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SUMMARY

Third-order and fifth-order upwind compact finite difference schemes based on flux-difference splitting
are proposed for solving the incompressible Navier–Stokes equations in conjunction with the artificial
compressibility (AC) method. Since the governing equations in the AC method are hyperbolic, flux-
difference splitting (FDS) originally developed for the compressible Euler equations can be used. In the
present upwind compact schemes, the split derivatives for the convective terms at grid points are linked
to the differences of split fluxes between neighboring grid points, and these differences are computed by
using FDS. The viscous terms are approximated with a sixth-order central compact scheme. Comparisons
with 2D benchmark solutions demonstrate that the present compact schemes are simple, efficient, and
high-order accurate. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The incompressible Navier–Stokes equations (INSE) are mathematical basis for a wide spectrum
of fluid flow problems. A difficulty in solving the INSE numerically is the lack of a time-derivative
term in the continuity equation, which limits straightforward applications of time-marching numer-
ical methods. Most numerical methods for the INSE require solving pressure or pressure-correction
Poisson equation, which serves to satisfy the continuity equation. A representative of these methods
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is the projection method [1], which is very efficient for solving unsteady problems. However, for
steady problems, it is desirable to use other cost-effective methods like the artificial compressibility
(AC) method [2], which avoids solution of the pressure Poisson equation. The main advantage
of the AC method is that it changes the governing equations into hyperbolic–parabolic equations
by introducing a pseudo-time derivative of pressure into the continuity equation, hence subse-
quent discretization and solution methods can be borrowed from efficient schemes developed for
compressible flows.

The AC method has been extensively developed for solving steady-state and time-dependent flow
problems in the past four decades. Rogers and Kwak [3, 4], among others [5–9], have implemented
the AC method in conjunction with various discretization schemes and solution algorithms, most
of which are borrowed from compressible flow solvers. Particularly, Rogers and Kwak [3] have
developed a third-order upwind finite difference scheme for the convective terms based on flux-
difference splitting (FDS). Their scheme was widely used in various applications. However, our
experience has shown that this scheme was a bit too diffusive for vortical flows. Meanwhile, some
other popular numerical schemes like MUSCL and WENO schemes were also implemented in
conjunction with the AC method [7–9]. However, the MUSCL scheme for a nonlinear equation
has at most second-order accuracy, and the WENO scheme is computationally expensive in spite
of being formally high-order accurate. Therefore, more accurate and economical discretization
schemes are desired.

In the development of appropriate discretization schemes for high accuracy simulation of
complex flows, compact finite difference schemes represent an attractive choice because for the
same number of points in the stencil, they yield higher accuracy and better spectral resolution
than their non-compact counterparts [10, 11]. Compact schemes have two categories: central and
upwind. When applied to the convective terms, the upwind compact schemes with dissipative
properties are more stable and more economical in computation than the central compact schemes,
as they do not need extra filtering as needed by the central compact schemes for suppressing
numerical instabilities [12]. Fu et al. [13], Fu and Ma [14], and others [15, 16] have developed
some upwind compact schemes for compressible flows. These upwind, dissipative schemes can
in principle prevent non-physical oscillations in flows without discontinuities, therefore, they are
worthy to be applied to incompressible flows.

The objective of the present study is to extend the third-order and the fifth-order upwind compact
schemes developed by Fu et al. [13], Fu and Ma [14] to discretization of the convective terms
of the INSE in conjunction with the AC approach. The peculiarity of the two upwind compact
schemes lies in that their implicit parts involve only two points while most other versions of
upwind compact schemes involve more than two [17]. This will reduce a reasonable amount of
computational costs.

In this paper, implementation of the third-order and the fifth-order upwind compact finite
difference schemes for discretizing the convective terms are presented in detail. The explicit parts
of the compact schemes are computed according to Rogers and Kwak’s implementation of FDS in
their non-compact upwind schemes [3, 4], while the implicit parts of the compact schemes remain
the same bi-diagonal equations as in the original upwind compact schemes [13, 14]. The boundary
schemes are also given. To show the orders of accuracy for the two upwind compact schemes, a
sixth-order central compact scheme is employed for the viscous terms. This paper is not concerned
with the solution algorithm, thus the traditional Beam–Warming approximate factorization scheme
is employed. The robustness and accuracy of the present compact schemes are verified through
several 2D benchmark problems.
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The remainder of the paper is organized as follows. In Section 2, formulation for the AC method
is briefly outlined. Section 3 presents the spatial discretization including the upwind compact
schemes for the convective terms and the central compact scheme for the viscous terms. Section 4
describes the solution algorithm for the discretized equations. The computed results for several
2D flow problems are presented in Section 5. Finally, the conclusions are given in Section 6.

