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Low-Rank Matrix Recovery

• A prototypical form of low-rank matrix recovery problems:

min
X∈Rm×n

f(X) subject to rank(X) ≤ r,

where we assume that f : Rm×n → R+ is a smooth convex function.

• Various applications (see the survey [Davenport-Romberg’16])

– multi-label classification

– multi-task learning

– network localization

– recommender systems

• A non-convex, NP-hard problem in general.
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Low-Rank Matrix Recovery: Convex Approaches

• A popular approach is to replace rank(·) by a convex surrogate, thus yielding a
convex optimization problem (see, e.g., [Recht-Fazel-Parrilo’10, Gross’11]).
Examples include:

min
X∈Rm×n

f(X) subject to ‖X‖∗ ≤ r,

min
X∈Rm×n

{f(X) + λ‖X‖∗} .

• Advantages

– polynomial-time solvable

– exact recovery results under certain assumptions on f

• Issue

– can be expensive to solve when problem size is large
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Low-Rank Matrix Recovery: Non-Convex Approaches

• An alternative approach is to write X = UV T , where U ∈ Rm×r and V ∈ Rn×r.

– enforce the rank constraint explicitly

– commonly used in practice

• This gives the following factored form of the low-rank matrix recovery problem:

min
U∈Rm×r, V ∈Rn×r

f(UV T ).

• Advantages

– smaller variable size

– can often be tackled by standard methods (e.g., gradient descent, alternating
minimization)

• Issues

– ambiguities caused by invertible transformation: if (U, V ) is a solution, then
so is

(

UM,V (M−1)T
)

for any invertible M

– a non-convex formulation
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Low-Rank Matrix Recovery: Non-Convex Approaches

• To address the first issue, one approach is to include a regularizer in the
formulation (see, e.g., [Koren-Bell-Volinsky’09, Ge-Lee-Ma’16, Sun-Luo’16,
Tu-Boczar-Simchowitz-Soltanolkotabi-Recht’16]):

min
U∈Rm×r, V ∈Rn×r

{

F (U,V ) := f(UV T ) + g(U, V )
}

, (MR-F)

where g : Rm×r × R
n×r → R+ is a smooth regularizer. Such regularizer can

also be used to induce certain desirable structure in the solution.

• Some examples of g include:

– g(U, V ) = λ
2

(

‖U‖2F + ‖V ‖2F
)

– g(U, V ) = λ
4

∥

∥UTU − V TV
∥

∥

2

F
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Low-Rank Matrix Recovery: Non-Convex Approaches

• However, the second issue (i.e., the non-convexity of Problem (MR-F)) remains.

– In fact, even the regularizer g is non-convex in some cases.

• Nevertheless, standard local search heuristics (e.g., gradient descent, alternating
optimization) tend to work well on Problem (MR-F).

– convergence to high-quality solution

– fast convergence rate

• Question: Can such phenomenon be rigorously justified?
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Understanding Non-Convex Low-Rank Matrix Recovery

Current approaches in the literature essentially follow two lines.

• Characterize the growth behavior of F around the set of global optima.

– basins of attraction

– yield convergence rate results for suitably initialized standard methods

– Examples: [Jain-Netrapalli-Sanghavi’13, Hardt’14, Zheng-Lafferty’15,
Zhao-Wang-Liu’15, Sun-Luo’16, Park-Kyrillidis-Caramanis-Sanghavi’16,
Tu-Boczar-Simchowitz-Soltanolkotabi-Recht’16]

• Characterize the global geometry of F .

– no spurious local minima

– yield global convergence of suitably modified gradient descent methods

– Example: [Bhojanapalli-Neyshabur-Srebro’16, Ge-Lee-Ma’16, Li-Lu-
Arora-Haupt-Liu-Zhao’16, Ge-Jin-Zheng’17, Park-Kyrillidis-Caramanis-
Sanghavi’17, Zhu-Li-Tang-Wakin’17, Li-Zhu-Tang’18]
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ADMM for Non-Convex Low-Rank Matrix Recovery

• Despite the significant recent advances, the convergence behavior of certain
practically efficient methods is still not well understood.

