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Composite convex program

Consider the following composite convex program

min
x∈Rn

f (x) + h(x),

where f and h are convex, f is differentiable but h may not

Many applications:
Sparse and low rank optimization: h(x) = ‖x‖1 or ‖X ‖∗ and many
other forms.

Regularized risk minimization: f (x) =
∑

i fi(x) is a loss function of
some misfit and h is a regularization term.

Constrained program: h is an indicator function of a convex set.
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A General Recipe

Goal: study approaches to bridge the gap between first-order and
second-order type methods for composite convex programs.

key observations:
Many popular first-order methods can be equivalent to some
fixed-point iterations: xk+1 = T (xk );

Advantages: easy to implement; converge fast to a solution with
moderate accuracy.

Disadvantages: slow tail convergence.

The original problem is equivalent to the system
F (x) := (I − T )(x) = 0.

Newton-type method since F (x) is semi-smooth in many cases

Computational costs can be controlled reasonably well
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An SDP From Electronic Structure Calculation

system: BeO
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Forward-backward splitting (FBS)

proximal mapping:

proxth(x) := argmin
u∈Rn

{h(u) +
1
2t
‖u − x‖22}.

FBS is the iteration

xk+1 = proxth(xk − t∇f (xk )), k = 0,1, · · · ,

= arg min
x

〈
∇f (xk ), x − xk

〉
+

1
2t
‖x − xk‖22 + h(x)

Equivalent to a fixed-point iteration

xk+1 = TFBS(xk ).

where
TFBS := proxth ◦ (I − t∇f ).
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Douglas-Rachford splitting (DRS)/ADMM

DRS is the following update:

xk+1 = proxth(zk ),

yk+1 = proxtf (2xk+1 − zk ),

zk+1 = zk + yk+1 − xk+1.

Equivalent to a fixed-point iteration

zk+1 = TDRS(zk ),

where
TDRS := I + proxtf ◦ (2proxth − I) − proxth.

The ADMM to the primal is equivalent to the DRS to the dual
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Semi-smoothness

Solving the system
F (z) = 0,

where F (z) = T (z) − z and T (z) is a fixed-point mapping.

F (z) fails to be differentiable in many interesting applications.

but F (z) is (strongly) semi-smooth and monotone.
(a) F is directionally differentiable at x ; and

(b) for any d ∈ Rn and J ∈ ∂F (x + d),

‖F (x + d) − F (x) − Jd‖2 = o(‖d‖2) as d → 0.
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A regularized semi-smooth Newton method

The Jacobian Jk ∈ ∂BF (zk ) is positive semidefinite

Let µk = λk‖F k‖2. Constructe a Newton system:

(Jk + µk I)d = −F k ,

Solving the Newton system inexactly:

r k := (Jk + µk I)dk + F k .

We seek a step dk approximately such that

‖r k‖2 ≤ τmin{1, λk‖F k‖2‖dk‖2}, where 0 < τ < 1

Newton Step: zk+1 = zk + dk

Faster local convergence is ensured
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Semidefinite Programming

Consider the SDP

min
〈
C,X

〉
, s.t. AX = b,X � 0

f (X ) =
〈
C,X

〉
+ 1{AX=b}(X ).

h(X ) = 1K (X ), where K = {X : X � 0}.

Proximal Operator: proxth(Z ) = arg minX
1
2‖X − Z ‖2F + th(X )

Let Z = QΣQT be the spectral decomposition

proxtf (Y ) = (Y + tC) −A∗(AY + tAC − b),

proxth(Z ) = QαΣαQT
α ,

Fixed-point mapping from DRS:

F (Z ) = proxth(Z ) − proxtf (2proxth(Z ) − Z ) = 0.
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Semi-smooth Newton System

assumption: AA∗ = I

The SMW theorem yields the inverse matrix

(Jk + µk I)−1 = H−1 + H−1AT (I − AWH−1AT )−1AWH−1

=
1

µ(µ + 1)
(µI + T )(I + A>(

µ2

2µ + 1
I + ATA>)−1A(

µ

2µ + 1
I − T )).

