

New Approaches and Demands of Optimization Problems with Orthogonality Constraints

Xin Liu

State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences, China

运筹千里级偿税坛

May 31, 2020

Acknowledgements Collaborators

Joilaborators

- Xiaojun Chen (PolyU)
- Bin Gao (KUL, Belgium)
- Guanghui Hu (UM)
- Yang Kuang (NUS, Singapore)
- Michael Ng (HKU)
- Zaiwen Wen (PKU)
- Liwei Xu (UESTC)
- Chao Yang (LBNL U.S.)
- Ya-xiang Yuan
- Yin Zhang, (CUHK(SZ))
- Zaikun Zhang, (PolyU)

Students:

 Yadan Chen, Jiang Hu (PKU), Xiaoyin Hu, Wei Liu, Nachuan Xiao, Lei Wang, Siyun Zhou (UESTC)

Optimization Problem with Orthogonality Constraints General Form

$$\min_{\substack{X \in \mathbb{R}^{n \times p}}} f(X)$$
s.t. $X^{\top}X = I.$ (OCP)

$$f: \mathbb{R}^{n \times p} \longmapsto \mathbb{R}$$

■ *n* > *p*

■ p(p+1)/2 constraints -- nonconvex

Stiefel manifold:

$$\mathcal{S}_{n,p} := \{ X \in \mathbb{R}^{n \times p} | X^\top X = I \}.$$

What Attracts Me?

- Emerging applications
- Challenging

Starting from a special case: $f(X) = \operatorname{tr}(X^{\top}AX)$

Dominant Eigenspace Calculation and Singular Value Decomposition

Dominant Eigenspace Calculation

- $\blacksquare AX_k = Q_k \Lambda_k$
- $\Lambda_k \in \mathbb{R}^{k \times k}$ contains *k* largest/smallest (shifting -A) eigenvalues on its diagonal.
- $Q_k \in \mathbb{R}^{n \times k}$ consists of the associate eigenvectors.

Singular Value Decomposition/Principal Component Analysis

• k dominant SVD ($k \ll m$)

$$B_k \triangleq \sum_{i=1}^k \sigma_i u_i v_i^\top = \operatorname*{arg\,min}_{\operatorname{rank}(X) \le k} \|B - X\|_{\mathrm{F}}^2 \approx B = \sum_{i=1}^m \sigma_i u_i v_i^\top.$$

Dominant eigenspace computation of $B^{\top}B$ or BB^{\top}

Adequate Existing Methods

Books and surveys

- Saad 1992, "Numerical Methods for Large Eigenvalue Problems"
- Stewart 1998, "Matrix Algorithms Volume II Eigensystems"
- Sorensen 2002, "Numerical Methods for Large Eigenvalue Problems"
- Hernández et al. 2009, "A Survey of Software for Sparse Eigenvalue Problems"
-
- Lanczos methods ARPACK (eigs in Matlab)

Sorensen 1996, "Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations "

Plenty of Vigor from Big Data Analysis

A fundamental tool for many emerging optimization problems

- First-order methods for semidefinite program
- Low-rank matrix completion
- Robust principal component analysis
- Sparse principal component analysis
- Nonnegative matrix factorization
- Sparse inverse covariance matrix estimation
- Nearest correlation matrix estimation

Various scientific and engineering applications

- High dimensional data reduction
- Density functional theory for electronic structure calculation
- Bose Einstein condensate

Motivations

Why not use one of the existing eigensolvers?

Emerging applications demand new capacities.

- high efficiency at moderate accuracy
- high eigenspace dimensions
- high parallel scalability
- warm-start capacity

Established eigensolvers often lack in one or more aspects.

Block vs. Sequential (Lanczos-type Methods)

- Block SpMV: $AV = [Av_1 Av_2 \cdots Av_k]$
- Sequential SpMv's: $Av \rightarrow A^2v \cdots \rightarrow A^kv$
 - (+ inner products for orthogonalization)

As k increases, block methods are gaining advantages.

Block methods can be warm-started in an iterative setting.

