
AFMPB: Adaptive Fast Multipole
Poisson-Boltzmann Solver

User’s Guide and Programmer’s Manual
Release Version Beta

Benzhuo Lu∗,1

Xiaolin Cheng2

Jingfang Huang3

J. Andrew McCammon4

1 State Key Laboratory of Scientific/Engineering Computing, Institute of

Computational Mathematics and Scientific/Engineering Computing, Academy of

Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190,

China.
2 Oak Ridge National Lab and the University of Tennesse.

3 Department of Mathematics, University of North Carolina, Chapel Hill, NC

27599-3250.
4 Department of Chemistry and Biochemistry, Center for Theoretical Biological

Physics, Department of Pharmacology, Howard Hughes Medical Institute, University

of California at San Diego, La Jolla, California 92093-0365.

∗ Comments or requests concerning the AFMPB program can be addressed to: Dr.

Ben-Zhuo Lu, Tel.: 086 01 62626492; fax: 086 01 62542285. Email:

bzlu@lsec.cc.ac.cn.

ii

AFMPB

Adaptive Fast Multipole Poisson-Boltzmann Solver

Contact information

Benzhuo Lu (bzlu@lsec.cc.ac.cn)

State Key Laboratory of Scientific/Engineering Computing, Institute of

Computational Mathematics and Scientific/Engineering Computing

Academy of Mathematics and Systems Science, Chinese Academy of Sciences

Beijing 100190, China

Authors:

Benzhuo Lu (bzlu@lsec.cc.ac.cn)

Xiaoling Cheng (chengx@ornl.gov)

Jingfang Huang (huang@amath.unc.edu)

James Andrew McCammon (jmccammon@ucsd.edu)

Portions Copyright (c) 2008, Academy of Mathematics and Systems Science, CAS.

Portions Copyright (c) 2008, The Regents of the University of California.

Portions Copyright (c) 2008, Oak Ridge National Laboratory

Portions Copyright (c) 2008, The University of North Carolina at Chapel Hill.

All Rights Reserved.

This program is free software; you can redistribute it and/or modify it under the

terms of the GNU General Public License as published by the Free Software Founda-

tion; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-

NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

more details.

You should have received a copy of the GNU General Public License along with

this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cam-

ii

bridge, MA 02139, USA.

iii

CONTENTS

Copyright ii

1 Introduction 1

1.1 What is AFMPB . 1

1.2 Getting Started . 2

1.3 Recommended Reading . 2

Part I: User’s Guide 4

2 Methods 4

2.1 A Brief History . 4

2.2 Boundary integral equation formulations 7

2.3 Discretization of the BIEs . 11

2.4 New version fast multipole method 11

2.5 The adaptive FMM . 17

2.6 FMM in the context of BEM . 19

2.7 Krylov subspace methods and mesh generation 22

3 Usage Examples 24

3.1 Computational performance of adaptive and non-adaptive solvers . . . 24

3.2 Electrostatics of the nicotinic acetylcholine receptor (nAChR) 29

3.3 Electrostatic interactions between Sso7d and DNA 31

4 Using AFMPB 34

4.1 Compile and installation . 34

4.2 General organization of AFMPB calculation 34

iv

4.3 General usage description . 35

4.4 Running AFMPB calculation . 36

4.5 The input files . 36

4.5.1 The control input file . 36

4.5.2 PQR file . 37

4.5.3 Moelcular surface and surface mesh 37

4.5.4 A sample shell script . 39

4.6 The output file . 40

4.7 Analyzing AFMPB calculation . 40

4.8 Utility Tools . 41

Part II: Programmer’s Reference Guide 42

5 Programmer’s Notes 42

5.1 Programming Language . 42

5.2 Special functions . 42

6 Variables and Data Structure 43

6.1 Important variables in header files 43

6.2 Important variables in the code . 45

7 Important Subroutines 46

7.1 Boundary Element Code . 46

7.2 Iterative Package from SparseKit . 46

7.3 Fast Multipole Methods . 46

8 Frequently Asked Questions 48

Acknowledgments 49

v

LIST OF FIGURES

2.1 Series expansion approximations of the function 1
r . a) For any point

R(R,θ,φ) located outside of a sphere Sa of radius a, the potential gen-

erated by N charges located inside of Sa with spherical coordinates

ρ(ρi,αi,βi), respectively, can be described using multipole expansions;

b) in the opposite case, for any point R(R,θ,φ) located inside of Sa, the

potential generated by N charges located outside of Sa with spherical

coordinates ρ(ρi,αi,βi), respectively, can be described using local ex-

pansions. 14

2.2 Schematic showing the hierarchical divided boxes for recording the

neighbor boxes and interaction list in the new version FMM. The neigh-

bor boxes (up to 27 including itself in three dimensions) of the target

box b are darkly shaded, while its interaction list (up to 189 boxes

in three dimensions) is indicated in yellow. The remaining far-field

boxes are indicated in light blue. Also shown are the source points

ρi and evaluation point R (field). In BEM implementation, the source

particles are located at the centers of the surface triangular elements. . 15

2.3 Tree communication graph . 19

2.4 Schematic showing the location of the evaluation point R(~rp,~n0) (Rp)

and a BE location ρt . 20

2.5 A typical surface triangulated mesh of a protein (Acetylcholinsterase). 23

3.1 The CPU time (a) and memory usage (b) of our fast BEM-PB algo-

rithm as compared to those from the direct calculation in one GMRES

iteration step. 25

vi

3.2 The surface potential map of nAChR from different views. The in-

creasing potential from negative to positive value is represented by

changing the color from red to blue. 30

3.3 Electrostatics of Sso7d-DNA. (a) The surface potential map of Sso7d

and DNA at separation of 10 Å. (b) The electrostatic interaction en-

ergies as functions of separation along the center-to-center unbinding

direction. UBEM is the full electrostatic interaction energy determined

by our BEM, and UCoulomb is the sum of all the atomic pair screened

Coulomb interactions between Sso7d and DNA. The curves connect

the calculation points (denoted by the diamond and star symbols) con-

secutively by fitting with cubic splines. 32

4.1 AFMPB flow chart . 35

vii

LIST OF TABLES

3.1 Timing results for the FMM on a 10, 000-node-system (in one GMRES

iteration step) using various levels and terms (P). 26

3.2 BEM performance on a spherical cavity case with different surface

mesh sizesa . 27

3.3 Comparison between BEM∗ and APBS+. F denotes the number of

faces, V the vertices; a and b denote the memory-intensive and memory-

saving calculation modes, respectively 28

viii

1. INTRODUCTION

1.1. What is AFMPB

Adaptive Fast Multipole Poisson-Boltzmann (AFMPB) solver is a numerical simu-

lation package for solving the linearized Poisson-Boltzmann (LPB) equation which

models electrostatic interactions in biomolecule systems. In this package, a boundary

integral equation (BIE) approach is applied to discretize the LPB equation. The re-

sulting integral formulas are well conditioned for single molecule cases as well as for

systems with more than one macromolecule, and are solved efficiently using Krylov

subspace based iterative methods such as generalized minimal residual (GMRES) or

biconjugate gradients stabilized (BiCGStab) methods. In each iteration, the convo-

lution type matrix-vector multiplications are accelerated by a new version of the fast

multipole method (FMM). The implemented algorithm is asymptotically optimal O(N)

both in CPU time and memory usage with optimized prefactors. This package en-

hances the present computational ability to treat electrostatics of large scale systems in

protein-protein interactions and nano particle assembly processes. AFMPB has been

tested on different biomolecule systems including the nicotinic acetylcholine receptor

(nAChR), and interactions between protein Sso7d and DNA.

AFMPB development was started by Ben-Zhuo Lu (AMSS), Xiaolin Cheng (ORNL),

Jingfang Huang (UNC-CH), and Andrew McCammon (UCSD) in 2004. This package

is released freely under open source licenses for maximal benefit to the biophysics

and biochemistry, mathematics, and other science and engineering communities. The

AFMPB package utilizes two outside open source packages: the iterative solvers from

the SparseKit package and the new version of fast multipole algorithms from FMMYuk

and FMMLap.

1

1.2. Getting Started

You need to perform the following steps in order to get simulation results:

1. download the code and compile it on your platform. You need to use Intel For-

tran Compiler or GNU F90 and later versions.

2. Prepare the input documents for the simulation.

3. Goto directory job, and prepare the file job.csh

4. Run job.csh.

5. Analyze the results.

For example, if you want to find the electrostatic potential for nAChR, after cor-

rectly compiling and installing the software, you goto the directory job, modify the

file job.csh or simply use existing job-nAChR.csh, and then execute the csh file.

We will added more features to this package in future releases.

1.3. Recommended Reading

We recommend the following papers to users of this package.

• B. Lu, X. Cheng, J. Huang, and J. A. McCammon, “Order N algorithm for com-

putation of electrostatic interactions in biomolecular systems”, PNAS, Decem-

ber 19, 2006; 103(51): 19314 - 19319.

• Lu, Benzhuo; Cheng, Xiaolin; McCammon, J. Andrew “New-version-fast-multipole-

method” accelerated electrostatic calculations in biomolecular systems. J. Com-

put. Phys. 226 (2007), no. 2, 1348–1366.

We recommend the advanced programmers the following papers for understanding

the adaptive new version of fast multipole methods used in this package.

• Greengard, Leslie; Rokhlin, Vladimir, “A new version of the fast multipole

method for the Laplace equation in three dimensions”. Acta numerica, 1997,

229–269, Acta Numer., 6, Cambridge Univ. Press, Cambridge, 1997.

2

• Cheng, H.; Greengard, L.; Rokhlin, V. “A fast adaptive multipole algorithm in

three dimensions.” J. Comput. Phys. 155 (1999), no. 2, 468–498.

• Greengard, Leslie F.; Huang, Jingfang, “A new version of the fast multipole

method for screened Coulomb interactions in three dimensions”. J. Comput.

Phys. 180 (2002), no. 2, 642–658.

For the Krylov subspace iterative methods, we used the “SparseKit” package devel-

oped by Kesheng John Wu and Professor Yousef Saad. The “reverse communication

protocol” is a very convenient feature in this package which makes it easy to interface

with our FMM accelerated matrix vector multiplication subroutines. Please check the

SparseKit website for documents and source codes.

http://www-users.cs.umn.edu/˜ saad/software/SPARSKIT/sparskit.html

3

2. METHODS

In this chapter, we discuss the technical details of the algorithm. In particular, the

boundary integral equation formulation and its discretization, the adaptive new version

of FMM and how it is applied to the BEM, the Krylov subspace method, and the mesh

generation.