ATA>d = AQ(Ω0 ◦ (QT (D)Q))QT , where D = A∗d ,

Ω0 =

[
Eαα lαᾱ
lTαᾱ 0

]
,

and Eαα is a matrix of ones and lij =
µkij

µ+1−kij

computational cost O(|α|n2)
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Semi-smooth Newton method

Select 0 < v < 1, 0 < η1 ≤ η2 < 1 and 1 < γ1 ≤ γ2. λ > 0

A trial point Uk = Z k + Sk

Define a ratio

ρk =
−

〈
F (Uk ),Sk

〉
‖Sk‖2F

.

Update the point

Z k+1 =

 Uk , if ‖F (Uk )‖F ≤ ν max
max(1,k−ζ+1)≤j≤k

‖F (Z j)‖F , [Newton]

Z k , otherwise. [failed]

Update the regularization prameter

λk+1 ∈


(λ, λk ), if ρk ≥ η2,

[λk , γ1λk ], if η1 ≤ ρk < η2,

(γ1λk , γ2λk ], otherwise,.
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Switching between the ADMM and Newton steps

the reduced ratios of primal and dual infeasibilities

ωk
ηp

=
meank−5≤j≤kη

j
p

meank−25≤j≤k−20η
j
p

and ωk
ηq

=
meank−5≤j≤kη

j
q

meank−25≤j≤k−20η
j
q

.

Repeat:
Semi-smooth Newton steps (doSSN == 1)
Compute Uk = Z k + Sk . Then update Z k+1 and λk+1.
If Newton step is failed, set Nf = Nf + 1.
If Nf ≥ N̄f or the Newton step performs bad

Set doSSN = 0 and parameters for the ADMM steps

ADMM steps (doSSN == 0)
Perform an ADMM step.
If the ADMM step performs bad

Set doSSN = 1, Nf = 0 and parameters of the Newton steps
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Global Convergence

Theorem

Suppose that {Z k } is a sequence generated by the semismooth
Newton method. Then the residuals of {Z k } converge to 0, i.e.,
limk→∞ ||F (Z k )|| = 0.

If {Z k } is bounded, Then any accumulation point of {Z k }

converges to some point Z̄ such that F (Z̄ ) = 0.

This algorithm can solve the general composite optimization.
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Comparison on electronic structure calculation

The data set are used in the paper of Nakata, et al. Thanks Prof.
Nakata Maho and Prof. Mituhiro Fukuta for sharing all data sets on
2RDM

solver:
SDPNAL: Newton-CG Augmented Lagrangian Method proposed
by Zhao, Sun and Toh
SDPNAL+: Enhanced version of SDPNAL by Yang, Sun and Toh
SSNSDP: the semi-smooth Newton method using stop rules
ηp < 3 × 10−6 and ηd < 3 × 10−7.

all experiments were performed on a computing cluster with an Intel
Xeon 2.40GHz CPU that processes 28 cores and 256GB RAM.

main criteria:

ηp =
‖A(X ) − b‖2
max(1, ‖b‖2)

ηd =
‖A∗y − C − S‖F
max(1, ‖C‖F )

ηg =
|bT y − tr(CT X )|

max(1, tr(CT X ))
err = bT y − energyfullCI
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Compuational Results: C2
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Comparison on electronic structure calculation
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Comparison on electronic structure calculation

success: max{ηp, ηd } ≤ 10−6

Figure: Comparison between SDPNAL, SDPNAL+ and SSNSDP
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Examples and Applications

Consider
min

x
f (x) + h(x) =: ψ(x)

Expected and Empirical Risk Minimization:

f (x) := E[F (x , ξ)] =

∫
Ω

F (x , ξ(ω)) dP(ω), f (x) :=
1
N

N∑
i=1

fi(x)

Applications and Typical Situation:
Large-scale machine learning problems, LASSO, sparse and
bilinear logistic regression, low-rank matrix completion, sparse
dictionary learning, ...
P is not known (completely) or N is very large.

 Full evaluation of f and ∇f is impractical or even not possible.
 Use stoch. optimization techniques and sampling strategies!
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First-Order Optimality Conditions

First Order Optimality Conditions for minx ψ(x):
A point x ∈ dom h is a stationary point iff

0 ∈ ∇f (x) + ∂h(x),

where ∂h(x) is the convex subdifferential of h at x .

