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Problem setup

Consider a convex primal problem

minimize f(x) + g(x) (P)

and its dual problem

maximize −f∗(y)− g∗(−y). (D)

f, g can be nonsmooth and indicator functions of constraints.
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Douglas-Rachford splitting: “reflect, reflect, average”

Let us find a point in C1 ∩ C2. We apply Douglas-Rachford splitting (DRS) to

minimize
x

δC1 (x) + δC2 (x)

C2

C1

z0

x1/2

x1

z1

z2
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Proximal mapping

To minimize f(x) + g(x), DRS replaces projection by proximal mapping.

The proximal mapping of a function f is defined as

proxγf (x) = arg min
v∈Rn

{
f(v) + 1

2γ ‖v − x‖
2}

When f = δC (indicator of a set C), proxγf is projection to C.
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Douglas-Rachford splitting method1

DRS applied to (P):

xk+1/2 = proxγf (zk)

xk+1 = proxγg(2x
k+1/2 − zk)

zk+1 = zk + xk+1 − xk+1/2.

Main sequence: z0, z1, z2, . . .

f is evaluated at the shadow sequence: x1/2, x1+1/2, x2+1/2, . . .

g is evaluated at the shadow sequence: x1, x2, x3, . . .

1Lions-Mercier’79
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DRS generalizes Spingarn’s, classic ADMM, Prox-ADMM, Chambolle-Pock,
and so on. (However, the transforms are not obvious.)

Once we understand the behavior of DRS, we can translate the results to other
algorithms in principle.
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DRS convergence (classical)

Classical fixed-point analysis:

• If DRS (more generally, a firmly nonexpansive operator) has a fixed point,
then zk converges to a fixed point;

• Otherwise, ‖zk‖ → ∞.
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When we apply DRS to minimization

minimize f(x) + g(x) (P )

maximize − f∗(y)− g∗(−y) (D)

Here, DRS has a fixed point if, and only if2

1. (P) has a solution,
2. (D) has a solution, and

3. strong duality holds, i.e., p? = d?.

If 1–3 are all satisfied, DRS converges and returns a primal-dual solution pair.
Otherwise, DRS diverges. In this case, we say (P) is pathological.

2Bauschke, Boţ, Hare, Moursi’12
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DRS convergence (new)3

DRS “still works” when

• (P) has a solution,
• (D) has a solution, and
• strong duality holds, i.e., p? = d? (−∞ and ∞ are allowed).

3Ryu, Liu, and Yin. arXiv:1801.06618.
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Extended optimal value (definition)

p? :=


∞ (P) is infeasible
infx f(x) + g(x) (P) is feasible, bounded
−∞ (P) is feasible, unbounded

Define d? similarly for (D).

We always have d? ≤ p?. If “<”, we lose strong duality.
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Example 1

minimize
x∈R3

x1 subject to x2 = 1, 2x2x3 ≥ x2
1, x2, x3 ≥ 0︸ ︷︷ ︸

rotated second-order cone Q

⇐⇒ minimize
x∈R3

x1 + δx2=1(x)︸ ︷︷ ︸
f(x)

+ δQ(x)︸ ︷︷ ︸
g(x)

This problem is feasible and unbounded4, but has no improving direction5.

It dual problem is infeasible, so p? = d? = −∞.

4by letting x3 →∞ and x1 → −∞
5reason: any improving direction u has form (u1, 0, u3), but by the cone constraint 2u2u3 = 0 ≥ u2

1, so
u1 = 0, which implies cT u1 = 0 (not improving).
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Example 2

The primal problem:

minimize
x∈R

1/
√
−x︸ ︷︷ ︸

f(x)

− log x︸ ︷︷ ︸
g(x)

is weakly infeasible since domf = (−∞, 0] and domg = (0,∞).

The dual problem:

maximize
y∈R

c1y
1/3 + 1− log(1/y),

where c1 > 0, is feasible and unbounded.

We have p? = d? =∞.
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Example 3

The primal problem

minimize
y1,y2∈R

√
y2

1 + y2
2 − y1 + δy2=1(−y)

is feasible but has no solution to attain p? = 0.

This dual problem

maximize
x1,x2∈R

− δx2
1+x2

2≤1(x)− x2 − δx1=1(x)

is feasible and has a solution (1, 0), which attains d? = p? = 0.
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What do we want DRS to do for pathological problems?

DRS generates iterates that are

• asymptotically feasible, if dist(domf,domg) = 0,

• tracking an improving direction, if one exists,

• asymptotically optimal, if p? = d?.
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DRS convergence (new): examples

Theorem
If (P) is weakly infeasible, then

xk+1 − xk+1/2 → 0.

Theorem
If (P) is feasible but does not have a solution and p? = d? ∈ [−∞,∞), then

xk+1 − xk+1/2 → 0, lim inf
k→∞

f(xk+1) + g(xk+1/2) = p?.
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Theorem
If (P) is feasible and unbounded, then

lim inf
k→∞

f(xk+1) + g(xk+1/2) = p? = −∞.

Moreover, if there exists an improving direction d, then xk+1 − xk = d+ o(1).