2.1. A Brief History

Although the continuum Poisson-Boltzmann (PB) equation model for these systems

was introduced almost a century ago by Debye and Hückel16 and later developed

by Kirkwood,25 its numerical solutions have only been extensively explored in the

last two decades.13, 15, 18, 22, 23, 26, 40, 46, 48 Traditional schemes include the finite differ-

ence methods where difference approximations are used on structured grids describ-

ing the computational domain, and finite element methods in which arbitrarily shaped

biomolecules are discretized using elements and associated basis functions. The re-

sulting algebraic systems for both are commonly solved using multigrid or domain

decomposition accelerations for optimal efficiency. However, as the grid number (and

thus the storage, number of operations, and condition number of the system) increases

proportionally to the volume size, finite difference and finite element methods become

less efficient and accurate for systems of large spatial sizes commonly encountered in

studying either macromolecules or interacting systems in the association and dissocia-

tion processes. Alternative methods include the boundary element (BEM) and bound-

ary integral equation (BIE) methods. In these methods, only the surfaces (compared to

the 3D volume) of the molecules are discretized and hence the number of unknowns

is greatly reduced. In addition, the boundary elements (BEs) form a kind of surface

“conforming” mesh (because they align with the surface), which therefore allows the

4

application of the BEM to biomolecules characterized by irregular geometries, while

maintaining a high level of calculation accuracy.

However, in practical biomodeling, the BEM is the least used relative to the other

methods. In earlier versions of BEM, the integral equation formulations may not have

been well-conditioned and the matrix was typically stored explicitly. The resulting

dense linear system was often solved using direct matrix inversion such as Gauss

elimination, so that O(N2) storage and O(N3) operations were required, where N is

the number of unknowns defined on the surface. This is extremely inefficient for any

typical size system of interest. To improve the BEM efficiency, some later studies

improved the condition of the integral formulation,2, 23, 28, 29 reduced the number of

the boundary elements44 or introduced novel BEM.30 It has been dmonstrated that

when the system is well-conditioned or can be effectively preconditioned, the matrix

equations can be solved efficiently using iterative Krylov subspace methods which are

matrix-implicit, thus eliminating the bottleneck of storage. As the number of iterations

in these methods is independent of the system size for well conditioned systems, the

computational cost is then dominated by the matrix-vector multiplication calculations

corresponding to the N-body electrostatic particle interactions of both the Coulom-

bic (κ = 0) and screened Coulombic (κ 6= 0) types, which require O(N2) operations

using direct methods for each iteration. By introducing novel fast summation algo-

rithms developed in the last twenty years, this cost has been reduced to O(N logN)

or the asymptotically optimal O(N). These algorithms incude the hierarchical “tree

code”,4, 6 fast Fourier transform (FFT) based algorithms such as the precorrected FFT

(pFFT)3, 27, 34 and the particle-mesh Ewald (PME) methods,14 the hierarchical SVD

method,24 and FFT on multipoles.32, 33 Further improvements show that asymptoti-

cally optimal O(N) complexity can be achieved by using the wavelet techniques41, 43

or the fast multipole method (FMM).19 FMM algorithms for the screened Coulombic

interaction (Yukawa potential) have also been recently developed,9, 21 which allows

their direct application to the solution of the PB equation. The tree code algorithm

and the FMMs based on the old scheme19 have been implemented in former BEM PB

work.7, 8, 10, 17, 33, 49 However, as revealed by previous numerical experiments, although

asymptotically optimal, the original FMM19 turns out to be less efficient for problem

5

sizes of current interest when compared with the tree code and FFT based O(N logN)

techniques, due to the huge prefactor in O(N).17

To further accelerate the numerical solution of the PB equation, our AFMPB solver

uses an efficient algorithm based on a well conditioned BIE formulation, for which the

solution is accelerated by a new version of FMM first introduced by Greengard and

Rokhlin20 for the Laplace equation. By proper coupling of single and double layer

potentials as in reference,37 a Fredholm second kind integral equation formulation for

the PB equation can be derived. Similar formulations were first introduced by Juffer et

al.23 who aimed to avoid the singularity problem in deriving the complete BIE forms

for the linearized PB equation. The well-conditioned property has been discussed by

Liang et al.,28 and also demonstrated in the work of Boschitsch et al.10 We extend

the formulation for systems with an arbitrary number of domains in AFMPB. Com-

pared with traditional BEM formulations, the condition number of our BIE system

does not increase with the number of unknowns, hence the number of iterations in the

Krylov subspace based methods is bounded. For the matrix vector multiplication in

each iteration, we use the new version FMM developed for the screened Coulombic

interaction (Yukawa potential).21 Compared with the original FMM, the plane wave

expansion based diagonal translation operators dramatically reduce the prefactor in the

O(N) new version FMM, especially in three dimensions where a break-even point of

approximately 600 for 6 digits precision is numerically observed. Perhaps due to its

complexity in theory and programming, we are unaware of any previous implementa-

tions of the new version FMM for the PB equation.

6

2.2. Boundary integral equation formulations

When Green’s second identity is applied, traditional boundary integral equations for

the linearized PB equation for a single domain (molecule) take the form

1
2

φ
int
p =

PVI
S

[Gpt
∂φint

t
∂n

−
∂Gpt

∂n
φ

int
t]dSt +

1
Dint

∑
k

qkGpk, p ∈ S, (2.1)

1
2

φ
ext
p =

PVI
S

[−upt
∂φext

t
∂n

+
∂upt

∂n
φ

ext
t]dSt , p ∈ S, (2.2)

where φint
p is the interior potential at surface position p of the molecular domain Ω,

S = ∂Ω is its boundary, i.e., solvent-accessible surface, φext
p is the exterior potential at

position p, Dint is the interior dielectric constant, t is an arbitrary point on the bound-

ary, n is the outward normal vector at t, and PV represents the principal value inte-

gral to avoid the singular point when t → p in the integral equations. In the formulae,

Gpt = 1
4π|rt−rp| and upt = exp(−κ|rt−rp|)

4π|rt−rp| are the fundamental solutions of the correspond-

ing Poisson and Poisson-Boltzmann equations, respectively, rk is the position of the

kth source point charge qk of the molecule, κ is the reciprocal of the Debye-Hückel

screening length determined by the ionic strength of the solution. These equations can

be easily extended to multi-domain systems in which Eq. (2.1) is enforced for each

individual domain and the integration domain in Eq. (2.2) includes the collection of all

boundaries.31

To complete the system, the solutions in the interior (Eq. (2.1)) and exterior (Eq. (2.2))

are matched by the boundary conditions φint = φext and Dint
∂φint

∂n = Dext
∂φext

∂n , where

Dext is the exterior (solvent) dielectric constant. Using these conditions, we can de-

fine f = φext and h = ∂φext

∂n as the new unknowns and recover other quantities using

boundary integrals of f and h. Unfortunately, theoretical analysis shows that the cor-

responding equation system for f and h is in general a Fredholm integral equation of

first kind and hence ill-conditioned. i.e., when solved iteratively using Krylov sub-

space methods, the number of iterations increases with the number of unknowns, and

the resulting algorithm becomes inefficient for large systems. Instead of this “direct

formulation”, Rokhlin37 introduced a technique where the single and double layer po-

7

tentials are combined in order to derive an optimized second kind Fredholm integral

equation. We want to mention that a well-conditioned form actually appeared in Juffer

et al.’s work23 when they tried to derive the complete BI form for linearized PBE using

a limiting process to avoid the singularity problem. The same form has been used and

discussed in later BEM PB work,10, 28 and similar techniques have also been applied

and discussed in engineering computations.42

The derivative BEM (dBEM) can be obtained by linearly combining the derivative

forms of Eqs. (2.1)-(2.2):

(
1
2ε

+
1
2
) fp =

PVI
S

[(Gpt −upt)ht − (
1
ε

∂Gpt

∂n
−

∂upt

∂n
) ft]dSt +

1
Dext

∑
k

qkGpk, p ∈ S,

(2.3)

(
1
2

+
1
2ε

)hp =
PVI
S

[(
∂Gpt

∂n0
− 1

ε

∂upt

∂n0
)ht −

1
ε
(

∂2Gpt

∂n0∂n
−

∂2upt

∂n0∂n
) ft]dSt +

1
Dext

∑
k

qk
∂Gpk

∂n0
, p ∈ S.

(2.4)

where n0 is the unit normal vector at point p, ε = Dext/Dint. This set of BIEs leads to

a well-conditioned system of algebraic equations, which we will adopt.

For a system with an arbitrary number, e.g. J, of separate domains (molecules)

surrounded by infinite homogeneous solvent, Eq. (2.1) holds and the integration can

be performed only over one molecular surface where the evaluation point p is located,

while the integrand in Eq. (2.2) is the combination of all the molecular surfaces. Fol-

lowing the same treatment, and supposing p ∈ Si, the derivative BIEs for multiple

8

domains are extended as:

(
1
2ε

+
1
2
) fp =

PVI
Si

[(Gpt −upt)ht − (
1
ε

∂Gpt

∂n
−

∂upt

∂n
) ft]dSt

+ ∑
j 6=i

I
S j

[−uptht +
∂upt

∂n
ft]dSt +

1
Dext

∑
ki

qkiGpki, p ∈ Si, i = 1, ...J, (2.5)

(
1
2

+
1
2ε

)hp =
PVI

Si

[(
∂Gpt

∂n0
− 1

ε

∂upt

∂n0
)ht −

1
ε
(

∂2Gpt

∂n0∂n
−

∂2upt

∂n0∂n
) ft]dSt

+ ∑
j 6=i

I
S j

1
ε
[−

∂upt

∂n0
ht +

∂2upt

∂n0∂n
ft]dSt +

1
Dextε

∑
ki

qki
∂Gpki

∂n0
, p ∈ Si, i = 1, ...J.