– Case in point: Alternating Direction Method of Multipliers (ADMM)

• To tackle Problem (MR-F) by ADMM, we rewrite it as

min
X∈Rm×n

U∈Rm×r, V ∈Rn×r

{f(X) + g(U, V )} subject to X = UV T . (MR-C)

• Observation: The constraint is bi-affine in (X,U) and V . If the objective
function is bi-convex in (X,U) and V , then Problem (MR-C) admits exact
ADMM updates (see, e.g., [Boyd-Parikh-Chu-Peleato-Eckstein’11]).
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ADMM for Non-Convex Low-Rank Matrix Recovery

• The augmented Lagrangian associated with Problem (MR-C) is given by

Lβ(X,U, V ; Λ) = f(X) + g(U, V )− 〈Λ,X − UV T 〉+
β

2
‖X − UV T‖2F ,

where β > 0 is a given parameter.

• The ADMM updates in the k-th iteration is then given by






















































Uk+1 = arg min
U∈Rm×r

{

Lβ(X
k, U, V k; Λk) +

1

2
‖U − Uk‖2

P

}

,

V k+1 = arg min
V ∈Rn×r

{

Lβ(X
k, Uk+1, V ; Λk) +

1

2
‖V − V k‖2

Q

}

,

X
k+1

= arg min
X∈Rm×n

Lβ(X,U
k+1

, V
k+1

; Λ
k
),

Λk+1 = Λk − β
(

Xk+1 − Uk+1(V k+1)T
)

.

(1a)

(1b)

(1c)

(1d)

Here, P ∈ S
m
+ , Q ∈ S

n
+ are chosen such that for some ν > 0, U 7→ g(U, V ) +

1
2‖U‖2P and V 7→ g(U, V ) + 1

2‖V ‖2Q are ν-strongly convex; cf. [Fazel-Pong-
Sun-Tseng’13, Han-Sun-Zhang’17].
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Prior Convergence Analyses of the ADMM

• Existing analyses of ADMM in non-convex settings do not fully exploit the
structural properties of the regularized low-rank matrix recovery problem (MR-F).

– The works [Hong-Luo-Razaviyayn’16, Wang-Yin-Zeng’15, Yang-Pong-
Chen’17] deal with affine, not bi-affine, constraints.

– The work [Hajinezhad-Shi’18] tackles the bi-affine constraints but establishes
only global subsequential convergence of the iterates to critical points.
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Convergence Analysis of the ADMM: Basic Assumptions

We focus on instances of Problem (MR-F) with square loss—i.e.,

min
U∈Rm×r, V ∈Rn×r

{

F (U, V ) :=
1

2
‖A(UV T )− b‖22 + g(U, V )

}

(MR-F)

for given linear operator A and vector b—and satisfy the following assumptions:

• The regularizer g : Rm×r ×R
n×r → R+ is differentiable and semi-algebraic and

satisfies

– (Orthogonal Invariance) g(U, V ) = g(UR, V R) for any R ∈ Or.

– (Lipschitz Continuity of Gradient) For any compact subset C of Rm×r×R
n×r

and any (U, V ), (U ′, V ′) ∈ C, there exists a constant LC > 0 such that

‖∇g(U, V )−∇g(U ′, V ′)‖F ≤ LC‖(U, V )− (U ′, V ′)‖F .

• The objective function F : Rm×r × Rn×r → R+ is level bounded; i.e., for any
α ∈ R, the set LF (α) := {(U,V ) ∈ R

m×r × R
n×r | F (U,V ) ≤ α} is bounded

(possibly empty).
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Remarks on the Basic Assumptions

• Note that g is not required to be convex, though the ADMM (1) requires the
existence of P ∈ S

m
+ , Q ∈ S

n
+, and ν > 0 such that

U 7→ g(U, V ) +
1

2
‖U‖2P and V 7→ g(U, V ) +

1

2
‖V ‖2Q

are ν-strongly convex, so that the sub-problems can (in principle) be efficiently
solved.

• The rotational invariance of g serves to remove part of the ambiguities in the
factorization X = UV T .

• The level boundedness of F allows us to establish the boundedness of the
sequence generated by the ADMM (1).

• The semi-algebraicity of g implies that of F . As such, we can utilize the
 Lojasiewicz inequality-based convergence theory to establish the convergence of
the ADMM (1).
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Remarks on the Basic Assumptions

Question: Are there instances of Problem (MR-F) satisfying the basic assumptions?

• (S1). Matrix Factorization with Squared Frobenius Norm Regularizer

F (U, V ) =
1

2
‖UV T −M‖2F +

λ

2

(

‖U‖2F + ‖V ‖2F
)

.

Here, M ∈ R
m×n is given.