2. GOVERNING EQUATIONS

The governing equations are the 2D non-dimensional INSE in Cartesian coordinates (x, y) with
the AC term added to the continuity equation [4]:

Q�+(E−Ev)x +(F−Fv)y =0 (1)
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Here Q is the solution vector, � is the pseudo-time, u and v are velocity components, p is the
pressure, Re is the Reynolds number, and � is the AC factor. Subscripts denote partial derivatives.
Because of the addition of the AC term, the resulting equations become hyperbolic type in time,
with the Jacobian matrices A and B for the inviscid flux vectors given by
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The Jacobian matrices Av and Bv of the viscous flux vectors, which will appear in an implicit
method are
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with Im =
⎡
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0 0 0

0 1 0

0 0 1

⎤
⎥⎦ (3)

The matrix Im is a modified identity matrix. It is possible to diagonalize A and B as

A=XKAX−1, B=YKBY−1 (4)

where diagonal matrices KA and KB contain the eigenvalues of matrices A and B:

diag(KA)={u,u+c1,u−c1}, diag(KB)={v,v+c2,v−c2} (5)
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with c1=√
u2+� and c2=√

v2+� being the pseudo-speeds of sound in x and y directions,
respectively. X and Y are matrices of the right eigenvectors, while X−1 and Y−1 are matrices of
the left eigenvectors, respectively. These matrices are given by
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3. SPATIAL DISCRETIZATION SCHEMES

Owing to the hyperbolic nature of system (1), the convective flux, and thus its derivative, can be
split into two parts, e.g. in the x direction,

Ex =(E++E−)x =E+
x +E−

x (6)

where E+ corresponds to the split flux in the positive x direction with information being propagated
from left to right by positive eigenvalues and E− corresponds to the split flux in the negative x
direction with information being propagated from right to left by negative eigenvalues. To compute
the two split derivatives in Equation (6), we use the third-order and the fifth-order upwind compact
schemes [13, 14], which are
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respectively, where �+ fi = fi+1− fi , �
− fi = fi − fi−1, and �x is the grid spacing of uniform grids

used throughout this paper. Equations (7) and (8) are explicitly marched forward and backward to
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get all the derivatives once the right-hand side (RHS) and the boundary derivatives are given. The
advantages of these upwind compact schemes are: (i) their computational cost is only marginally
larger than the non-compact upwind biased schemes of Rogers and Kwak [4], but they have
much better resolution properties than their non-compact counterparts; (ii) unlike central compact
schemes, they automatically provide odd–even coupling of grid points and numerical dissipation
to damp out high-frequency oscillations. The next step is how to evaluate the RHS of Equations
(7) and (8).

In References [13, 14], the point-wise E±
i in the RHS of Equations (7) and (8) were constructed

by using Steger–Warming flux vector splitting for compressible flows. However, Steger–Warming
splitting requires that the convective flux be a homogeneous function of the solution vector, which
is not the case with incompressible flows. Thus a better option is to use FDS, as previously done
for non-compact schemes [3, 4, 6].

Since each term in the RHS of Equations (7) and (8) represents the difference of split fluxes
between neighboring points, we can compute them by using FDS [18]

E±
i+1−E±

i ≡�E±
i+1/2=A±(Q̄)(Qi+1−Qi ) (9)

where �E±
i+1/2 is the flux difference across the positive or negative traveling waves. The split

Jacobian matrix is calculated by A±(Q̄)=XK±
AX

−1, which is evaluated using some intermediate
value Q̄. The Roe properties [18], which are necessary for a conservative scheme, are satisfied
exactly if Q̄ is taken as the average of the surrounding points for incompressible flows [4, 6], i.e.

Q̄= 1
2 (Qi+1+Qi ) (10)

To close the third-order scheme, Equation (7), at interior points, an explicit, dissipative, and
third-order one-sided boundary scheme [19] is used at boundary points
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It has been shown in Reference [20] that a boundary scheme of one-order lower accuracy is
sufficient to maintain the interior order of accuracy for the global discretization. For the boundary
scheme of the fifth-order upwind compact scheme, Equation (8), a fourth-order explicit biased
scheme [21] is used at next to boundary points:
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The discretization of the viscous terms is performed with central schemes. The second derivative
for the viscous terms in Equation (1) is approximated with a sixth-order symmetric compact scheme
due to Collatz [11] at interior points