Block Methods

Classic Block Method SSI: (extension of power method)

 $X^{i+1} = \operatorname{orth}(AX^i)$

Other block algorithms:

Block Jacobian-Davidson: PRIMME, FEAST

Rayleigh-Ritz Trace Maximization

 $\max_{X \in \mathbb{R}^{n \times k}} \quad f(X) := \mathbf{tr}(X^{\top} A X),$ s.t. $X^{\top} X = I,$

Rayleigh-Ritz (RR) Refinement: $[V, D] = eig(X^{T}AX); X = X * V;$

- **SSI:** $X^{(i+1)} = orth(AX^{(i)})$
- LOBPCG:

 $X^{(i+1)} = \operatorname*{argmax} \{ f(X) \mid X^\top X = I, \ X \in \{ X^{(i-1)}, X^{(i)}, AX^{(i)} \} \}$

LMSVD: adaptive block Krylov subspace method
 L.-Wen-Zhang 2013, SIAM Journal on Scientific Computing

Avoid the Bottleneck

Two Main Types of Operations AX & RR/orth

As k increases, $AX \ll RR/orth \longrightarrow$ bottleneck

Parallel Scalability

- $AX \longrightarrow Ax_1 \cup Ax_2 \cup \dots \cup Ax_k$. Higher.
- RR/orth inherits sequentiality. Lower.

Avoid Bottleneck

Do less RR/orth

No Free Lunch

Do more BLAS3 $(X^{\top}X, \text{ higher scalability than } AX)$

Trace Penalty Model

Wen-Yang-L.-Zhang 2016, Journal of Scientific Computing

Trace Minimization

$$\min_{X \in \mathbb{R}^{n \times k}} \operatorname{tr}(X^{\top} A X) \quad \text{s.t.} \quad X^{\top} X = I.$$
(1)

Trace-penalty Minimization ¹

$$\min_{X \in \mathbb{R}^{m \times k}} f(X) := \frac{1}{2} \mathbf{tr}(X^{\mathsf{T}} A X) + \frac{\mu}{4} \|X^{\mathsf{T}} X - I\|_{\mathrm{F}}^{2}.$$
 (2)

This idea (quadratic penalty) is old (Courant 1943) and unsophisticated.

It is well known that $\mu \to \infty$, (2) \Longrightarrow (1)

Not a Good Penalty Function

¹Related unconstrained model: $\min_{X \in \mathbb{R}^{m \times k}} \frac{1}{4} \|X^{\top} X\|_{F}^{2} + \frac{1}{2} tr(X^{\top} A X), \text{ Jiang-Cui-Dai 2014}$

"Exact" Penalty

- $\mu \to \infty$ is neither needed, nor desirable
- $\mu > \max(0, \lambda_k)$ yields equivalence: same eigenspace

Fewer Saddle Points

- If $\mu \in (\lambda_k, \lambda_n)$: unique minimum, no maximum
- If $\mu \in (\lambda_k, \lambda_{k+p})^2$: all rank-*k* stationary points are minimizers

EIGPEN

- Gradient method, BB stepsize
- OpenMP parallelization on Cray XE6 supercomputer (NERSC)
- Restart: RR refinement

 $^{^{2}\}lambda_{k+p}$ is the smallest eigenvalue $> \lambda_{k}$.

Beyond EIGPEN

Condition Number

•
$$k = 1$$
: $\kappa(\nabla^2 f_\mu(\hat{X})) = \frac{\lambda_n - \lambda_1}{\lambda_2 - \lambda_1}$

$$k > 1: \kappa(\nabla^2 f_\mu(\hat{X})) = \infty$$

"Restricted" condition number:

$$\begin{split} \kappa \left(\nabla^2 f_{\mu}(\hat{X}) \left|_{Q_{k}^{\perp}} \right) &\triangleq \quad \frac{\max_{S \in \mathbb{R}^{n \times k}} \left\{ \operatorname{tr}(S^{\top} \nabla^2 f_{\mu}(\hat{X})(S)) : \operatorname{tr}(S^{\top} S) = 1, S^{\top} Q_{k} = 0 \right\}}{\max_{S \in \mathbb{R}^{n \times k}} \left\{ \operatorname{tr}(S^{\top} \nabla^2 f_{\mu}(\hat{X})(S)) : \operatorname{tr}(S^{\top} S) = 1, S^{\top} Q_{k} = 0 \right\}} \\ &= \quad \frac{\lambda_{n} - \lambda_{1}}{\lambda_{k+1} - \lambda_{k}}. \end{split}$$