• (S2). Matrix Sensing with Balancing Regularizer

F (U, V ) =
1

2
‖A(UV T )− b‖22 +

λ

4
‖UTU − V TV ‖2F .

Here, A : Rm×n → R
p is a given linear operator satisfying the (r, δr)-restricted

isometry property (RIP) for some constant δr ∈ (0, 1) (i.e., the inequalities
(1− δr)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δr)‖X‖2F hold for any matrix X ∈ Rm×n of
rank at most r), b ∈ R

p is a given vector.
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Remarks on the Basic Assumptions

• When the objective function takes the form

F (U, V ) =
1

2
‖UV T −M‖2F + g(U, V )

and β = 1, the ADMM (1) reduces to the two-block BCD method, as the
updates (1a) and (1b) become



















Uk+1 = arg min
U∈Rm×r

{

1

2
‖U(V k)T −M‖2F + g(U, V k) +

1

2
‖U − Uk‖2P

}

,

V k+1 = arg min
V ∈Rn×r

{

1

2
‖Uk+1V T −M‖2F + g(Uk+1, V ) +

1

2
‖V − V k‖2Q

}

.

• Our convergence results apply to this case as well.
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Global Convergence Analysis of the ADMM

• Let U0 ∈ R
m×r and V 0 ∈ R

n×r be arbitrary. Consider the initialization

X0 = U0(V 0)T , Λ0 = A∗(A(X0)− b). (2)

Let Zk = (Xk, Uk, V k; Λk), k = 0, 1, . . ., be the iterates generated by the
ADMM (1).

• Our immediate goal is to establish the convergence of {Zk}k≥0.

• Based on the assumptions made, one can show

Proposition. (Sequence Boundedness) Suppose that β ≥ ‖A‖2. Then,
{Zk}k≥0 is bounded.

• To proceed, we utilize the convergence theory developed in [Attouch-Bolte-
Svaiter’13].
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Global Convergence Analysis of the ADMM

• Fact: [Attouch-Bolte-Svaiter’13] Let h : Rℓ → R be a differentiable function
satisfying the Kurdyka- Lojasiewicz property at its critical points. Furthermore,
suppose that {yk}k≥0 is a bounded sequence satisfying the following properties:

– (Sufficient Decrease) There exists a constant a > 0 such that for k = 0, 1, . . .,

h(yk+1)− h(yk) ≤ −a‖yk+1 − yk‖22.

– (Safeguard) There exists a constant b > 0 such that for k = 0, 1, . . .,

‖∇h(yk+1)‖2 ≤ b‖yk+1 − yk‖2.

Then, the sequence {yk}k≥0 converges to a critical point of h.

• Task: We need to find an appropriate h for our setting.
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Global Convergence Analysis of the ADMM

• By letting Lk
β = Lβ(Z

k), one can show

Proposition. (Sufficient Decrease) Suppose that β ≥ ‖A‖2. There exist
constants p, τ > 0 such that for k = 1, 2, . . .,

(

Lk+1
β +

p

2
‖Xk+1 −Xk‖2F

)

−
(

Lk
β +

p

2
‖Xk −Xk−1‖2F

)

≤ −
τ

2

(

‖Xk+1 −Xk‖2F + ‖Xk −Xk−1‖2F + ‖Uk+1 − Uk‖2F + ‖V k+1 − V k‖2F
)

.

• This motivates us to define the following h:

h(X,X ′, U, V ; Λ) = Lβ(X,U, V ; Λ) +
p

2
‖X −X ′‖2F ,

where p > 0 is the constant in the above proposition.

• Note that h is differentiable. Moreover, our assumption implies that h is
semi-algebraic, thus satisfying the Kurdyka- Lojasiewicz property at its critical
points.
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Global Convergence Analysis of the ADMM

• Let yk = (Xk,Xk−1, Uk, V k; Λk), where k = 1, 2, . . ..

• Using the optimality conditions of the ADMM updates (1a)–(1d), one can show
that Λk+1 − Λk = A∗A(Xk+1 − Xk). Hence, the above sufficient decrease
property can be expressed as

h(yk+1)− h(yk) ≤ −a‖yk+1 − yk‖2F

for some constant a > 0.

• Furthermore, one can show that the safeguard property holds for the function h
we defined.