(2.6)

However, it is noticed that in Eqs. (2.5) and (2.6) the integrand kernels for integration

on surface Si (enclosed in the first pair of square brackets) are not the same as those

on molecular surface S j (enclosed in the second pair of square brackets). This is not

convenient for application of the FMM. The FMM algorithm uses hierarchical levels

of boxes to group all the evaluation points (meshes), so it would be beneficial to have

similar integral formulae on all molecular surfaces for every evaluation point. If we

apply Green’s second theorem to domain S j, and still let p ∈ Si, i 6= j, it is found that

the following set of equations hold

0 =
I
S j

[Gptht −
1
ε

∂Gpt

∂n
ft]dSt +

1
Dext

∑
k j

qk jGpk j , p ∈ Si, i = 1, ...J, (2.7)

0 =
I
S j

[
∂Gpt

∂n0
ht −

1
ε

∂2Gpt

∂n0∂n
ft]dSt +

1
Dext

∑
k j

qk j
∂Gpk j

∂n0
, p ∈ Si, i = 1, ...J. (2.8)

Combining these equations for different boundary j, it is found that Eqs. (2.5)-(2.6)

9

have another neat form

(
1
2ε

+
1
2
) fp =

J

∑
j

Z PV

S j
[(Gpt −upt)ht − (

1
ε

∂Gpt

∂n
−

∂upt

∂n
) ft]dSt

+
1

Dext
∑

j
∑
k j

qk jGpk j , p ∈ Si, i = 1, ...J, (2.9)

(
1
2

+
1
2ε

)hp =
J

∑
j

Z PV

S j
[(

∂Gpt

∂n0
− 1

ε

∂upt

∂n0
)ht −

1
ε
(

∂2Gpt

∂n0∂n
−

∂2upt

∂n0∂n
) ft]dSt

+
1

Dext

J

∑
j
∑
k j

qk j
∂Gpk j

∂n0
, p ∈ Si, i = 1, ...J. (2.10)

Now, all the calculated points can treated uniformly by this set of equations, which

is similar to the case of one molecule. This is a set of well-conditioned Fredholm sec-

ond kind integral equation formulations for multi-biomolecule systems. As a matter

of fact, it can be more straightforward to obtain the derivative BIEs for multi-domain

cases from the single domain equations, because Eqs. (2.1)-(2.4) hold not only for a

single closed boundary surface, but also for any combination of separated boundaries.

Compared with Eqs. (2.5)-(2.6), Eqs. (2.9)-(2.10) add more operations in the integrals

and summations. But these additional operations only account for a very small part

of the whole computational cost for solving the PB equation, and the summations in

Eqs. (2.9)-(2.10) are also efficiently accelerated by using the FMM. In addition, as

mentioned above, the symmetrized integral formulations also make the coding con-

venient and easy-to-maintain. It is worth noting that for the case when the interior

dielectric constants are different for different molecular domains, and are same in ex-

terior domain, a set of formulae very similar to Eqs. (2.9)-(2.10) are still available,

except for that the coefficient ε is to be replaced by ε j because it varies for different

molecular surface integrals. In this case, the FMM still applies because the Green’s

functions are the same, but it needs to separate the terms associated with ε j and rescale

f and h to absorb ε j on different molecular surfaces, then use the FMM. The case with

different dielectric constants was studied in a recent BEM paper.47

10

2.3. Discretization of the BIEs

Similar to the reference31 the discretized form of the BIEs (2.9)-(2.10) can be written

as:

(
1
2ε

+
1
2
) fp =

T

∑
t
(Aptht −Bpt ft)+

1
Dext

∑
k

qkGpk, (2.11)

(
1
2

+
1
2ε

)hp =
T

∑
t
(Cptht −Dpt ft)+

1
Dext

∑
k

qk
∂Gpk

∂n0
, (2.12)

where T is total number of discretized patches of the combined boundaries, which is

half of the total unknowns (f or h) of the system, and here the ∑k encompasses all

the source charges in the considered system. The coefficient matrices are defined as

follows:

Apt =
Z

∆St

(Gpt −upt)dS, Bpt =
Z

∆St

(
1
ε

∂Gpt

∂n
−

∂upt

∂n
)dS,

Cpt =
Z

∆St

(
∂Gpt

∂n0
− 1

ε

∂upt

∂n0
)dS, Dpt =

Z
∆St

1
ε
(

∂2Gpt

∂n0∂n
−

∂2upt

∂n0∂n
)dS. (2.13)

where the integrations are performed on the small patch ∆St . To obtain above form, it

is assumed that the solution f and h are constants in every small patch ∆St . For nearby

patches p and t, Eq. (2.13) is performed by direct integration. For far field, the kernels

for each patch integral are taken as constants (depending on the relative positions of p

and t). The linear system can be written in a matrix form:(
(1

2ε
+ 1

2)I +B −A
D (1

2 + 1
2ε

)I−C

)(
f
h

)
=

(
1

Dext
∑k qkGpk

1
Dext

∑k qk
∂Gpk
∂n0

)
(2.14)

where I is the identity matrix. The linear system is well-conditioned and can be solved

efficiently using Krylov subspace methods. As the number of iterations is bounded, the

most time consuming part becomes the convolution type matrix vector multiplication

in each iteration. In next section, we discuss how this can be accelerated by the new

version FMM.

2.4. New version fast multipole method

The original idea of FMM is to subdivide the summation system of N particles into

hierarchical groups of particles, and the potentials produced by far-field particles for a

11

given particle are approximated by using the multipole expansions (Figure 2.1a). The

fundamental observation in the multipole expansion based methods is that the numer-

ical rank of the far field interactions is relatively low and hence can be approximated

by P terms (depending on the prescribed accuracy) of the so-called “multipole expan-

sion”,

Φ(R,θ,φ) =
N

∑
i=1

qi ·
1

|~R−~ρi|
≈

P

∑
n=0

m=n

∑
m=−n

Mm
n

Y m
n (θ,φ)
Rn+1 (2.15)

where the multipole coefficients,

Mm
n = 8

N

∑
i=1

qi ·Y−m
n (αi,βi) (2.16)

where the spherical harmonic function of order n and degree m is defined according to

the formula,1

Y m
n (θ,φ) =

√
(2n+1)(n−|m|)!

4π(n+ |m|)!
·P|m|n (cosθ)eimφ (2.17)

For the Debye-Hückel (screened Coulombic) interaction, a similar expansion can be

written as follows,

Φ(R,θ,φ) =
N

∑
i=1

qi ·
e−κ|~R−~ρi|

|~R−~ρi|
≈

P

∑
n=0

m=n

∑
m=−n

Mm
n · kn(κR) ·Y m

n (θ,φ) (2.18)

where the multipole coefficients,

Mm
n = 8κ

N

∑
i=1

qi · in(κρi) ·Y−m
n (αi,βi) (2.19)

where in(r) and kn(r) are modified spherical Bessel and modified spherical Hankel

functions respectively. The modified spherical Bessel and modified spherical Hankel

functions are defined in terms of the conventional Bessel function via,1

Iv(r) = i−vJv(ir), (2.20)

Kv(r) =
π

2sinvπ
[I−v(r)− Iv(r)], (2.21)

in(r) =
√

π

2r
In+1/2(r), (2.22)

kn(r) =
√

π

2r
Kn+1/2(r). (2.23)

12

For arbitrary distributions of particles, a hierarchical oct-tree (in 3D) is generated so

each particle is associated with different boxes at different levels, and a divide-and-

conquer strategy is applied to account for the far field interactions at each level in

the tree structure. In the “tree code” developed by Appel,4 and Barnes and Hut,6

as each particle interacts with 189 boxes in its “interaction list” through P terms of

multipole expansions at each level and there are O(logN) levels, the total amount

of operations is approximately 189P2N logN. The tree code was later improved by

Greengard and Rokhlin in 1987.19 In their original FMM, local expansions (under

a different coordinate system) were introduced to accumulate information from the

multipole expansions in the interaction list (Figure 2.1b).

Φ(R,θ,φ) =
N

∑
i=1

qi ·
1

|~R−~ρi|
≈

P

∑
n=0

m=n

∑
m=−n

Lm
n ·RnY m

n (θ,φ) (2.24)

where Lm
n are local expansion coefficients.

Lm
n = 8

N

∑
i=1

qi ·
Y−m

n (αi,βi)
ρ

n+1
i

(2.25)

For the screened Coulombic interaction, a similar expansion can be written as follows,

Φ(R,θ,φ) =
N

∑
i=1

qi ·
e−κ|~R−~ρi|

|~R−~ρi|
≈

P

∑
n=0

m=n

∑
m=−n

Lm
n · in(κR) ·Y m

n (θ,φ) (2.26)

where

Lm
n = 8κ

N

∑
i=1

qikn(κρi) ·Y−m
n (αi,βi), (2.27)

As the particles only interact with boxes and other particles at the finest level, and

information at higher levels is transferred using a combination of multipole and local

expansions as explained in Figure 2.2, the original FMM is asymptotically optimal

O(N). However, because the multipole to local translation requires prohibitive 189P4

operations for each box, the huge prefactor makes the original FMM less competitive

with the tree code and other FFT based methods. In 1997, a new version of FMM was

introduced by Greengard and Rokhlin20 for the Laplace equation. Compared with the

original FMM, a plane wave expansion based diagonal translation operator is intro-

duced and the original 189P4 operations were reduced to 40P2 +2P3.

13

Figure 2.1: Series expansion approximations of the function 1
r . a) For any point

R(R,θ,φ) located outside of a sphere Sa of radius a, the potential generated by N
charges located inside of Sa with spherical coordinates ρ(ρi,αi,βi), respectively, can be
described using multipole expansions; b) in the opposite case, for any point R(R,θ,φ)
located inside of Sa, the potential generated by N charges located outside of Sa with
spherical coordinates ρ(ρi,αi,βi), respectively, can be described using local expan-
sions.

14

Figure 2.2: Schematic showing the hierarchical divided boxes for recording the neigh-
bor boxes and interaction list in the new version FMM. The neighbor boxes (up to
27 including itself in three dimensions) of the target box b are darkly shaded, while
its interaction list (up to 189 boxes in three dimensions) is indicated in yellow. The
remaining far-field boxes are indicated in light blue. Also shown are the source points
ρi and evaluation point R (field). In BEM implementation, the source particles are
located at the centers of the surface triangular elements.

15

The incorporation of fast FMM into BEM-based PB models has been successfully

pursued by several groups.7, 8, 10, 49 However, all past implementations have used an

older scheme of the FMM algorithm. As we mentioned above, the cost associated with

those types of algorithms is approximately 189P2N logN (the tree code) or 189P3N (in

the original FMM scheme). Although it scales better than the direct computation, con-

siderable speed up can only be achieved for systems of over 20, 000 particles due to

the large value of the prefactor. Recent work by Greengard and Rokhlin, which in-

troduces a plane wave expansion during the repeated multipole to local transitions,

significantly reduces the cost and breaks even with direct calculation for a reasonable

value of N (∼ 1000). The new version of FMM has subsequently been extended to

screened Coulomb interactions (corresponding to the linearized PB kernel) in three

dimensions.21 Although mathematically more complicated, the new version of FMM

makes it practical to be combined with the boundary element based solution of the lin-

ear PB equation. In our algorithm, we adapt the new version of FMM for the screened

Coulomb interactions. Preliminary numerical experiments show that the overall break

even point of the new version FMM becomes 600 with 6-digit accuracy and about 400

for 3-digit.

