 − α)xr
2 + α

τ
xr

1;
3 Case 3. i = 2, j = 1 → xr+1

1 = (1 − α)xr
1 + α

τ
xr

2;
4 Case 4. i = 1, j = 2 → xr+1

2 = (1 − α)xr
2 + ατxr

1.

• However, we can show that for any fixed updating order, the resulting algorithm
will diverge for almost all initialization, and for any 0 < α < 1.

• The uniform randomized update rule, and the randomly permuted rule will also
diverge for almost all initialization and for any 0 < α < 1.
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System of Linear Equations

Numerical Behaviors
For a randomly generated linear system
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System of Linear Equations A Double Stochastic Algorithm

A Double Stochastic Algorithm

Algorithm 1. The double stochastic G-S (DSGS) algorithm.
At iteration 0, randomly generate x0.
At iteration r + 1, randomly pick the index pair (i, j) with probability

pij =
a2

ij∑
ij a2

ij
.

Update xj by the following:

xr+1
j = (1 − α)xj + α

(
bi −

∑
k ̸=j aikxk

aij

)
= xj + α

(bi −
∑

k=1 aikxk

aij

)
. (9)
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System of Linear Equations A Double Stochastic Algorithm

Linear Convergence: A is full column rank

Let us define

∆ := Ax − b ∈ Rm, and ∆+ = Ax+ − b. (10)

We have the following result.

Claim

Suppose that A has full column rank, and aii ̸= 0 for all i ∈ [n]. Let us choose α = 1/n.
Then the double stochastic G-S algorithm achieves the following convergence rate

E[∥∆+∥2 | x] ≤
(

1 − 1
nκ2(A)

)
∥∆∥2. (11)
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System of Linear Equations A Double Stochastic Algorithm

Remarks
1 The rate of the randomized CD method [Leventhal-Lewis10] with A being

symmetric and PD) is given by

E[∥∆+∥2] ≤
(

1 − 1
∥A−1∥2Tr[A]

)
∥∆∥2 ≤

(
1 − 1√

nκ(A)

)
∥∆∥2. (12)

Our rate is proportional to
(

1 −
(

1√
nκ(A)

)2
)

, which is worse. This is reasonable
due to the lack of symmetry or positive definiteness of A.

2 The rate of Randomized Kacmartz (RK) method [Strohmer-Vershynin08] with A
being full column rank is given by

E[∥∆+∥2 | x] ≤
(

1 − 2α− α2

κ2(A)

)
∥∆∥2 α=1

=

(
1 − 1

κ2(A)

)
∥∆∥2. (13)

Note that at each iteration of RK, n variables are updated instead of just one in
the doubly stochastic method. When n is large and κ(A) is large, the two rates are
comparable since(

1 − 1
nκ2(A)

)n
≈ exp(−1/κ2(A)) ≈ 1 − 1

κ2(A)
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System of Linear Equations A Double Stochastic Algorithm

Linear Convergence: general case

The following claims shows that the quantity ∥∆∥2 converges linearly to zero in
expectation.

Claim

Consider a consistent system Ax = b with arbitrary A. Let us pick

α =
1

∥A∥2
F
λmin(AAT).

Then the double stochastic G-S algorithm achieves the following convergence rate

E[∥∆+∥2 | x] ≤ ∥∆∥2

(
1 −

(
1

∥A∥2
F
λmin(AAT)

)2
)

(14)

where λmin(AAT) denotes the smallest positive eigenvalue of AAT.
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System of Linear Inequalities

Outline

1 Introduction
The G-S Type Algorithms for Linear Systems

2 System of Linear Equations
A Double Stochastic Algorithm

3 System of Linear Inequalities
A Double Stochastic Alternating Projection Algorithm
Gradient Based Method

4 Proof Sketch
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System of Linear Inequalities

Linear Inequality System

• Consider the problem of finding a point in the intersection of multiple polyhedral
sets.

• Unlike the classical alternating projection algorithm, we perform the projection in a
“coordinate descent” manner.

Specifically, we consider the following problem:

Find x s.t. Ai:x ≤ bi, i = 1, · · · ,m. (15)

We will assume in the rest of this section that the system Ax ≤ b is feasible.
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System of Linear Inequalities A Double Stochastic Alternating Projection Algorithm

A Double Stochastic Alternating Projection Algorithm

The proposed algorithm is closely related to Algorithm 1, except that we only update
those equations that violate the constraint.

Algorithm 2. The double stochastic alternating projection algorithm.
At iteration 0, randomly generate x0.
At iteration r + 1, randomly pick the index pair (i, j) with probability

pij =
a2

ij∑
ij a2

ij
.