• By utilizing the convergence theory developed in [Attouch-Bolte-Svaiter’13]
and comparing the critical points of F and h, we obtain the following

Theorem. (Global Convergence of the ADMM) Suppose that β ≥ ‖A‖2 and
(X0, U0, V 0; Λ0) is initialized according to (2). Then, the sequence (Uk, V k)k≥0

converges to a critical point of F .
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Local Convergence Analysis of the ADMM

• Our next goal is to study the local convergence behavior of the ADMM when
the initial point lies in a suitably chosen neighborhood of the optimal solution
set W.

• Motivated by the orthogonal invariance of F , we use the following to measure
the distance between a point (U, V ) and an optimal solution (U⋆, V ⋆):

dist((U,V ), (U⋆, V ⋆)) = min
R∈Or

‖(U, V )− (U⋆R,V ⋆R)‖F .

We can then define neighborhoods of W via

dist((U, V ),W) = inf
(U⋆,V ⋆)∈W

dist((U,V ), (U⋆, V ⋆)).
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Local Convergence Analysis of the ADMM: Assumption

• To determine the convergence rate of the ADMM, one typically needs to impose
a growth condition on certain function related to F .

• We assume that F satisfies the  Lojasiewicz inequality with exponent 1/2 at
any (U⋆, V ⋆) ∈ W; i.e., there exist constants δ, c > 0 such that for any
(U,V ) ∈ Rm×r×Rn×r and (U⋆, V ⋆) ∈ W satisfying dist((U, V ), (U⋆, V ⋆)) ≤ δ,

|F (U,V )− F (U⋆, V ⋆)|1/2 ≤ c‖∇F (U, V )‖F .
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Remarks on the  Lojasiewicz Inequality Assumption

• It is important to note that we require the objective function F to satisfy the
 Lojasiewicz inequality, not the augmented Lagrangian Lβ.

• It is possible to establish the  Lojasiewicz inequality with exponent 1/2 (and
explicitly given constants δ, c > 0) for various F ’s, such as the ones below:

F (U, V ) =
1

2
‖UV T −M‖2F +

λ

2

(

‖U‖2F + ‖V ‖2F
)

, (S1)

F (U, V ) =
1

2
‖A(UV T )− b‖22 +

λ

4
‖UTU − V TV ‖2F . (S2)

The  Lojasiewicz inequality with exponent 1/2 for (S1) is new, while that for
(S2) can be deduced essentially from the results in [Zhu-Li-Tang-Wakin’17].

• However, it is typically much more difficult to establish the  Lojasiewicz inequality
with an explicit exponent for the corresponding Lβ’s, as they involve the dual
variable Λ.
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Remarks on the  Lojasiewicz Inequality Assumption

• Since the ADMM updates involve both the primal variables (X,U, V ) and the
dual variable Λ, why is it sufficient to just assume that F satisfies the  Lojasiewicz
inequality?

• Key Observation: The cost-to-go of the augmented Lagrangian Lβ can be
controlled by that of the objective function F . Specifically,

Proposition. (Cost-to-Go Estimate) Let (U⋆, V ⋆) ∈ W and set X⋆ = U⋆(V ⋆)T ,
Λ⋆ = A∗(A(X⋆)− b), Z⋆ = (X⋆, U⋆, V ⋆; Λ⋆). Then, for k = 0, 1, . . .,

Lk+1
β − Lβ(Z

⋆) ≤ F (Uk+1, V k+1)− F (U⋆, V ⋆) +
‖A‖4

2β
‖Xk+1 −Xk‖2F .
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Local Convergence Analysis of the ADMM

• Consequently, we obtain the following

Theorem. (Linear Convergence of the ADMM) Suppose that β ≥ ‖A‖2.
Furthermore, suppose that (X0, U0, V 0; Λ0) is initialized according to (2) and
satisfies dist((U0, V 0),W) ≤ δ0 for some constant δ0 > 0. Then, there exist
constants γ > 0, ρ ∈ (0, 1) such that for k = 0, 1, . . .,

dist((Uk, V k),W) ≤ γ · ρk;

i.e., the sequence {(Uk, V k)}k≥0 will converge linearly to an optimal solution to
Problem (MR-F).
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Closing Remarks

• We identified several structural properties of a class of non-convex regularized
low-rank matrix recovery problems that would imply the global convergence and
local linear convergence of the ADMM.

• We also exhibited two concrete instances that possess such properties.

• An interesting direction is to study the geometric properties of other structured
non-convex optimization problems (such as those that arise in machine learning
and signal processing) and exploit them in the design and analysis of fast
methods.
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Thank You!
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