Before proceeding to describe how the new version of FMM is used in the context

of the BEM solution of the linearlized PB equation, we first introduce how the gradient

of the local expansion coefficients can be calculated in FMM. If we define Qκ
n,m =

in(κr) ·Y m
n (θ,φ) (in the limiting case when κ = 0, then Q0

n,m = rn ·Y m
n (θ,φ)), then a

very useful recursive relationship for the gradient of Qκ
n,m can be expressed as linear

combinations of Qκ
n,m of different order and degree.

∇Qκ
n,m =

κ

2n+1
[B](

(n+m−1)(n+m)Qκ
n−1,m−1

(n+m)Qκ
n−1,m

Qκ
n−1,m+1

· 1
s
−

(n−m+1)(n−m+2)Qκ
n+1,m−1

−(n−m+1)Qκ
n+1,m

Qκ
n+1,m+1

·s),
(2.28)

where s is the scaling factor to avoid under-over flow (s = 1, if κr > 1 and s = κr, if

κr ≤ 1). Note that the above relationship is applicable for all 0 < m < n−1,

16

for m = 0,

∇Qκ
n,0 =

κ

2n+1
[B](

Qκ
n−1,−1

nQκ
n−1,0

Qκ
n−1,1

 · 1
s
−

 Qκ
n+1,−1

−(n+1)Qκ
n+1,0

Qκ
n+1,1

 · s), (2.29)

for m = n−1,

∇Qκ
n,m =

κ

2n+1
[B](

(n+m−1)(n+m)Qκ
n−1,m−1

(n+m)Qκ
n−1,m

0

 · 1
s
−

6Qκ
n+1,m−1

−2Qκ
n+1,m

Qκ
n+1,m+1

 · s),
(2.30)

for m = n,

∇Qκ
n,m =

κ

2n+1
[B](

(n+m−1)(n+m)Qκ
n−1,m−1

0
0

 · 1
s
−

2Qκ
n+1,m−1

−Qκ
n+1,m

Qκ
n+1,m+1

 · s),
(2.31)

where,

[B] =−1
2

1 0 −1
i 0 i
0 −2 0

 (2.32)

Higher order derivatives can be easily obtained by recursive application of Eq. (2.28).

For example, the second derivatives can be obtained by inserting the first order deriva-

tives into the right side of Eq. (2.28). The recursive relationship for Qκ
n,m is a very

useful property for applying FMM to the BEM solution of PB equation, which will

become apparent in the following section.

2.5. The adaptive FMM

The fast multipole method was first designed for a cluster of particles randomly dis-

tributed in a unit box and usually a uniform probability density function (PDF) dis-

tribution is assumed. In this scenario, a uniform octree structure is easily generated,

and the corresponding algorithm complexicity analysis becomes easy. However, the

particle distributions are almost certain non-uniform in most real-world applications,

and an adaptive FMM has to be used. For example, in the boundary element method,

17

all nodes (particles) are located on a surface, resulting in a lot of “empty” boxes if a

uniform octree is applied.

It is possible to generate a graph and use graph theory to find the optimal adaptive

strategy: In the graph, all particles and boxes will be listed twice, as source parti-

cles/boxes, and as target particles/boxes. The source particles and target ones can be

connected directly, or they can send/receive information form the corresponding boxes

at different levels. All connections are associated with a “cost” function, and the goal

is to find a “connection strategy” such that the total cost is minimized while there

still exist a path connecting each source and target pair. This is further explained in

Fig 2.3. In the figure, we assume source points are also target points, and a binomial

tree is generated for these points. On the left of the figure, we list all the source points

and the “sending” boxes; on the right, we duplicate the left part to generate all the

“receiving” boxes and the target points. The source points can interact directly with

target points, for example, source point #1 can directly interact with target point #15,

using 1 operation. Or, it can first send its information to “sending” box #1, using p

opeartions, where p is the number of terms in the multipole expansion, then ”sending”

box #1 communicates with target point #15. This is the strategy used in the so-called

“tree” code. Or as in the fast multipole method, “sending” box can translate its mul-

tipole expansion to a new multipole expansion in box #9, and then box #9 translates

the collected multipole expansion to a local expansion in the “receiving” box #12 (a

member in the interaction list), which is then tranlated again to box #8 using the local

to local translation operation, and this local expansion is then evaluated at target point

#15. Note that there exist many ways to construct a path and connect the source and

target points, therefore the question to be answered is that which strategy is optimal in

efficiency. Currently, we are working on this problem and it is not clear if this question

can be answered using O(N) operations.

In our current solver, we follow the strategy in,12 and construct an adaptive tree

once given the particle distribution based on a simple strategy: if the box is empty, it

is immediately deleted, and if it contains fewer than nbox particles, it will be called

“childless” and will not be further divided. Note that this strategy may not generate

the optimal adaptive tree structure, however we believe it is a good approximation to

18

Box 1

Box 2

Box 3

Box 4

Box 5

Box 6

Box 7

Box 8

Box 9

Box 12

Box 11

Box 10

Box 13

Box 14

Box 15

Box 13

Box 14

Box 9

Box 10

Box 11

Box 12

Box 1

Box 2

Box 3

Box 4

Box 5

Box 6

Box 7

Box 8

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

Figure 2.3: Tree communication graph

the final optimal solution.

2.6. FMM in the context of BEM

The solution of the fi and hi can be obtained by inverting the 2N × 2N matrix in

Eq. (2.14). As mentioned above, direct methods such as Gaussian elimination (LU

decomposition) are too expensive in terms of both CPU time and memory. To this end,

an iterative procedure will be used in the present algorithm. Another important feature

of these iterative methods is that no explicit matrix needs to be stored or calculated;

only the calculation of matrix-vector multiplication is required. The multiplication of a

matrix (A, B, C, and D) and a vector (f and h) is analogous to calculating electrostatic

potentials for 2N locations induced by 2N point charges. In the present FMM imple-

mentation, for each evaluation point p, the evaluation of the left-hand side of matrix

Eq. (2.14) can be divided into two parts: 1. contributions from all of the far-field ele-

ments of element p (located outside the finest level box encompassing the evaluation

point p) will be calculated using local expansions; 2, contributions from all remaining

near neighbor elements (inside the same childless box that contains evaluation point

p) must be evaluated directly (Figure 2.2).

19

Figure 2.4: Schematic showing the location of the evaluation point R(~rp,~n0) (Rp) and
a BE location ρt .

It is convenient to convert the normal derivatives of functions G and u at ρ into the

spatial gradients of G and u at R (Figure 2.4) using the following equations,

∂G
∂n

=−∇RG(R,ρ) ·n,
∂2G

∂n0∂n
=−n0 ·∇2

RG(R,ρ) ·n,

∂u
∂n

=−∇Ru(R,ρ) ·n,
∂2u

∂n0∂n
=−n0 ·∇2

Ru(R,ρ) ·n, (2.33)

where n = (nx,ny,nz) is the unit normal vector at point ρ, n0 = (n0x,n0y,n0z) is the unit

normal vector at point R. Substituting Eq. (2.33) into Eqs. (2.13) yields,

Apt = (Gpt −upt)∆St , (2.34)

Bpt = (−1
ε

∇RGpt ·n+∇Rupt ·n)∆St , (2.35)

Cpt = (∇RGpt ·n0−
1
ε

∇Rupt ·n0)∆St , (2.36)

Dpt =
1
ε
(−n0 ·∇2

RGpt ·n+n0 ·∇2
Rupt ·n)∆St . (2.37)

Given an initial set of ft and ht at any element locations, then for any evaluation point

p, the far-field contribution to the left-hand side of Eq. (2.14) can be written as local

expansions that sum contributions from a collection of far-field elements (denoted as

20

t ∈ {L}),

Φ1p '
P

∑
n=0

m=n

∑
m=−n

(−1
ε
{∇RQ0

n,m(R)}{E0
n,m}−{Q0

n,m(R)}{H0
n,m}

+{∇RQκ
n,m(R)}{Eκ

n,m}+{Qκ
n,m(R)}{Hκ

n,m}), (2.38)

Φ2p '
P

∑
n=0

m=n

∑
m=−n

(−{n0x,n0y,n0z}{∇RQ0
n,m(R)}{F0

n,m}−
1
ε
{n0x,n0y,n0z}{∇

2
RQ0

n,m(R)}{E0
n,m}

+
1
ε
{n0x,n0y,n0z}{∇RQκ

n,m(R)}{Fκ
n,m}+

1
ε
{n0x,n0y,n0z}{∇

2
RQκ

n,m(R)}{Eκ
n,m}).
(2.39)

The local expansion coefficients { E0
n,m,H0

n,m,F0
n,m,Eκ

n,m,Hκ
n,m,Fκ

n,m} for all of the ele-

ments t ∈ {L}, are

{E0
n,m}=

1
4π

∑
t∈{L}

nx ft
ny ft
nz ft

L0
n,m(ρ)dSt {Eκ

n,m}=
1

4π
∑

t∈{L}

nx ft
ny ft
nz ft

Lκ
n,m(ρ)dSt

{H0
n,m}=

1
4π

∑
t∈{L}

htL0
n,m(ρ)dSt {Hκ

n,m}=
1

4π
∑

t∈{L}
htLκ

n,m(ρ)dSt

{F0
n,m}=

1
4π

∑
t∈{L}

ftL0
n,m(ρ)dSt {Fκ

n,m}=
1

4π
∑

t∈{L}
ftLκ

n,m(ρ)dSt , (2.40)

where nx ft∆St , ny ft∆St , nz ft∆St , ht∆St can be considered as groups of effective charges

respectively. In Eqs. (2.38)- (2.39), the operation between two curly braces could

be scalar-scalar product, or vector-vector dot product, or matrix-vector/vector-matrix

multiplication, depending on the property of the quantities in the curly braces. It is

worth noting that, for both ∂2G
∂n0∂n and ∂2u

∂n0∂n , the first derivative is with respect to R

(evaluation points) and the second is with respect to ρ (source points), so there is

only a little computational overhead (< 10%) compared to the original non-derivative

formulation.

At this point, we are ready to summarize the FMM algorithm in the context of

BEM solution of the PB equation, which proceeds as follows (Figure 2.2):

1. Develop an adaptive octree structure encompassing all of the boundary elements

by recursively dividing each box into eight child boxes until any child box contains no

more than s BEs;

21

2. Compute multipole expansion coefficients for the childless boxes in the tree

structure; for each parent box, form a multipole expansion by merging multipole ex-

pansions from its eight children;

3. Start at the tree’s coarsest level, compute local expansion coefficients by con-

verting the multipole expansions at any well-separated boxes (interaction list) into a

local expansion around the target center and by directly adding contributions due to

local near source points (neighbor boxes);

4. For each parent box, translate the local expansion to each of its children;

5. Go to step 3 until all childless boxes are reached;

6. For each childless box, evaluate the potential at each target location from the

local expansions, and compute the remaining near neighbor interactions directly.