We can say something for all the pathological cases if p? = d?.
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DRS for conic programming



Conic programming

minimize
x

cTx

subject to Ax = b

x ∈ closed convex cone︸ ︷︷ ︸
K

generalizes many types of convex optimization: LP, convex QP/QCQP, SDP, ...
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Conic programming pathologies

Joint constraints Ax = b and x ∈ K may be infeasible.

The objective can be unbounded −∞.

Even worse, in these cases, a dual certificate and an unbounded direction may
not exist. These are called weak pathologies.
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Applying DRS to conic programming

Applying DRS6 to

minimize
x

cTx+ δA·=b(x)︸ ︷︷ ︸
f(x)

+ δK(x)︸ ︷︷ ︸
g(x)

can recognize infeasible, feasible, and unbounded problems.

Applying

2nd DRS to minimize
x

0Tx+ δx:Ax=b(x)︸ ︷︷ ︸
f(x)

+ δK(x)︸ ︷︷ ︸
g(x)

,

3rd DRS to minimize
x

cTx+ δx:Ax=0(x)︸ ︷︷ ︸
f(x)

+ δK(x)︸ ︷︷ ︸
g(x)

,

further classifies almost all strong and week pathologies.

6Liu, Ryu, Yin, arXiv:1706.02374. Related to Wen, Goldfarb, Yin’2010.
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Detection methods7: examples

Theorem
Run DRS. If zk − zk+1 → v 6= 0, then the conic program is infeasible and has a
strict separating hyperplane{

x : vTx = (vTx0)/2
}
,

where x0 := AT (AAT )−1b.

Theorem
Run DRS and DRS 3. Assume DRS confirms feasibility. In DRS 3, if
zk − zk+1 → d 6= 0, then the conic program is unbounded and d 6= 0 is an
improving direction.

We have a flow to detect almost all cases.

For infeasible problems, we find a minimal change to restore feasibility.
7Liu, Ryu, Yin, arXiv:1706.02374
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Other detection approaches

Self-dual embedding8:

• is a reformulation that is always feasible and can produce PD solutions
• can use facial reductions to identify weak pathologies

Facial reduction9:

• generates large but less pathological problems
• theoretically identify all cases
• no efficient numerical implementation yet

8Mizuno-Todd-Ye’93, Luo-Sturm-Zhang’99 and ’00, Nesterov-Todd-Ye’99, Ye’11, Skajaa’Ye’12, etc.
9Methods: Borwein, Muramatsu, Pataki, Waki, Wolkowicz; numerical approaches:

Lourenco-Muramatsu-Tsuchiya’15, Permenter-Friberg-Andersen’15
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Weakly-infeasible SDP detection test

m = 10 m = 20
Clean Messy Clean Messy

SeDuMi 0 0 1 0
SDPT3 0 0 0 0
Mosek 0 0 11 0
PP10+SeDuMi 100 0 100 0

Percentage of success detections reported in Liu-Pataki’17

10PreProcessing by Permenter-Parilo’14
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Weakly-infeasible SDP detection test

m = 10 m = 20
Clean Messy Clean Messy

Our triple-DRS 100 21 100 99

(stopping: ‖z1e7‖2 ≥ 800)
Our percentage is way much better!

In another strongly-infeasible SDP test, our detection is 100%.
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Theoretical components



Prior work

There has been surprisingly little work studying DRS under pathologies.
Results on fixed-point setups:

• Pazy’71, Baillon-Bruck-Reich’78. ...
• Bauschke, Hare, and Moursi, 2014 and 2016

Results in specific pathological setups:

• Bauschke, Combettes, and Luke. Two closed convex sets. 2004.
• Bauschke and Moursi. Two affine subspaces 2016; Convex feasibility 2017.
• Liu, Ryu, and Yin. Conic programming, 2017.

ADMM under specific pathological setups for conic/quadratic programs:

• Raghunathan and Cairano, 2014.
• Stellato, Banjac, Goulart, Bemporad, and Boyd, 2017.
• Banjac, Goulart, Stellato, and Boyd. 2017.
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We apply existing fixed-point analysis to get asymptotic feasibility.

Then, we add recession function analysis to get improving directions.

Next, we use objective value analysis to get asymptotic optimality.
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Fixed-point analysis



Asymptotic behavior of fixed point iteration

The infimal displacement vector11 is defined as

v := Projrange(I−T )0.

Lemma (Pazy’71,Baillon-Bruck-Reich’78)
When T is firmly nonexpansive, then

zk − T (zk)→ v.

If v = 0, zk − zk+1 → 0 and xk+1 − xk+1/2 → 0, so DRS is asymptotically
feasible.

If v 6= 0, we can understand the limiting behavior zk with v.

11name coined in Bauschke-Hare-Moursi’14
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Characterization of v

Theorem (Bauschke, Hare, Moursi’16)
When T is the DRS operator,

range(I − T ) = domf − domg ∩ domf∗ + domg∗

Consequence (example): if (P) is infeasible, then v = Πdomf−domg(0), i.e. v
represents the shortest distance from domg and domf . This implies

‖xk+1 − xk+1/2‖ → dist(domf,domg).