Update xj by the following

xr+1
j =

{
xr

j , if Ai:xr ≤ bi

xj + α
(

bi−
∑

k=1 aikxk
aij

)
, otherwise. (16)
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System of Linear Inequalities A Double Stochastic Alternating Projection Algorithm

Convergence Result

Let us define the following function

f(x) :=
m∑

i=1
fi(x) =

1
2

m∑
i=1

(aT
i x − bi)

2
+. (17)

We note that any feasible solution of (15) will imply f(x) = 0. Further, each function fi
is differentiable, and its gradient is

∇fi(x) =
{

AT
i: (Ai:x − bi) if Ai:x − bi ≥ 0,

0 otherwise.

Zhi-Quan Luo (Shenzhen Research Institute of Big Data The Chinese University of Hong Kong, Shenzhen, China [10pt] Joint work with Mingyi Hong, Meisam Razaviyayn, Navid Reyhanian[10pt] )A Linearly Convergent Double Stochastic Gauss-Seidel Algorithm for Linear Systems2018 MOA, Beijing 24 / 38



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

System of Linear Inequalities A Double Stochastic Alternating Projection Algorithm

Full Column Rank Case

Suppose A is full column rank.

λmin(AAT) > 0. (18)

Claim

Suppose A has full row rank, and α is chosen as

α <
λmin(AAT)

∥A∥F
. (19)

Then we have

E[f(x+) | x] ≤
(

1 −
(
λmin(ATA)

2∥A∥2
F

)2)
f(x) (20)

This implies global linear convergence of the feasibility error residual in expectation.
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System of Linear Inequalities A Double Stochastic Alternating Projection Algorithm

General Rank Case: Hoffman’s Error Bound

W need to use the well-known Hoffman’s error bound.

Theorem
Let S denote the solution set for the linear system in the constraint (15). Then there
exists a constant τ > 0 independent of b, with the following property

x ∈ Rn, S ̸= ∅ =⇒ dist(x,S) ≤ τ∥(Ax − b)+∥. (21)

where we have defined

(Ax − b)+ = max{0,Ax − b}, dist(x,S) := inf
y∈S

∥x − y∥. (22)
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System of Linear Inequalities A Double Stochastic Alternating Projection Algorithm

Convergence Result: General Rank Case

Assume that the system (15) is feasible, and let S denote its solution set and let x∗ ∈ S.
Clearly we have f(x∗) :=

∑m
i=1 fi(x∗) = 0. We have the following claim.

Claim
Consider a consistent system Ax ≤ b with arbitrary A. Let us pick

α =
1
n .

Then Algorithm 2 achieves the following convergence rate

E[dist2(x+,S) | x] ≤
(

1 − 1
nτ2∑

ij a2
ij

)
dist2(x,S). (23)

Again, global linear convergence!

Zhi-Quan Luo (Shenzhen Research Institute of Big Data The Chinese University of Hong Kong, Shenzhen, China [10pt] Joint work with Mingyi Hong, Meisam Razaviyayn, Navid Reyhanian[10pt] )A Linearly Convergent Double Stochastic Gauss-Seidel Algorithm for Linear Systems2018 MOA, Beijing 27 / 38



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

System of Linear Inequalities Gradient Based Method

A Coordinate Gradient Descent Method for Linear
Feasibility

Let us consider the following algorithm:

Algorithm 3. A double stochastic coordinate descent algorithm.
At iteration 0, randomly generate x0.
At iteration r + 1, randomly pick the index pair (i, j) with probability pij = p = 1

mn .
Update xj by the following

xr+1
j =

{
xr

j , if aT
i xr ≤ bi

xj + αaij
(
bi −

∑
k=1 aikxk

)
, otherwise. (24)
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System of Linear Inequalities Gradient Based Method

A Coordinate Gradient Descent Method for Nonlinear
Feasibility
Let us consider the convex feasibility problem:

Find x ∈ S := {x | gi(x) ≤ 0, i = 1, ...,m}, gi is convex and differentiable
or equivalently

min
x

f(x) :=
m∑

i=1
(gi(x))2

+ =

m∑
i=1

fi(x), where fi(x) := max{0, gi(x)}.

Then fi remains convex and differentiable. Consider the following algorithm:

Algorithm 4. A double stochastic coordinate descent algorithm.
At iteration 0, randomly generate x0.
At iteration r + 1, randomly pick the index pair (i, j) with probability pij = p = 1

mn .
Update xj by the following

xr+1
j =

{
xr

j , if gi(xr) ≤ 0
xj + α∇jgi(xr)gi(xr), otherwise. (25)
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System of Linear Inequalities Gradient Based Method

Error Bound

Assume the following global error bound holds: there exists some τ > 0 such that

dist(x,S) ≤ τ∥ max
i=1,...,m

(gi(x))+∥, ∀x ∈ ℜn. (26)

The the error bound (26) is known to hold
• linear case (Hoffman’52) and
• convex quadratic systems satisfying Slater condition (Luo-Luo’94).
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System of Linear Inequalities Gradient Based Method

Convergence Result

Moreover, S has a nonempty interior.