2.7. Krylov subspace methods and mesh generation

In our algorithm, an iterative methods package for systems of linear equations called

SparseKit is used. Several iterative schemes are available in the package includ-

ing the GMRES method, BiCGStab method, and transpose-free quasi-minimal resid-

ual (TFQMR) algorithm. Preliminary numerical experiments show that the GMRES

method converges faster than other methods, which agrees with existing analyses. Be-

cause the memory required by the GMRES method increases linearly with the iteration

number k, and the number of multiplications scales like 1
2k2N, for large k, the GMRES

procedure becomes very expensive and requires excessive memory storage. For these

reasons, instead of a full orthogonalization procedure, GMRES can be restarted every

k0 steps where k0 < N is some fixed integer parameter. The restarted version is of-

ten denoted as GMRES(k0). For other alternative methods as BiCGStab method and

TFQMR algorithm, the storage required is independent of iteration number k, and the

number of multiplications grows only linearly as a function of k. Currently a detailed

comparison of different Krylov subspace methods is being performed and results will

be reported in later papers.

There are normally three types of “surface” used to define the molecular boundary

dividing the low dielectric (interior) and high dielectric (exterior) regions: the van

22

der Waals surface is the surface area of the volume formed by placing van der Waals

spheres at the center of each atom in a molecule, The solvent-accessible surface35 is

formed by rolling a solvent, or a probe, sphere over the van der Waals surface. The

trajectory of the center of the solvent sphere defines the solvent-accessible surface.

Whereas, the solvent-excluded surface is defined as the trajectory of the boundary of

the solvent sphere in contact with the van der Waals surface. The solvent-excluded

surface is also referred to as the molecular surface. In our BEM, to discretize the

boundary integral equations, a triangular mesh of molecular surface is generated using

the software MSMS,39 and elements of zero and extremely small area are removed

by a mesh checking procedure in our algorithm. The node density and probe radius

are input parameters of MSMS to control the fineness of the outpur mesh; the typical

values are 1.0/Å2 and 1.5 Å, respectively. Mesh generation is a fast step and takes

only a few seconds for medium-sized molecules. A typical mesh of a molecule with

8362 atoms is shown in Figure 2.5, which contains 32975 vertices and 65982 triangles

and is generated within 3 seconds of cpu time.

Figure 2.5: A typical surface triangulated mesh of a protein (Acetylcholinsterase).

23

3. USAGE EXAMPLES

3.1. Computational performance of adaptive and non-adaptive solvers

As a first numerical experiment, we compared the speed and memory usage of the

FMM to the direct calculation in one GMRES iteration step using the uniform version

of our AFMPB solver. The position and parameters of BEs were randomly generated

but uniformly distributed on the surface of a sphere of radius 40 Å. As expected, the

error of the FMM calculation is bounded when the number of multipole expansion

terms P is set. Similar to what is observed in the original FMM implementation,21 our

algorithm breaks even with the direct calculation at about N = 400 for three-digit pre-

cision (P = 9), and N = 600 for six-digit precision (P = 16). As shown in Figure 3.1a,

in contrast to the quadratic increase in direct calculation, the actual CPU time required

by our fast algorithm grows approximately linearly with the number of BEs. We want

to mention that we also have a non-adaptive version of AFMPB, in Figure 3.1b we dis-

play some non-linearity for the growth of memory usage for the non-adaptive version.

In the non-adaptive FMM, as the number of levels increases, there is a cubic increase

of number of boxes (storing the local expansion coefficients for each box is the main

source of memory usage), leading to a slightly non-linear growth of memory usage.

In our calculation, the majority of computer memory is allocated to store the neigh-

boring list and the corresponding near-field coefficients, the size of which mainly relies

on the total number of BEs and the level for box subdivision. Depending on a trade-

off between memory and speed, at each iterative step these coefficients can either be

saved as in a memory-intensive mode or be discarded as in a memory-saving mode.

In a non-adaptive FMM case, the number of neighboring boxes of a box (therefore

any BE located within this box) is 27 (including itself). If we further assume that the

maximum number of elements per box at the finest level is s, then it is easy to see

24

Figure 3.1: The CPU time (a) and memory usage (b) of our fast BEM-PB algorithm as
compared to those from the direct calculation in one GMRES iteration step.

25

Table 3.1: Timing results for the FMM on a 10, 000-node-system (in one GMRES
iteration step) using various levels and terms (P).

P levels Tfmm(s) Tlocal(s) Ttotal(s)
9 3 0.7 10.6 11.3
9 4 1.2 2.4 3.6
9 5 5.7 0.4 6.1
16 3 2.3 10.6 12.9
16 4 4.9 2.4 7.3
16 5 26.9 0.4 27.3

that the number of near-field elements for each BE can normally be up-bounded by

a fixed number 27s. Hence, the size of neighboring list is also up-bounded by 27sN;

this and the fact that there are at most 2N/s boxes in the tree structure lead to O(N)

overall memory usage. We want to mention that such an estimate for the adaptive code

is difficult and depends on the adaptive strategy.

When using the FMM, it is important to keep a load balance between the number

of BEs in the local list (calculated directly) and the number of BEs in the far-field

(calculated using local expansions). If the number of local BEs is too large, then the

advantage of using multipole expansions is not fully taken. Conversely, if the number

of local BEs is too small, then more boxes will be needed, which usually means more

operations of expansions. We assessed the performance of the FMM on a 10, 000 BE

system (again in a single GMRES iteration step) using various levels and terms (P);

results are presented in Table 1. The total timing Ttotal is broken into the Tfmm for

far-field calculation and Tlocal for local direct calculation. For both three- and six-digit

accuracy, the optimal level is 4. Having more levels (more boxes, fewer local BEs) and

fewer levels (fewer boxes, more local BEs) both slow down the overall speed because

of the unbalanced Tfmm and Ttotal. Generally, the optimal level of box subdivision

depends on number of terms P, so that the maximum number of BEs in the lowest

level box s is comparable to P
3
2 . a Of radius 50 Å with a point charge +50e located at

the center. The exact Born solvation energy Esolvation of the cavity is -4046.0 (energy

is in kcal/mol).

To assess the performance of the FMM BEM algorithm in solving the PB equation,

26

Table 3.2: BEM performance on a spherical cavity case with different surface mesh
sizesa

Number Tdirect BEM TFMM BEM level Iteration Esolvation Error (%) in
of Elements (s) (s) steps (error %) f h

320 0.13 0.18 2 5 -4227.5 (4.5) 6.6 5.6
1280 1.56 0.82 3 5 -4134.5 (2.2) 2.8 2.5
5120 19.67 3.39 3 5 -4088.6 (1.1) 1.4 1.1
20480 247.20 15.86 4 5 -4066.5 (0.5) 0.7 0.6
81920 3122.10 87.96 5 5 -4050.6 (0.3) 0.2 0.4

we next calculate the Born solvation energy of a point charge +50 e located at the

center of a spherical cavity with a radius of 50 Å. The surface is discretized at various

resolution levels by recursively subdividing an icosahedron. Table 2 summarizes the

timing results (on a Dell dual 2.0 GHz P4 desktop with 2 GB memory) and some

related control parameters using a FMM accelerated BEM (denoted by FMM BEM)

and a direct BEM without invoking any fast algorithms (denoted by direct BEM). Due

to memory constraints, the PC can not handle higher levels of subdivision on the sphere

(more than 300k BEs). As for the efficiency, we noticed that regardless of the surface

resolution, all the GMRES iteration steps are below 5, which numerically confirms

that the derivative BEM formulations are well-conditioned. The CPU time for the

new version of FMM linearly increases with the number of BEs, while it quadratically

increases for the direct integration method. Note that whenever switching to a higher

level of box division, there will be a small jump of CPU time due to the increased

boxes, which leads to some deviation from performance linearity for the FMM. For a

system with 81,920 surface elements, the O(N) new version FMM is approximately

40 times faster than the direct method.

The numerical error of our BEM algorithm is on the first order of the grid size of

the mesh. In the spherical case in Table 2, when the mesh is refined to a higher level,

the number of BEs is quadrupled, and the size of each element is reduced by half. The

relative errors of the calculated energy, f , and h compared with the analytical results

also show that the computational accuracies are nearly linearly improved upon the

refinement of mesh scale. More discussion on the accuracies of BEMs can be found in

ref. 31. ∗Using the same level=4 for all FMM calculations in BEM.

27

Table 3.3: Comparison between BEM∗ and APBS+. F denotes the number of faces,
V the vertices; a and b denote the memory-intensive and memory-saving calculation
modes, respectively

Methods Mesh Memory (MB) CPU (s) Esolvation Iteration
a b a b (kcal/mol) steps

8894 F, 4449 V 224 54 22 35 -556.1 14
12044 F, 6024 V 289 59 26 53 -540.3 13

BEM 15046 F, 7525 V 350 63 32 75 -534.6 13
18046 F, 9025 V 411 67 36 98 -525.5 13
21430 F, 10717 V 481 72 44 129 -522.0 13
65×65×65 78 39 -552.1 –
97×65×97 150 64 -542.3 –

APBS 127×97×127 341 131 -531.0 –
161×129×161 742 258 -525.0 –
225×161×225 1784 599 -522.8 –

+APBS using focusing procedure, and solving the PB equation two times in each

solvation energy calculation. When a much finer mesh (321 x 321 x 321, which can

not be handled in a 2 GB memory PC) is used to run APBS again, a solvation energy

521.1 kcal/mol is obtained. This could be taken as a referece solvation energy.

To further illustrate the performance of our fast BIE technique on protein electro-

static calculations, we computed the electrostatic solvation energies of fasciculinII, a

68 residue protein, and compared the algorithm performance with the multigrid finite

difference algorithm, as implemented in the widely used software APBS5 (see Table

3). We want to mention that the two program codes employ very different algorithms

and data structures, hence an exact comparison between them would be difficult. Also,

APBS is designed primarily for massively parallel computing; it has an integrated

mesh generation routine, while the current BEM only runs on a single CPU, and needs

a pre-generated mesh as an input. Two sets of meshes at different resolutions were

generated for BEM and APBS calculations respectively. Similar convergence trends

are observed for both energy calculations. At low mesh resolution (with small number

of nodes and faces), the BEM seems to require more memory than APBS does. The

reason is that we use the same level of 4 of box subdivision for all the BEM calcula-

tions, which consumes a large portion of the total memory, and may not be optimal

for small systems. When system size increases, the memory usage shows a slower

28

increase, as does the CPU time cost. It should also be noted that APBS solves the PB

equation twice to obtain the solvation energy, while BEM only solves it once. How-

ever, if the potentials and forces at the “volume” grid points away from the surface are

needed, they are readily available in APBS solutions, while in BEM it is necessary to

calculate again by integrating the PB equation solutions on the boundary.