The optimality conditions can be rewritten as follows:

Optimality Conditions as Nonsmooth Equation:

F Λ(x) := x − proxΛ
h (x − Λ−1∇f (x)) = 0,

where Rn×n 3 Λ � 0 is symmetric and positive definite and proxΛh is
the proximity operator [Moreau ’65]:

proxΛ
h (y) := argminz h(z) +

1
2
‖y − z‖2Λ.
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Algorithmic Background

In [Fukushima, Mine ’81; Tseng, Yun ’09] −F Λ(x) is used as a
descent direction and an Armijo-type line search is included to
ensure global convergence.

 This defines the basic proximal gradient method.

In our setting, f and ∇f have to be estimated or sub-sampled.

General idea of first-order stochastic optimization methods: use
a stochastic oracle (SFO) to estimate the gradient:

G(xk ; sk ) ≈ ∇f (xk ),

where sk is a collection of random variables or samples.
 This leads to stochastic variants of the mapping F Λ:

F Λ
s (x) = x − proxΛ

h (x − Λ−1G(x ; s))

and to different stochastic proximal gradient methods.
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Related Work and Literature

First Order Methods:
[Robbins, Monro ’51]: Foundations of the classical SGD.
[Polyak ’90; Nemirovski et al. ’09; Friedlander, Schmidt ’12], [...]

[Ghadimi, Lan (et al.) ’13, ’16, ’16]: (Accelerated) Proximal gradient
schemes for nonconvex problems.
[Xiao, Zhang ’14; Reddi et al. ’16]: Proximal SVRG and SAGA.
[Xu, Yin ’15]: Block prox-SGD for nonconvex problems.

Quasi-Newton Methods:
[Schraudolph et al. ’07; Mokhtari, Ribeiro ’14, ’15]: Sub-sampled
(L)BFGS for online optimization.
[Byrd et al. ’11, ’16; Gower et al. ’16]: Stochastic Quasi-Newton.
[Wang et al. ’17]: Stochastic Quasi-Newton for nonconvex prob.
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Related Work and Literature (Cont’)

Second Order Methods:
[Agarwal et al. ’16]: LiSSA; Hessian sampling for convex prob.

[Bollapragada et al. ’16]: Sub-sampled Newton; convergence in
expectation; fi strongly convex.

[Xu et al. ’16]: Sub-sampled Newton with nonuniform sampling.

[Roosta-K., Mahoney ’16; Xu et al. ’17, ’17]: Sub-sampled Newton;
convergence results in probability.

[Pilanci, Wainwright ’17]: Newton sketch.

[Ye et al. ’17]: Local conv. of approximate Newton methods.
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Algorithmic Idea

Basic idea based on xk+1 = TFBS(xk ) = proxΛ
h (xk − t∇f (xk )).

The proximity operator [Moreau ’65]

proxΛ
h (y) := argminz h(z) +

1
2
‖y − z‖2Λ.

We incorporate second order information and use stochastic
Hessian oracles (SSO)

H(xk ; tk ) ≈ ∇2f (xk )

to estimate the Hessian ∇2f and compute the Newton step.
The sample collections sk and tk are chosen independently of
each other and of the other batches s`, t`, ` ∈ N0 \ {k }.

Let G : Rn × Ξ→ Rn and H : Rn × Ξ→ Sn be Carathéodory
functions. We work with the following SFO and SSO:

Gsk (x) :=
1
ng

k

ng
k∑

i=1

G(x ; sk
i ) and Htk (x) :=

1
nh

k

nh
k∑

j=1

H(x ; tk
j ).
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Stochastic Semi-smooth Newton Method: Idea

To accelerate the stochastic proximal gradient method, we want to
augment it by a stochastic Newton-type step, obtained from the
(sub-sampled) optimality condition:

F Λ
s (x) = x − proxΛ

h (x − Λ−1Gs(x)) ≈ 0.

The semi-smooth Newton step is given by

Mk dk = −F Λ
sk (xk ), xk+1 = xk + dk ,

with sample batches sk , tk and Mk ∈ M
Λk
sk ,tk (xk ),

MΛ
s,t (x) := {M = I − D + DΛ−1Ht (x) : D ∈ ∂proxΛ

h (uΛ
s (x))}

and uΛ
s (x) := x − Λ−1Gs(x).