DRS makes an effort to achieve feasibility.
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Unbounded problems and improving directions



Recession function

Let f ′(x; d) be d-directional derivative at x.

The recession function of f is defined as

recf(d) = lim
α→∞

f ′(x+ αd; d).

recf characterizes the asymptotic rate of f as we go in direction d.

recf(d) invariable for x ∈ domf , and is possibly ∞.

recf(d) generalizes the constant rate of a linear program along direction d.
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Recession function and improving direction

Lemma
d is an improving direction (P), i.e., for some C > 0,

f(x+ d) + g(x+ d) ≤ f(x) + g(x)− C, ∀x ∈ domf ∩ domg,

if and only if
recf(d) + recg(d) < 0,

and if and only if

(P) is feasible and (D) is strongly infeasible.
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DRS under dual strong infeasibility

Using duality relationships such as recf = (σf∗ )∗, we can get:

Theorem
If (P) is feasible and (D) is strongly infeasible, then

d(xk+1/2, dom g)→ 0, d(xk+1, dom f)→ 0

and xk+1/2 − xk−1/2 = d+ o(1) for some improving direction d 6= 0.

Similar results hold for different pathologies.
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Objective value analysis



Fixed-point analysis is not enough

Under certain pathologies, DRS iterates satisfy

zk − T (zk)→ 0.

This is much alike the fact that

∇f(xk)→ 0

does not necessarily imply
f(xk)→ inf

x
f(x)
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Example

Consider convex function

f(x, y) := x2/y, y > 0.

We have infx,y f(x, y) = 0.

For y := x2, {
f(x, x2) ≡ 1

∇f(x, x2) = (2/x,−1/x4)→ 0 as x→∞

So, we must separately show DRS achieves approximately optimal objective.
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Primal subvalue

Define the primal subvalue as

p− := lim
ε→0+

inf
‖x−y‖≤ε

{f(x) + g(y)},

i.e., p− is the optimal value of an infinitesimally perturbed (P).

Lemma
When convex,

d∗ = p− ≤ p∗.

Convex problems with non-zero duality gap exist and are ill-posed.
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Asymptotic objective convergence

Applying convex inequalities and primal subvalue analysis, we can get:

Theorem
If (P) is feasible but has no solution and (D) is feasible, then

xk+1/2 − xk → 0

and
lim inf
k→∞

f(xk+1/2) + g(xk+1) = p?.

We can say something for all pathological cases, so long as p? = d?.
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Is strong duality p? = d? necessary?

DRS can reduce the function value below p? when strong duality fails.

In numerical examples, we observed DRS finds wrong objective:

lim
k→∞

f(xk+1/2) + g(xk+1) < p?.
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A problem with p? = 1 but d? = 0:

minimize
x∈R2

exp(−
√
x1x2) + δx1=0(x).

Another problem with p? = 1 but d? = 0:

minimize
X∈S3

+

δS3
+

(X) +
(
X22 + δS3,X33=0,X22+2X13=1(X)

)
.

For both, we observed: limk f(xk+1/2) + g(xk+1) ∈ [d?, p?).
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Conjecture

If d? < p?, then DRS necessarily finds a wrong optimal value.
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Summary

• DRS pathologies: arXiv:1801.06618 (under revision)
Works whenever p? = d?, even for (strong/weak) infeasibility, unbounded
(improving dir exists/not), and solution not attainable

• DRS for conic programming: arXiv:1706.02374 (accepted by MPA)
Identify the pathologies of conic programs and generate certificates.
“Rate of divergence.” Numerically useful for weak pathologies.

Thank you!
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Example 1

• 3-variable problem:

minimize x1 subject to x2 = 1, 2x2x3 ≥ x2
1, x2, x3 ≥ 0︸ ︷︷ ︸

rotated second-order cone

.

• this problem is feasible, p? = −∞ (by letting x3 →∞ and x1 → −∞),
and has no improving direction12

• existing solvers13:
• SDPT3: “Failed”, p? no reported
• SeDuMi: “Inaccurate/Solved”, p? = −175514
• Mosek: “Inaccurate/Unbounded”, p? = −∞

12reason: any improving direction u has form (u1, 0, u3), but by the cone constraint 2u2u3 = 0 ≥ u2
1, so

u1 = 0, which implies cT u1 = 0 (not improving).
13using their default settings
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Example 2

• 3-variable problem:

minimize 0 subject to
[

0 1 1
1 0 0

]
x =

[
0
1

]
︸ ︷︷ ︸

x∈L

, x3 ≥
√
x2

1 + x2
2︸ ︷︷ ︸

x∈K

.

• this problem is infeasible14, dist(L,K) = 0 15, and has no strict separating
hyperplane

• existing solvers16:
• SDPT3: “Infeasible”, p? =∞
• SeDuMi: “Solved”, p? = 0
• Mosek: “Failed”, p? not reported

14
x ∈ L imply x = [1,−α, α]T , α ∈ R, which always violates the second-order cone constraint.

15dist(L, K) ≤ ‖[1,−α, α]− [1,−α, (α2 + 1)1/2]‖2 →∞ as α→∞.
16using their default settings
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