2Si−1+11Si +2Si+1=12
ui−1−2ui +ui+1

�x2
+ 3

4
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�x2
, 3�i�N−2 (13)

where Si approximates (�2u/�x2)i . To obtain Si , a linear system of equations with a tri-diagonal
matrix has to be solved. To close the tri-diagonal equations at both ends, we propose a third-order
compact boundary scheme at next to boundary points

Si −Si+1 = 1

�x2
(ui−1−3ui +3ui+1−ui+2), i=2 (14a)

Si −Si−1 = 1

�x2
(ui+1−3ui +3ui−1−ui−2), i=N−1 (14b)

4. IMPLICIT APPROXIMATE FACTORIZATION METHOD

By applying the backward difference to the pseudo-time derivative in Equation (1), we obtain

�Qm

��
+[(E−Ev)x +(F−Fv)y]m+1=0 (15)

where �Qm =Qm+1−Qm , and m refers to the pseudo-time level.
Terms at m+1 pseudo-time level are linearized with respect to mth level by using Taylor

expansion, e.g.
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Thus we obtain the so-called delta form (solution to incremental variables �Q)

{I+��[(A−Av)x +(B−Bv)y]}m�Qm

=−��[(E−Ev)x +(F−Fv)y]m

=−Rm (17)

The Beam–Warming approximate factorization scheme [22] can be symbolically written as

£ ·�Qm ≈£x£y ·�Qm =−Rm (18)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:552–568
DOI: 10.1002/fld

lyuan
标注
i-3



558 A. SHAH AND L. YUAN

Remember that high-order compact schemes are used only for the RHS, Rm . To obtain block tri-
diagonal equations, convective terms on the left-hand side (LHS) of Equation (17) are discretized
by the first-order upwind difference and viscous terms by traditional second-order central differ-
ences, e.g.

�+
x fi = fi+1− fi

�x
, �−

x fi = fi − fi−1

�x
and �2x fi =

( fi+1−2 fi + fi−1)

�x2

Further on, we obtain the approximate factorization scheme[
I+��

(
�−
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++�+
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−− Im
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�2x

)][
I+��

(
�−
y B

++�+
y B

−− Im
Re

�2y

)]
�Qm =−Rm (19)

which is solved by the alternating-direction implicit method.
To simplify the computation, the split inviscid Jacobian matrix in the LHS of Equation (19) is

approximated by

A± = 1
2 [A±�(A)I] with �(A)=� max[|�(A)|] (20)

where �(A) represents the eigenvalues of the matrix A, and � is a constant that is greater than
or equal to unity [4]. In this paper, it is found that �=1 is sufficient for the third-order upwind
compact scheme, while ��1.2∼1.3 is necessary for numerical stability of the fifth-order upwind
compact scheme.

5. NUMERICAL EXAMPLES

In this section, the numerical method developed in Sections 3 and 4 is tested against several
benchmark problems. Computational results for pressure-driven flows (namely, the steady plane
Poiseuille flow and Couette–Poiseuille flow), the flow over a backward facing step and the lid-
driven square cavity flow are presented. Finally, a grid refinement study of a modified cavity flow
problem which has an analytical solution for the INSE is conducted to quantify the numerical
order of accuracy of the upwind compact schemes.

5.1. Pressure-driven flows

The pressure-driven flows include the plane Poiseuille flow and the plane Couette–Poiseuille flow
between two parallel plates (e.g. see [23]). Both problems are governed by a reduced INSE for
one dependent variable u=u(y) with different boundary conditions for different cases:

�+ d2u

dy2
= 0

u(0) = 0

u(1) = Utop

(21)

where Utop=0 represents the plane Poiseuille flow whose exact solution is u(y)=�/2(y− y2),
Utop=1 represents the plane Couette–Poiseuille flow whose exact solution is u(y)=�/2(y−
y2)+ y, and �=−� p̄/�x is a dimensionless constant pressure gradient. In our computation, the
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Figure 1. Velocity profiles for the Poiseuille flow.
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Figure 2. Velocity profiles for the Couette–Poiseuille flow.

computational grid used had 65×65 uniform-mesh points, and various values of � and CFL numbers
were used. The boundary conditions are: zero normal pressure gradient and no-slip velocity on
either plate; � value at the inlet and zero value at the outlet for the pressure; and zero gradient
for the velocity at both the inlet and the outlet. Both third-order and fifth-order upwind compact
schemes give nearly identical results. Only results for the third-order scheme are demonstrated
in this subsection. Figure 1 shows the computed velocity profiles for three values of � for the
Poiseuille flow, and Figure 2 shows those for the Couette–Poiseuille flow. It can be seen that the
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Figure 3. Convergence history for different artificial compressibility factors for the
Couette–Poiseuille flow and the same CFL=10.

computational results agree very well with the analytical solutions. In fact, the numerical error is
found to be within 10−12, which is close to machine accuracy.