Claim
Consider a consistent system S = {x | gi(x) ≤ 0, i = 1, ...,m} with an nonempty interior,
where each gi is convex and continuously differentiable. Suppose the error bound holds.
Then for sufficiently small α, Then Algorithm 4 achieves a linear rate of convergence

E[dist2(x+,S) | x] ≤ ρdist2(x,S), for some ρ > 0. (27)
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Proof Sketch

Outline

1 Introduction
The G-S Type Algorithms for Linear Systems

2 System of Linear Equations
A Double Stochastic Algorithm

3 System of Linear Inequalities
A Double Stochastic Alternating Projection Algorithm
Gradient Based Method

4 Proof Sketch
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Proof Sketch

Proof Sketch

Recall that from the update rule we have

x+ = x + α

(bi −
∑

k=1 aikxk

aij

)
ej.

Let us define x∗(x) := arg miny∈S ∥x − y∥. We have the following

E[dist2(x+,S) | x] = E[∥x+ − x∗(x+)∥2 | x] ≤ E[∥x+ − x∗(x)∥2 | x] (28)
= E[∥x+ − x∥2 | x]︸ ︷︷ ︸

term 1

+ E
[
⟨x+ − x, x − x∗(x)⟩ | x

]︸ ︷︷ ︸
term 2

+ ∥x − x∗(x)∥2.
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Proof Sketch

Proof Sketch: bounding term 1

Let us bound the above equality term by term. First we have

E[∥x+ − x∥2 | x] =
∑

(i,j):i∈I

pijα
2
∥∥∥∥(bi −

∑
k=1 aikxk

aij

)
ej

∥∥∥∥2

=
∑

(i,j):i∈I

1∑
i,j aij

α2

∥∥∥∥∥aij

(
bi −

∑
k=1

aikxk

)
ej

∥∥∥∥∥
2

=
∑
i:i∈I

1∑
i,j aij

α2n
∥∥∥∥∥aij

(
bi −

∑
k=1

aikxk

)∥∥∥∥∥
2

=
α2n∑
i,j aij

∑
(i):i∈I

∥AIx − bI∥2 .

where I denotes the set of violated constraints at current iteration.
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Proof Sketch

Proof Sketch: bounding term 2
The second term in (29) is given by

E
[
⟨x+ − x, x − x∗(x)⟩ | x

]
= 2α

∑
(i,j):i∈I

⟨
pijα

(bi −
∑

k=1 aikxk

aij

)
ej, x − x∗(x)

⟩

= 2α 1∑
ij aij

∑
(i,j):i∈I

⟨
α

(
aij(bi −

∑
k=1

aikxk)

)
ej, x − x∗(x)

⟩

= 2α 1∑
ij aij

⟨
AT

I (bI − AIx), x − x∗(x)
⟩

= −2α 1∑
ij aij

⟨∇f(x), x − x∗(x)⟩

≤ −2α 1∑
ij aij

(f(x)− f(x∗(x)))

= −2α 1∑
ij aij

∥AIx − bI∥2.

where the first step is because x − x∗(x) is deterministic when conditioned on x; the
first inequality is due to the convexity of f; and the last step is because f(x∗(x)) = 0.
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Proof Sketch

Therefore, overall we have

E[dist2(x+,S)] ≤ nα2 − 2α∑
ij a2

ij
∥AIx − bI∥2 + ∥x − x∗(x)∥2.

Therefore if α ≤ 2/n, we can apply the Hoffman error bound (21)

E[dist2(x+,S)] ≤ nα2 − 2α
τ2∑

ij a2
ij

dist2(x,S) + ∥x − x∗(x)∥2

=

(
1 − nα2 − 2α

τ2∑
ij a2

ij

)
dist2(x,S)

α= 1
n

≤

(
1 − 1

nτ2∑
ij a2

ij

)
dist2(x,S). (29)

Therefore we conclude that the algorithm converges linearly in expectation.
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Concluding Remarks

We considered G-S algorithms for linear systems. Many big data applications involve a
minimization problem of the form

min
x∈Rn

f(x) =
m∑

i=1
fi(x)

• When m is large and n moderate, we use incremental/stochastic gradient descent
◃ needs full gradient to ensure linear convergence

• When m is moderate and n is large, we use block coordinate descent/minimization
◃ needs partial gradient of f to ensure linear convergence

• When m and n are both large, we need to use incremental/stochastic block
coordinate descent/minimization method

◃ needs proper randomization to ensure linear convergence
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Thank You!
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