 Aim: Utilize fast local convergence to stationary points!
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Stochastic Semismooth Newton Method

Sub-sampled Semi-smooth Newton Method (S4N)

0. Choose x0 ∈ dom h, batch sizes (ng
k ), (nh

k ), matrices (Λk ), and
step sizes (αk ). Select ind. batches s0, t0. Set k := 0.
While “not converged” do:

1. Compute F Λk
sk (xk ) and choose Mk ∈ M

Λk
sk ,tk (xk ). Select new

sample batches sk+1, tk+1.
2. Compute the semismooth Newton step via

Mkdk = −F Λk
sk (xk ).

If this is not possible, go to step 4.
3. Set zk := xk + dk . If zk ∈ dom h and zk satisfies the growth

conditions (?), set xk+1 := zk and go to step 5.

4. Compute a proximal gradient step xk+1 := xk − αkF Λk
sk (xk ).

5. Increment k and go to step 1.
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Algorithmic Framework (Cont’)

We use the following growth conditions (?) in step 3:

‖F Λk+1

sk+1 (zk )‖ ≤ (η + νk ) · θk + ε1
k , (G.1)

ψ(zk ) ≤ ψ(xk ) + β · θ1/2
k ‖F

Λk+1

sk+1 (zk )‖1/2 + ε2
k , (G.2)

where η ∈ (0,1), β > 0, and (νk ), (ε2
k ) ∈ `1

+, (ε1
k ) ∈ `1/2

+ .

We set θk+1 to ‖F Λk+1

sk+1 (xk+1)‖ if xk+1 was obtained in step 3.

Remark:

Calculating F Λk+1

sk+1 (zk ) requires evaluation of Gsk+1(zk ). This
information can be reused in the next iteration if zk  xk+1 is
accepted as new iterate.
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Global Convergence: Assumptions

Basic Assumptions:
(A.1) ∇f is Lipschitz continuous on Rn with constant L.
(A.2) The matrices (Λk ) ⊂ Sn

++ satisfy λM I � Λk � λmI for all k .
(A.3) ψ is bounded from below on dom h.

Stochastic Assumptions:
(S.1) For all k ∈ N , there exists σk ≥ 0 such that

E[‖∇f (xk ) − Gsk (xk )‖2] ≤ σ2
k .

(S.2) The matrices Mk , chosen in step 1, are random operators.
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Global Convergence

Theorem: Global Convergence [MXCW, ’17]

Suppose that (A.1)–(A.3) and (S.1)–(S.2) are fulfilled. Then, under
the additional conditions, αk ≤ α := min{1, λm/L},

(αk ) is nonincreasing ,
∑

αk = ∞,
∑

αkσ
2
k < ∞

it holds lim infk→∞ E[‖F Λ(xk )‖2] = 0 and lim infk→∞ F Λ(xk ) = 0 a.s. for
any Λ ∈ Sn

++.

Verify that (xk ) actually defines an adapted stochastic process.
The batch sk and the iterate xk are not independent.
Derive approximate and uniform descent estimates for the terms
ψ(xk ) − ψ(xk+1).

For strongly convex case: limk→∞ E[‖F Λ(xk )‖2] = 0 and
limk→∞ F Λ(xk ) = 0 a.s. for any Λ ∈ Sn

++.
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Assumptions for Local Convergence

 We study local conv. of a sequence of iterates (trajectory) (xk ) of
a single run of S4N.

Assumptions:

Let x∗ and Λ∗ be accumulation points of (xk ) and (Λk ). Let us
assume that there exists ε̄ > 0 such that:

(C.1) There exists k̄ ∈ N such that Λk = Λ∗ for all k ≥ k̄ .
(C.2) There exist ν∗,K∗ > 0 such that

λmin(∇2f (x)) ≥ ν∗, λmax(∇2f (x)) ≤ K∗, ∀ x ∈ Bε̄(x∗).

(C.3) ψ is Lipschitz continuous on Bε̄(x∗) with constant Lψ.
(C.4) The residual mapping F Λ∗ is semismooth at x∗.