Since the AC method has the drawback that its convergence rate and stability depend on the
AC factor �, we have to make a test to get a rule of thumb for choosing �. In this regard, several
techniques were available in the literature for choosing an optimal �, see, for instance [24–27].
Particularly, Reference [27] gave a specific lower bound of � to prevent viscous effects from
coupling the pseudo-pressure waves, and a crude upper bound for the approximate factorization
errors not to spoil the computational accuracy. Between the two bounds existed a wide range of
choices. However, in general, the superiority of one choice over another is not known in advance.
Figure 3 shows the convergence history for different values of � at the same CFL number. The
convergence rate is not monotone with �, and the best rate is achieved for �=200. Figure 4
shows the optimal converge for each value of � at its optimal CFL number. One can see that
the convergence rate is not much affected by different values of � in the range of 10.1000 if an
optimal CFL number corresponding to each � is chosen. Therefore, it is not necessary to tune �
extensively, and a moderate value of �, say 100, generally is fine.

5.2. Flow over a backward facing step

Another standard test case commonly employed for validating incompressible flow solvers at
moderate Reynolds numbers is the recirculating flow over a backward facing step. Unlike the
channel flow in the previous subsection, the challenge in simulating this problem is to handle
the recirculation region immediately downstream of the step and for sufficiently high Reynolds
numbers the recirculation zone further downstream on the upper wall. Numerical results obtained
using a variety of methods were available in the literature, e.g. Kim and Moin [28], Gartling [29],
and Rogers and Kwak [4], and experimental results were given by Armaly et al. [30].

Consider a channel of width h/2 upstream of the origin, and a length of 30h downstream of
the origin, separated by a backward facing step as shown in Figure 5. The flow is assumed to be
fully developed as it passes the inlet at x=0 and has an average velocity Uave. The top and bottom
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Figure 5. Geometry of the backward facing step flow problem and the recirculation zones.

boundaries are stationary walls and non-slip boundary conditions are applied for the velocity while
the pressure is extrapolated from the interior. The step face located at −0.5<y<0 is also stationary
wall. The velocity components at the inlet are given by

u=12y(1−2y), v=0 (22)

and the pressure at the inlet is extrapolated, while the outflow boundary consists of zero normal
derivative for velocity and zero pressure. The location of the outflow is sufficiently far downstream
of the step so as not to affect the position of recirculation zones. The computational grid used has
101×301 grid points. Other parameters are �=100, and CFL=10. The results of the third-order
scheme are shown for this problem.

Figure 6(a)–(c) shows comparison of computed separation and reattachment positions x1, x2, x3
(see Figure 5), respectively with experimental and other numerical results for different Reynolds
numbers. Good agreement can be seen between the present results and available numerical results
especially those of Rogers et al. [4]. For Re�400, the deviation of the experimental results from
the computational ones, particularly for x2, may be due to possible 3D effects in the experiment.
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Figure 7. Horizontal velocity profiles along the height of the channel at Re=800.

In Figure 7, u-velocity profiles along the channel height at x=7 and 15 are compared with
the computational results of Gartling [29], and it can be seen that both match well. Finally, the
streamline contours in Figure 8 clearly show the evolution in the position of the separation and
reattachment with the Reynolds number.

5.3. Lid-driven cavity flow

Next, the well-known 2D lid-driven square cavity flow problem is used to test our scheme. The
flow is driven by the translation of the top lid. The resulting flow is of great scientific interest
because it displays rich fluid mechanical phenomena in the simplest of geometrical settings. Thus,
vortices, non-uniqueness, transition, and turbulence all occur naturally and can be studied in the
same closed geometry [31]. Top moving wall generates vorticity that diffuses into the cavity and
this diffusion becomes the driven mechanism of the flow. For high Reynolds numbers, several
secondary and tertiary vortices begin to appear, whose characteristics depend on the Reynolds
number. Since for 5000<Re<15000, the flow becomes time periodic and for 15000�Re�20000,
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Figure 8. Flow over a backward facing step: streamlines at different Reynolds numbers.

it becomes chaotic [32], we only computed several Reynolds numbers ranging from 100 to 5000
for obtaining stationary solutions. The AC factor � is set to 100. Only the result computed with
the third-order scheme is given for this problem.

In Figure 9, the streamline contours show the ability of the present third-order scheme to
predict the primary, secondary and particularly, tertiary vortices at higher Reynolds numbers. The
computed streamline patterns are similar to those of [32, 33].