3.2. Electrostatics of the nicotinic acetylcholine receptor (nAChR)

nAChR is one of ligand-gated ion channels that mediate fast synaptic transmission be-

tween cells. The roles of electrostatic interactions in governing the agonist binding,

ion conduction and anesthetic action in nAChR have been implicated in many pre-

vious studies. As a test of our PB solver, we calculated the electrostatic potentials

of the human α7 nAChR. The receptor structure including both the extra-cellular and

intra-cellular domains was built up by homology modeling based on the cryo-electron

microscopy structure of Torpedo nAChR (PDB code: 2BG9).45 The modeled structure

contains 1880 residues, has a total length of about 160 Å and a diameter of about 40 Å

parallel to the membrane surface. The BEM calculation was performed with 194428

triangular elements and 97119 vertices.

In Figure 3.2, the molecular surface of nAChR is colored according to electrostatic

potentials such that the most negative region is in red while the most positive region

is in blue. The interior of the channel vestibule formed by the pentameric assembly of

the ligand-binding domains shows very negative potentials. This would be expected to

increase the local concentration of permeant cations (i.e. Na+ and K+ ions), and is con-

sistent with earlier suggestions.11 Moreover, deeper inside the channel, more negative

potentials are observed, which reach the minimum roughly in the middle of pore. The

existence of an electrostatic potential gradient across the channel pore may facilitate

passage of ions through the channel. The surface potentials can be divided into two

regions: the membrane-spanning domain that is dominated by positive potentials, and

the extra/intra-cellular domains that are dominated by negative potentials. The strong

negative potentials on the extra-cellular surface are expected to impose electrostatic

steering attraction to positive ligands (e.g. acetylcholine) and cations.

29

Figure 3.2: The surface potential map of nAChR from different views. The increasing
potential from negative to positive value is represented by changing the color from red
to blue.

(a) (b)

30

We also performed the calculation in the zero ionic strength condition. The results

turn out to be very different where the surface potentials are almost all negative (data

not shown). The difference indicates that the ionic strength has a great impact on the

electrostatic character of nAChR.

3.3. Electrostatic interactions between Sso7d and DNA

We studied the electrostatic interactions between two molecules: Sso7d and DNA

based on a crystal structure (PDB code: 1AZQ).36 Sso7d is a small chromosomal pro-

tein from the hyperthermophilic archaeabacteria Sulfolobus solfataricus. The protein

has high thermal, acid and chemical stability. It binds DNA without marked sequence

preference. In the crystal structure, Sso7d has 66 residues in complex with a short

double-stranded DNA with 8 base pairs. Sso7d binds in the minor groove of DNA and

causes sharp kink in DNA. The protein-DNA complexes are normally highly charged.

Sso7d is positively charged (+6), whereas the complex is negatively-charged (-8) over-

all due to the additional 14 negative charges carried by the DNA phosphate groups.

To investigate the role of electrosatics in the Sso7d-DNA association process, the in-

teractions between Sso7d and DNA at different separation distances are calculated.

These structures are generated by displacing DNA away from the binding site along

the center-to-center direction in the Sso7d-DNA complex.

The BEM calculation is performed on a two-domain system if two molecules move

away and two separate meshes are generated or on a single domain system if two

molecules are close enough to ’merge’ and only a single mesh generated. For in-

termolecular electrostatics, the present BEM method provides the full PB interaction

energy that takes into account both the desolvation and mutual polarization contribu-

tions from the two molecules. Figure 3.3a shows the electrostatic potentials mapped

on the molecular surfaces of Sso7d and DNA at a separation of 10 Å. The potential

surfaces exhibit good electrostatic complementarity at the binding interface. Electro-

static attraction governs the intermolecular interaction at distances larger than ∼ 5Å

(Figure 3.3b, black line). Nevertheless, the electrostatic interaction becomes repulsive

at close distances. A closer inspection of the complex structure suggests that a signifi-

31

Figure 3.3: Electrostatics of Sso7d-DNA. (a) The surface potential map of Sso7d and
DNA at separation of 10 Å. (b) The electrostatic interaction energies as functions of
separation along the center-to-center unbinding direction. UBEM is the full electrostatic
interaction energy determined by our BEM, and UCoulomb is the sum of all the atomic
pair screened Coulomb interactions between Sso7d and DNA. The curves connect the
calculation points (denoted by the diamond and star symbols) consecutively by fitting
with cubic splines.

(a)

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14

El
ec

tro
st

at
ic

in
te

ra
ct

io
n

en
er

gi
es

 (k
ca

l/m
ol

)

Protein-DNA distances (°A)

UBEMUCoulomb

(b)

32

cant component of the binding free energy is due to the non-electrostatic interactions,

made in large part by the interfacial hydrophobic residues.36 The origin of the large

unfavorable electrostatic interaction at close separations can be attributed to the elec-

trostatic desolvation, an effect due to the unfavorable exclusion of the high dielectric

solvent around one protein when the other one approaches. As a comparison, we also

calculate the screened Coulomb interactions by summing up all the atomic pair con-

tributions between Sso7d and DNA (see Figure 3.3b, red line). In this treatment, it is

found that the interactions are all attractive across the whole separations. The values

are close to the full BEM calculations at long distances, but the desolvation effects are

obviously missed at close distances.

The electrostatic interaction characteristics displayed in Figure 3.3 are very similar

to the acetylcholinesterase and fasciculinII complex system as has been demonstrated

previously,29 which also shows long-range attraction (>∼ 5Å) and close-range repul-

sion. Another common observation of these two systems is that the electrostatic inter-

actions start abruptly increasing from around 5Å. This is the distance where the water

molecules between the two molecules are squeezed out, and the two molecules begin

to collapse into a compact complex structure. At the same time, the generated molec-

ular surface meshes of the two molecules also begin to merge into a single mesh. This

implies that the interfacial non-polar interaction, hydrophobic packing, and possibly

local conformational rearrangement upon binding take effects from around 5Å of as-

sociation and become dominant binding forces in the final stage of complex formation.

33

4. USING AFMPB

4.1. Compile and installation

After the user downloads the package and extracts it to a local computer, the following

directories can be found:

• Doc: contains the references and this manual.

• job-examples: contains a README file, samples of the c-shell job files job.csh

to run the package, and the generated input/output files. A subdirectory ./Two-

proteins contains similar input/output files but is for the test case of a two-

molecule system.

• FBEM: the driver and the boundary element codes of the AFMPB package. It

also contains one subroutine iters.f, the Krylov subspace iterative solvers from

SPARSKIT.38 The default Krylov solver is GMRES, though the user can also

use the restarted GMRES, TFQMR, or BiCGStab.

• fmm3d node: the fast multipole method library for the Laplace and Yukawa

potentials.

• tools: pre- and post- processing utility programs. Additional tools will be added

to this directory for calculation of different parameters.

For compiling, check the file Makefile for further information. The package has

been successfully compiled using the Intel c©compiler for Linux, and the GNU c©F95

compiler.

4.2. General organization of AFMPB calculation

The program diagram is shown in Fig. 4.1.

34

Figure 4.1: AFMPB flow chart

AFMPB can be considered as a main driver for calculating the electrostatics in

biomolecular systems. It requires molecular structure, charge and mesh information

from the pre-processing tools as inputs, and outputs potential, various energies and

force results for visualization and/or further processing. To generate the “boundary

elements”, AFMPB currently accepts mesh data from the package MSMS39 and other

programs that can generate molecular surface mesh in the OFF format. For post-

processing, we use VMD for visualization. The solver can also be coupled with multi-

scale time stepping schemes to simulate the dynamics of molecular systems under the

influence of electrostatic interactions.

4.3. General usage description

Pre-processing, AFMPB job run, and post-processing are usually required for biomolec-

ular electrostatic analysis. Some utility tools are supplied at the directory ./tools for

pre-/post- processings and visualization. In the ./ job directory, there are several ex-

ample job scripts for calculations at different cases, which can be a useful start to use

AFMPB package.

35

4.4. Running AFMPB calculation

A command line style is adopted to run AFMPB. A simple way to run AFMPB is

”./afmpb”, with all the default input/output files in the working directory. A typical job

with specified options can be like

afmpb -i inp.dat -o out.log -s surfpot.dat.

-i means to be followed by the control input file,

-o an output log file,

-s is followed by an output file that contains surface nodal potential.

AFMPB also supports potential calculations at exterior points by using two more op-

tions:

-vm followed by a file name that contains exterior points to be calculated.

-vp a file storing the potential file at the exterior points.

4.5. The input files

To run AFMPB, users are required to prepare input files including (a) a control file

(inp.dat by default), (b) PQR file(s) containing atomic charges and their locations,

(c) molecular surface mesh file(s), and an optional (d) off-surface points location file

where the potentials need to be evaluated. For the output, a log file (out.log by default)

will be generated automatically after every AFMPB run, and users may also request

a surface potential file (default surfpot.dat) by setting a write-control parameter in

inp.dat. All the input files and output log file (out.log) are in free format. The job-

control input file can also be generated by the job shell script.

4.5.1. The control input file

An example control input file

—————-

nmol, number of molecules

1

36

di, de, ion concentration(mM), temperature

2.0 80. 150 300.0

meshfmt: 0 icosohedron, 1 raw, 2 msms, 3 matlab sphere, 4 mc, 5 off

2

output key: ipotw(surf pot),iforce,iinterE,iselfE (solvation),ipotdx(vol pot)

1 0 0 1 0

pqr and mesh files (repeat nmol lines for multi-molecules)

pqr1.dat mesh1.dat

—————-

The comment lines explains the meaning of each variable.

4.5.2. PQR file

The PQR format is a modification of the PDB format which adds charge and radius

parameters to existing PDB file. The PQR file can be generated from a standard PDB

file using the software pdb2pqr. pdb2pqr also adds missing hydrogen atoms in the

PDB file, optimizes the hydrogen bond network, and assigns atomic charges and radii

based on various force field parameter sets.