(C.2) is satisfied if the Hessian ∇2f (x∗) is positive definite.
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Refined Stochastic Assumptions

We define the error terms

E
g
sk

i
(x) := ∇f (x) −G(x ; sk

i ), Eh
tk
j

(x) := ∇2f (x) − H(x ; tk
j ).

Stochastic Assumptions (Extended):

We now assume that the oracles G(·; sk
i ) and H(·; tk

j ) are unbiased
estimators of the gradient and Hessian, i.e., for all i , j , and k ,

E[E
g
sk

i
(x)] = 0, E[Eh

tk
j

(x)] = 0, ∀ x ∈ Rn.

(S.3) There are σ̄, ρ̄, such that for all i , j , k and x ∈ Rn, it holds

E[exp(‖E
g
sk

i
(x)‖2/σ̄2)] ≤ e, E[exp(‖Eh

tk
j

(x)‖2/ρ̄2)] ≤ e.
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Theorem: Transition to Fast Convergence [MXCW, ’17]

Setup: Let (δk ) ⊂ (0,1) be given. Let us set C := (2λM + 3K∗)/ν∗,

Rk := min{ε1
k/(2LF C), [ε2

k ]2}, Γk := min{Rk−1,Rk }.

Let the cond. (A.1)–(A.3), (S.2)–(S.3), and (C.1)–(C.4) be
satisfied for some acc. points x∗, Λ∗ of (xk ) and (Λk ).
Assume that the step sizes (αk ) are bounded αk ∈ [α, α].

Then, there exists a constant γ ∈ (0,1) that does not depend on (ε1
k )

and (ε2
k ) such that, if

ng
k ≥

[(
1 +

√
3 log(δ−1

k )
) 2σ̄
λmΓk

]2

, nh
k ≥

3 log(2nδ−1
k )ρ̄2

γ2
,

for all k ≥ ¯̀, we have:
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Transition to Fast Convergence (Cont’)

The point x∗ is a stationary point,
There exists `∗ such that xk results from a stoch. semi-smooth
Newton step for all k ≥ `∗,
The whole sequence (xk ) converges to x∗,

with probability δ∗ :=
∏∞

k=¯̀(1 − 2δk )(1 − δk ).

Remarks:
Based on concentration ineq. for vector- and matrix-valued
martingales [Juditsky, Nemirovski ’09; Tropp ’12; ...]

If the batch size ng
k increases geometrically, i.e., if for some

ηγ ∈ (0,1), we redefine Γk := min{Rk−1,Rk } and

Rk := min{min{ε1
k , η

k−¯̀
γ }/(2LF C), [ε2

k ]2},

then (xk ) converges r-linearly to x∗ with rate ηγ.
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Further Remarks and an Example

Remarks (Cont’):
 Extension to r-superlinear convergence is possible!
 If the full gradient is used eventually, we can obtain q-linear and

q-superlinear convergence with high probability.

Example:

Let c1, c2, $ > 0 be given and let us set εk
1 = c1 · k−(2+$

4 ) and
εk

2 = c2 · k−(1+$
8 ) for all k ∈ N . Then, setting

ng
k = k4+$ log(k) and nh

k = log(k)1+$,

the local convergence results hold with probability δ∗ ≥ 99%.
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Numerical Results: Sparse Logistic Regression

We consider the following `1-regularized logistic regression problem

min
x

1
N

N∑
i=1

fi(x) + µ‖x‖1, fi(x) := log(1 + exp(−bi · a>i x))

where a>i ∈ R
n denotes the i th row of the data matrix A ∈ RN×n and

b ∈ {−1,1}N is a binary vector.

Specifications of the test framework:1

dataset data points N features n
covtype 581 012 54 µ = 5e-3
gisette 6 000 5 000 µ = 5e-2
rcv1 20 242 47 236 µ = 1e-3

1LIBSVM - www.csie.ntu.edu.tw/ cjlin/libsvm/
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Numerical Comparisons - covtype, Epochs
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Numerical Comparisons - covtype, Time
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Numerical Comparisons - gisette, Epochs
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Numerical Comparisons - gisette, Time
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Competitive salary as U.S and Europe
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