Figure 10 shows comparison of the u- and v-velocity components for Re=1000 on the lines
given by x=0.5 and y=0.5, respectively, with the calculations of Ghia et al. [33]. An excellent
agreement has been observed between both results.

5.4. Modified cavity flow

A recirculating cavity flow problem in the domain (0�(x, y)�1) driven by combined shear and
body forces has an exact solution for the INSE [34, 35] and it is used here to compare the numerical
solution with the exact solution so as to verify the order of accuracy of the upwind compact schemes
on uniform grids. To exclude the influence of implementing the pressure boundary condition on
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Figure 9. Streamlines for the driven cavity flow problem on a 257×257 grid.
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Figure 10. Comparison of u- and v-velocity components for Re=1000.

the order of accuracy, the boundary condition for the pressure is of Dirichlet type, i.e. it uses the
analytic solution. Zero velocity is used on all boundaries except along the top surface, where

u(x,1)=16(x4−2x3+x2) (23)
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and there is a space-dependent body force b in the y-direction given by

b(x, y,Re)= 8

Re
[24F(x)+2 f ′(x)g′′(y)+ f ′′′(x)g(y)]−64[F2(x)G1(y)−g(y)g′′(y)F1(x)]

where

f (x)= x4−2x3+x2

g(y)= y4− y2

F(x)=
∫

f (x)dx

F1(x)= f (x) f ′′(x)−[ f ′(x)]2

F2(x)=
∫

f (x) f ′(x)dx

G1(y)=g(y)g′′′(y)−g′(y)g′′(y)

The fact that u(0,1)=0 and u(1,1)=0 by Equation (23) alleviates the singularity that exists at
the top two corners of the classical lid-driven cavity flow problem.

The exact solution for this problem is

u(x, y)=8 f (x)g′(y) (24a)

v(x, y)=−8 f ′(x)g(y) (24b)

p(x, y,Re)= 8

Re
[F(x)g′′(y)+ f ′(x)g′(y)]+64F2(x)(g(y)g

′′(y)−[g′(y)]2) (24c)

Tables I and II show the grid refinement results and orders of accuracy for the third-order and
the fifth-order upwind compact schemes, respectively. The order of accuracy is calculated by the
following formula:

OA= ln(e2/e1)

ln2

where

e1=�e−�f, e2=�e−�c

�e stands for the exact solution, �f the solution on a fine grid, and �c the solution on a coarse grid
with half of grid points of the fine grid in each direction. These tables clearly demonstrate that orders
of accuracy for the third-order and the fifth-order upwind compact schemes are approximately 3.0
and 5.0, respectively, as anticipated.

6. CONCLUSIONS

We have applied third-order and fifth-order upwind compact finite difference scheme to discretizing
the convective terms of the incompressible Navier–Stokes equations. These schemes are imple-
mented in conjunction with the artificial compressibility method, which enables the use of
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Table I. Grid refinement study for the modified cavity problem using the third-order scheme.

Re Grid L∞ error L∞ order L1 error L1 order L2 error L2 order

100 11×11 3.40×10−2 — 9.49×10−3 — 1.26×10−2 —
21×21 5.25×10−3 2.86 1.17×10−3 3.02 1.52×10−3 3.05
41×41 6.71×10−4 2.97 1.42×10−4 3.04 1.78×10−4 3.09
81×81 8.68×10−5 2.95 1.73×10−5 3.04 2.14×10−5 3.06
161×161 9.95×10−6 3.12 2.08×10−6 3.06 2.59×10−6 3.05

Table II. Grid refinement study for the modified cavity problem using the fifth-order scheme.

Re Grid L∞ error L∞ order L1 error L1 order L2 error L2 order

100 11×11 7.01×10−3 — 1.86×10−3 — 2.49×10−3 —
21×21 2.41×10−4 4.86 6.24×10−5 4.90 7.82×10−5 4.99
41×41 4.59×10−6 5.71 1.24×10−6 5.65 1.47×10−6 5.73
81×81 1.02×10−7 5.49 2.20×10−8 5.82 2.60×10−8 5.82

161×161 2.55×10−9 5.32 4.36×10−10 5.66 5.56×10−10 5.55

flux-difference splitting (FDS). The left-hand side of these compact schemes is a linear combi-
nation of split derivatives at two grid points, and its right-hand side involves differences of split
fluxes between neighboring points, with each difference being computed by using FDS. The
resulting upwind compact schemes as well as their boundary treatments are quite simple. The
robustness and accuracy of these schemes have been verified in several 2D benchmark problems.
The computed results are in good agreement with the published reference solutions. Extension of
the present upwind compact schemes to time-dependent and 3D problems is the subject of ongoing
work.
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