4.5.3. Moelcular surface and surface mesh

The molecular surface mesh file is traditionally generated from the PQR file. There

exist at least three types of “molecular surface” to define the boundary between the low

(interior) and high dielectric (exterior) regions: the van der Waals surface, the solvent-

accessible surface,35 and the solvent-excluded surface. The van der Waals surface is

the union of the surface area formed by placing van der Waals spheres at the center of

each atom in a molecule. When rolling a solvent (or a probe) sphere over the van der

Waals surface, the trajectory of the solvent sphere center defines the solvent-accessible

surface, while the trajectory of the boundary of the solvent sphere in closest contact

with the van der Waals surface defines the solvent-excluded surface. The solvent-

excluded surface is also referred to as the molecular surface in bimolecular studies. In

the AFMPB solver, a triangular mesh of the molecular surface can be generated using

the software MSMS as described in.39 Two important parameters in MSMS are the

37

node density and probe radius that control the resolution of the output mesh, and the

typical values are set to 1.0/Å2 and 1.5 Å, respectively. The mesh from MSMS can

be further improved by removing the elements of extremely small area using a mesh

checking procedure provided in the AFMPB package, though this step is usually not

necessary. A typical mesh of a molecule with 8362 atoms is shown in Fig 2.5.

The surface mesh file contains node coordinates and how they connect to form tri-

angles. The current version of AFMPB allows a few slightly different mesh formats,

including the standard OFF format and the so-called MSMS format. A comment line

in inp.dat

”# meshfmt: 0 icosohedron, 1 raw, 2 msms, 3 matlab sphere, 4 mc, 5 off”

indicates to choose an optional mesh format. The OFF format is used by many

mesh generating tools, and can be viewed using visualization software such as “GE-

OMVIEW”, while the MSMS format can be conveniently generated by using a script

tool provided in our package (see the section “Utility Tools”). The script will call the

software MSMS39 that is widely used in biomolecular studies. A sample MSMS for-

mat file is as follows:

——————

5358 10712

-18.162 1.138 29.523 -0.309 -0.779 0.546

-17.185 -0.033 30.761 -0.960 0.001 -0.280

...

16.334 2.571 23.760 -0.000 1.000 0.000

1 5 3645

3645 5 3646

...

3614 3620 3613

——————

In this file, the first line describes the total numbers of nodes and triangular ele-

38

ments. Starting from the second line, the xyz coordinates and optional xyz components

of the normal direction for each node are given, followed by a list indicating the indices

of three nodes for each triangular element.

The AFMPB solver requires that the normal vectors point outward (as defined in

the current OFF and MSMS formats) and the nodes are ordered counter-clockwisely.

In case the normal vectors are not available in the input surface mesh files, which

happens when other file formats are used as input files, functions are provided in the

solver to calculate these quantities.

4.5.4. A sample shell script

In the following, we provide a simple shell file for executing the AFMPB package.

A Shell file job.csh for AFMPB

#!/bin/csh

xxx, 20xx

Set up directories.

set DIR=../

set OUT=.

Set up molecule data and mesh.

set pqr1=fas2.pqr # mol1 pqr

set mesh1=fas2-mod.dat-d1.2-r1.5 # mol1 msms mesh

Prepare input data file.

cat << END > inp.dat

nmol, number of molecules

1

di, de, ion concentration(mM), temperature

2.0 80. 150 300.0

meshfmt: 0 icosohedron, 1 raw, 2 msms, 3 matlab sphere, 4 mc, 5 off

39

2

output key: ipotw(surf pot),iforce,iinterE,iselfE (solvation),ipotdx(vol pot)

1 0 0 1 0

pqr and mesh files (repeat nmol lines for multi-molecules)

$pqr1 $mesh1

END

Then, simply execute ”./job.csh” to run AFMPB with all the variables and options

setted in the script.

4.6. The output file

The output log file out.log records useful information during code execution, including

the number of iterations of the iterative Krylov solver, the CPU time and memory

usage information, the total/solvation/interaction/Coulombic energies, and so on. The

surface potentials and forces are recorded in a formatted file (surfpot.dat), which can

be extracted for further analysis, and can be visualized with VMD using a provided

TCL script file (see the subsection “Utility Tools”).

4.7. Analyzing AFMPB calculation

The calculation results for energies and forces (between molecules) can be extracted

from out.log. The surface and off-surface potential files can be used for further anal-

ysis. The solvation energies for individual molecules are also stored in out.log if the

corresponding output options are switched on in the input file inp.dat. The solvation

energy is computed by solving the PBE only once, which is different from most finite

difference based methods. For multi-molecule systems, the binding energy, the total

forces and torques acting on individual molecules due to the other molecules (exclud-

ing itself) can also be calculated and outputed to out.log by setting the corresponding

control variables in inp.dat.

40

4.8. Utility Tools

The directory ./tools contains tools for file format conversion, mesh generation and

refinement, and data analysis and visualization. In the current release of the solver,

two scripts are provided: pqrmsms.csh and showSmoothMesh.tcl. The c-shell script

pqrmsms.csh generates a MSMS molecular surface mesh from a PQR file. Before

using the script file, the program MSMS should be installed and the path should be

correctly set. Given a PQR file (e.g. fas2.pqr in the directory), the surface mesh can

be generated by running the following command:

./pqrmsms.csh fas2 1.2 1.5.

The last two variables specify the node density (in unit of 1 per Å2) and probe

radius in unit of Å, respectively.

The second tool, a TCL script showSmoothMesh.tcl, is used together with the vi-

sualization program VMD to display the surface potential data file. VMD should be

installed before running the script. A sample execution to visualize the f as2 structure

and the resulting surface potentials follows:

vmd fas2.pqr -e showSmoothMesh.tcl -args ../job-examples/surfpot.dat.

41

5. PROGRAMMER’S NOTES

5.1. Programming Language

Most of the codes are in Fortran 77 style, including the FMM library subroutines and

the iterative solvers from SparseKit. However, we also use two commands from For-

tran 90 and later versions for dynamical memory allocations.

5.2. Special functions

One function which may be machine dependent is the subroutine for get the current

CPU clock information for timing purposes. The users should check their platform

and compiler and write such a subroutine. Check second.f for details.

42

6. VARIABLES AND DATA STRUCTURE

6.1. Important variables in header files

The following important variables are defined in different header files

• defgeom.h: defines variables to describe the geometry of the molecules.

• files.h: defines the unit for different input and output files. The following are

used for data input files: inp, outp, sufp, vmesh, volp.

The following units are used:

– ivmesh=9 for volume mesh input if one needs potential evaluation.

– ismesh=7 for surface input.

– iupqr=30 for pqr input.

– iusurfp for surface potential output.

– iuvolp=29 for volume potential output.

• fmmtree.h: in the fast multipole method, the size of many variables and vectors

can be determined before one knows the adaptive tree structure for the input

geometry. In this file, all the “fixed” length variables are defined here, including

many variables for storing the precomputed data. One common block is defined

here for adaptive tree structure.

• membem.h: this file defines the variables for the geometry and input/output vari-

ables in the boundary element method. The common block geomol defines the

numbers of molecules, node points, elements, and singular charges. The com-

mon block membem defines the pointer to a huge working array where different

geometry and input/output variables are stored.

43

• memfmm.h: this files defines the pointers for the fast multipole method vari-

ables. All adjusted variables are allocated once the adaptive tree structure is

determined, and these pointers are generated for integer, real, and complex vari-

ables, respectively.

• parm.h: important physical and code parameters. The physical parameters in-

clude:

– di

– de

– dei

– conctr

– kap

– tempr

– totmem

– untfactor

– pi, piq, pih,pi2,pi4,pi8: π and its factors.

The following parameters are used for code control.

– cut1, cut2

– sigm:

– ipotdx:

– iflag: the current solver only supports “free space” boundary condition

(iflag=0). We plan to add the periodic boundary conditions for a big box in

future implementations (iflag=1).

– lw: as the tree structure is adaptive, one can not determine the size of the

memory where the structure will be stores. Hence initially a large amount

of memory space is allocated to generate the adaptive tree. If this number

is too small, error message will be provided asking the users to increase

this number.

44

– nbox: in our adaptive strategy, we ask that the max number of particles in

each childless box is less than nbox. Reducing this parameter will generate

more levels (which means more boxes but less direct interaction list).

– epsclose: when the distance between two particles is small than this value,

the program will complain that the two particles are too close to each other.

– nterms, nlambs: the number of multipole and exponential expansions in

the FMM code. Currently only 3 and 6 digits accuracy are allowed, corre-

sponding to nterms=mlambs=9 and nterms=nlambs=18, respectively.

6.2. Important variables in the code

A data printing package is provided (see prini.f) for outputing integer, real and complex

type variables. The output unit is initiallized by calling “prini(num1, num2)” where

num1 and num2 are two unit numbers for output. If set to 0, then it will not output

those data. See the file main.f for further information on calling prini().

In subroutine solvpb.f, several parameters are defined for the Krylov subspace

methods (see vector ipar). Currently GMRES is used. Users can change to other

Krylov subspace methods by changing gmres. However, the selected solver should not

ask for the transpose matrix vector product.

45

7. IMPORTANT SUBROUTINES

7.1. Boundary Element Code

main.f: the main driver for AFMPB.

bempb (bempb.f): the main subroutine for the LPB equation solver. It sets up the

equation and calculates all required quantities, including different energies.

solvpb (solvpb.f): this subroutine iteratively solves LPB equation solver.

rdcomm (rdcomm.f): this subroutine reads the command line input files.

elmgeom (elmgeom.f): this subroutine computes the required geometry information

of the molecules.

getselfmtrx (getselfmtrx.f): this subroutine computes the local direct interaction co-

efficients.

val gndgnlap (val gndgnlap.f): this subroutine computes the Coulomb potentials

when sources and targets are separated.

val eneyukst (val eneyukst.f): this subroutine computes the Screened Coulomb po-

tentials when sources and targets are separated.

7.2. Iterative Package from SparseKit

There is only one file used from the SparseKit, check iters.f. The solvers which can be

used by AFMPB include GMRES, TFQMR, BCGSTab, FGMRES, and DQGMRES.

7.3. Fast Multipole Methods

The following files are the main interface subroutines between the fast multipole al-

gorithms and the boundary element codes. ladapfmm (slapadap.f): this subroutine

computes the Laplace interaction, single layer potential, the sources are the same as

46

the targets.

ldnadap (slapdn.f): this subroutine computes the Laplace interaction, double layer

potential, the sources are the same as the targets.

ladapst (slapst.f): this subroutine computes the Laplace interaction, the sources are

different from the targets.

yadapfmm (syukadap.f): this subroutine computes the Yukawa interaction, single

layer potential, the sources are the same as the targets.

ydnadap (syukdn.f): this subroutine computes the Yukawa interaction, double layer

potential, the sources are the same as the targets.

yadapst (syukst.f): this subroutine computes the Yukawa interaction, the sources are

different from the targets.

47

8. FREQUENTLY ASKED QUESTIONS

1. Where can I download this package? You may find the package from the

website http://lsec.cc.ac.cn/l̃ubz/afmpb.html at LSEC of China, and a mirror site

at Prof. McCammon’s group website at UCSD http://mccammon.ucsd.edu/.

2. More questions will be reported after a period of practice of the package

Any suggestions, bug reports, please let us know.

48

Acknowledgments

We would like to express our gratitude to Prof. Leslie F. Greengard at the Courant

Institute of Mathematical Sciences, Professor Vladimir Rokhlin at Yale, and members

in their groups.

And finally, we would like to thank our US sponsors, NSF, NIH, HHMI, NIH, NBCR,

CTBP, the U.S. Department of Energy Field Work Proposal ERKJE84, and Chinese

sponsors, the Academy of Mathematics and Systems Science of Chinese Academy of

Sciences, the State Key Laboratory of Scientific/Engineering Computing, and NSFC,

49

BIBLIOGRAPHY

[1] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover Pub-

lications, New York, 1965.

[2] M. Altman, J. Bardhan, J. White, B. Tidor, An accurate surface formulation for

biomolecule electrostatics in non-ionic solutions., Conf Proc IEEE Eng Med Biol

Soc 7 (NIL) (2005) 7591–5.

[3] M. D. Altman, J. P. Bardhan, B. Tidor, J. K. White, FFTSVD: a fast multiscale

boundary-element method solver suitable for Bio-MEMS and biomolecule simu-

lation, IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 25 (2) (2006) 274–

284.

[4] A. W. Appel, An efficient program for many-body simulations, SIAM J. Sci. Stat.

Comput. 6 (1985) 85–103.

[5] N. A. Baker, D. Sept, S. Joseph, M. J. Holst, J. A. McCammon, Electrostatics

of nanosystems: application to microtubules and the ribosome, Proc. Natl. Acad.

Sci. U.S.A. 98 (2001) 10037–10041.

[6] J. Barnes, P. Hut, A hierarchical O(n log n) force-calculation algorithm, Nature

324 (4) (1986) 446 – 449.

[7] R. Bharadwaj, A. Windemuth, S. Sridharan, B. Honig, A. Nicholls, The fast

multipole boundary-element method for molecular electrostatics - an optimal ap-

proach for large systems, J. Comput. Chem. 16 (7) (1995) 898–913.

50

[8] A. J. Bordner, G. A. Huber, Boundary element solution of the linear Poisson-

Boltzmann equation and a multipole method for the rapid calculation of forces

on macromolecules in solution, J. Comput. Chem. 24 (3) (2003) 353–367.

[9] A. H. Boschitsch, M. O. Fenley, W. K. Olson, A fast adaptive multipole algo-

rithm for calculating screened Coulomb (Yukawa) interactions, J. Comput. Phys.

151 (1) (1999) 212–241.

[10] A. H. Boschitsch, M. O. Fenley, H. X. Zhou, Fast boundary element method for

the linear Poisson-Boltzmann equation, J. Phys. Chem. B 106 (10) (2002) 2741–

2754.

[11] C. E. Capener, H. J. Kim, Y. Arinaminpathy, M. S. P. Sansom, Ion channels:

structural bioinformatics and modelling, Hum. Mol. Genet. 11 (20) (2002) 2425–

2433.

[12] H. Cheng, L. Greengard, V. Rokhlin, A fast adaptive multipole algorithm in three

dimensions, J. Comput. Phys. 155 (2) (1999) 468–498.

[13] C. M. Cortis, R. A. Friesner, An automatic three-dimensional finite element

mesh generation system for the Poisson-Boltzmann equation, J. Comput. Chem.

18 (13) (1997) 1570–1590.

[14] T. Darden, D. York, L. Pedersen, Particle mesh ewald: An n log(n) method for

Ewald sums in large systems, J. Chem. Phys. 98 (12) (1993) 10089–10092.

[15] M. E. Davis, J. A. McCammon, Electrostatics in biomolecular structure and dy-

namics, Chem. Rev. 90 (3) (1990) 509–521.

[16] P. Debye, E. Huckel, Zur theorie der elektrolyte, Phys. Zeitschr. 24 (1923) 185–

206.

[17] F. Figueirido, R. M. Levy, R. H. Zhou, B. J. Berne, Large scale simulation of

macromolecules in solution: combining the periodic fast multipole method with

multiple time step integrators, J. Chem. Phys. 106 (23) (1997) 9835–9849.

51

[18] M. K. Gilson, A. Rashin, R. Fine, B. Honig, On the calculation of electrostatic

interactions in proteins, J. Mol. Biol. 184 (3) (1985) 503–516.

[19] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comput.

Phys. 73 (2) (1987) 325–348.

[20] L. Greengard, V. Rokhlin, A new version of the fast multipole method for the

laplace equation in three dimensions, Acta Numerica 6 (1997) 229–269.

[21] L. F. Greengard, J. F. Huang, A new version of the fast multipole method for

screened coulomb interactions in three dimensions, J. Comput. Phys. 180 (2)

(2002) 642–658.

[22] M. Holst, N. A. Baker, F. Wang, Adaptive multilevel finite element solution of

the Poisson-Boltzmann equation i: algorithms and examples, J. Comput. Chem.

21 (2000) 1319–1342.

[23] A. H. Juffer, E. F. F. Botta, B. A. M. Vankeulen, A. Vanderploeg, H. J. C. Berend-

sen, The electric-potential of a macromolecule in a solvent - a fundamental ap-

proach, J. Comput. Phys. 97 (1) (1991) 144–171.

[24] S. Kapur, D. E. Long, IES3: Efficient electrostatic and electromagnetic simula-

tion, IEEE Comput. Sci. Eng. 5 (4) (1998) 60–67.

[25] J. G. Kirkwood, On the theory of strong electrolyte solutions, J. Chem. Phys. 2

(1934) 767–781.

[26] I. Klapper, R. Hagstrom, R. Fine, K. Sharp, B. Honig, Focusing of electric fields

in the active site of Cu-Zn superoxide dismutase: effects of ionic strength and

amino-acid modification, Proteins 1 (1) (1986) 47–59.

[27] S. S. Kuo, M. D. Altman, J. P. Bardhan, B. Tidor, J. K. White, Fast methods

for simulation of biomolecule electrostatics, in: ICCAD ’02: Proceedings of

the 2002 IEEE/ACM international conference on Computer-aided design, ACM

Press, New York, NY, USA, 2002.

52

[28] J. Liang, S. Subramaniam, Computation of molecular electrostatics with bound-

ary element methods, Biophys. J. 73 (4) (1997) 1830–1841.

[29] B. Z. Lu, X. L. Cheng, J. F. Huang, J. A. McCammon, Order N algorithm for

computation of electrostatic interactions in biomolecular systems, Proc. Natl.

Acad. Sci. U. S. A. 103 (51) (2006) 19314–19319.

[30] B. Z. Lu, J. A. McCammon, Improved boundary element methods for Poisson-

Boltzmann electrostatic potential and force calculations, J. Chem. Theory. Com-

put. 3 (3) (2007) 1134–1142.

[31] B. Z. Lu, D. Q. Zhang, J. A. McCammon, Computation of electrostatic forces

between solvated molecules determined by the poisson-boltzmann equation using

a boundary element method, J. Chem. Phys. 122 (21) (2005) 214102.

[32] E. T. Ong, K. H. Lee, K. M. Lim, A fast algorithm for three-dimensional elec-

trostatics analysis: fast fourier transform on multipoles (FFTM), Int. J. Numer.

Methods Eng. 61 (5) (2004) 633–656.

[33] E. T. Ong, K. M. Lim, K. H. Lee, H. P. Lee, A fast algorithm for three-

dimensional potential fields calculation: fast Fourier transform on multipoles,

J. Comput. Phys. 192 (1) (2003) 244–261.

[34] J. R. Phillips, J. K. White, A precorrected-FFT method for electrostatic analysis

of complicated 3-D structures, IEEE Trans. Comput-Aided Des. Integr. Circuits

Syst. 16 (10) (1997) 1059–1072.

[35] F. M. Richards, Areas, volumes, packing and protein structure, Annual Review

in Biophysics and Bioengineering 6 (1977) 151–176.

[36] H. Robinson, Y. G. Gao, B. S. Mccrary, S. P. Edmondson, J. W. Shriver, A. H. J.

Wang, The hyperthermophile chromosomal protein Sac7d sharply kinks DNA,

Nature 392 (6672) (1998) 202–205.

[37] V. Rokhlin, Solution of acoustic scattering problems by means of second kind

integral equations, Wave Motion 5 (3) (1983) 257–272.

53

[38] Y. Saad, M. H. Schultz, Gmres: A generalized minimal residual algorithm for

solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comp. 7 (3) (1986)

856–869.

[39] M. F. Sanner, A. J. Olson, J. C. Spehner, Reduced surface: an efficient way to

compute molecular surfaces, Biopolymers 38 (3) (1996) 305–320.

[40] K. A. Sharp, B. Honig, Electrostatic interactions in macromolecules - theory and

applications, Annu. Rev. Biophys. Biophys. Chem. 19 (1990) 301–332.

[41] W. Shi, J. Liu, N. Kakani, T. Yu, A fast hierarchical algorithm for 3-D capacitance

extraction, in: DAC ’98: Proceedings of the 35th annual conference on Design

automation, ACM Press, New York, NY, USA, 1998.

[42] M. Tanaka, V. Sladek, J. Sladek, Regularization techniques applied to boundary

element method, AMSE Appl. Mech. Rev. 47 (1994) 457–499.

[43] J. Tausch, J. White, A multiscale method for fast capacitance extraction, in:

DAC ’99: Proceedings of the 36th ACM/IEEE conference on Design automa-

tion, ACM Press, New York, NY, USA, 1999.

[44] M. Totrov, R. Abagyan, Rapid boundary element solvation electrostatics calcula-

tions in folding simulations: successful folding of a 23-residue peptide, Biopoly-

mers 60 (2) (2001) 124–133.

[45] N. Unwin, Refined structure of the nicotinic acetylcholine receptor at 4 angstrom

resolution, J. Mol. Biol. 346 (4) (2005) 967–989.

[46] J. Warwicker, H. C. Watson, Calculation of the electric-potential in the active-site

cleft due to alpha-helix dipoles, J. Mol. Biol. 157 (4) (1982) 671–679.

[47] W. Xin, A. H. Juffer, A boundary element formulation of protein electrostatics

with explicit ions, J. Comput. Phys. 223 (2007) 416–435.

[48] R. J. Zauhar, R. S. Morgan, A new method for computing the macromolecular

electric-potential, J. Mol. Biol. 186 (4) (1985) 815–820.

54

[49] R. J. Zauhar, A. Varnek, A fast and space-efficient boundary element method

for computing electrostatic and hydration effects in large molecules, J. Comput.

Chem. 17 (7) (1996) 864–877.

55