Explain the necessity of restart procedure

Symmetric Low Rank Product

L.-Wen-Zhang 2015, SIAM Journal on Optimization

New Model – SLRP

 $\min_{X\in\mathbb{R}^{n\times k}} \|XX^{\top} - A\|_{\mathrm{F}}^2$

- $\lambda_k \ge 0$ yields equivalence, same eigenspace
- Nonlinear least squares → Gauss-Newton method
- rank deficient normal equation
- minimum weighted-norm solution:

$$S_0 = \left(I - \frac{1}{2}\mathcal{P}_X\right) \left(AX(X^\top X)^{-1} - X\right)$$

where $\mathcal{P}_X = X(X^\top X)^{-1}X^\top$

 14/77

SRLPGN

Two versions

- Theoretical version
 - correction step: if $\sigma_{\min}(X) < \delta$, set $X^+ = X + P$
 - $X^+ = X + \alpha S_0$ with $\alpha = \min\left(1, \sigma_{\min}^3(X) / \|\nabla f(X)\|_{\mathrm{F}}\right)$
 - global convergence
 - no correction + unit step size after finite number of iterations
- Practical version
 - two lines: $Y = X(X^{\top}X)^{-1}$, $X = AY X(Y^{T}AY I)/2$
 - local linear convergence rate λ_{k+1}/λ_k

Further Developments

- Augmented Rayleigh-Ritz and Block Iteration (ARRABIT): Wen-Zhang 2017, SIMAX
- Triangularized Orthogonalization-Free Method (TriOFM): Gao-Li-Lu 2020, arXiv

Differentiable Objective f(X)

Discretized Kohn-Sham Total Energy Minimization

min E(X) s. t. $X^{\top}X = I$, $X \in \mathbb{R}^{n \times p}$,

where, for $\rho(X) := \operatorname{diag}(XX^{\top})$,

$$E(X) := \frac{1}{4} \operatorname{tr}(X^{\top} L X) + \frac{1}{2} \operatorname{tr}(X^{\top} V_{ion} X) + \frac{1}{2} \sum_{i} \sum_{l} |x_{i}^{\top} w_{l}|^{2} + \frac{1}{4} \rho^{\top} L^{\dagger} \rho + \frac{1}{2} e^{\top} \epsilon_{xc}(\rho).$$

- 1 Kinetic energy (*L*: finite dimensional representation of the Laplacian operator)
- 2 Local ionic potential energy (V_{ion} : ionic pseudopotentials sampled on the suitably chosen Cartesian grid)
- 3 Nonlocal ionic potential energy (*w*_l: discretized pseudopotential reference projection function)
- 4 Hartree potential energy (L^{\dagger} : pseudo-inverse of L)
- **5** Exchange correlation energy nonclassical (ϵ_{xc} : interaction between electrons)

Yang et. al. 2006; Gao et. al. 2009; Wen et. al. 2013, 2015; Zhou et. al. 2014, Ulbrich et. al. 2015, Jin et. al. 2015; Dai et. al. 2018,

Existing Methods

First-order Methods Based on Retraction

- Steepest descent: Helmke-Moore 1994; Udriste 1994
- Conjugate gradient: Edelman-Arias-Smith 1998; Brace-Manton 2006; Smith 1994; Gallivan-Absil 2010
- Geodesic search in canonical metric: Abrudan-Eriksson-Koivunen 2008
- Cayley transformation: Nishimori-Akaho 2005
- Projection-based method: Manton 2002; Absil-Mahony-Sepulchre 2008; Dai-Zhang-Zhou 2019
- Constraint preserving update scheme: Wen-Yin 2012; Jiang-Dai 2014

Second-order Methods Based on Retraction

- Newton: Smith 1994; Edelman-Arias-Smith 1998
- Quasi-Newton: Edelman-Arias-Smith 1998; Brace-Manton 2006; Gallivan-Absil 2010; Huang-Gallivan-Absil 2015
- Structured Quasi-Newton: Hu-Jiang-Lin-Wen-Yuan 2018
- Regularized Newton: Hu-Wen-Milzarek-Yuan 2017
- Trust region: Absil-Baker-Gallivan 2007

Other Type of Methods

Splitting and alternating: Lai-Osher 2014

Hu-L.-Wen-Yuan 2020, Journal of the Operations Research Society of China

A New First-order Framework

Gao-L.-Chen-Yuan 2018, SIAM Journal on Optimization

Motivations: considering optimization problems with orthogonality constraints in **Euclidean space**.

- A different angle
- Compatibility
- Parallelization?

Observation: for any $X \in S_{n,p}$, it holds that

 $\|\nabla f(X) - X \nabla f(X)^\top X\|_{\mathrm{F}}^2 = \|\nabla f(X) - X X^\top \nabla f(X)\|_{\mathrm{F}}^2 + \|X^\top \nabla f(X) - \nabla f(X)^\top X\|_{\mathrm{F}}^2.$

- A Two-step Feasible First-order Framework
 - Step I: sufficient function value reduction
 - Step II: rotation to keep the symmetry of multipliers

Assumption: $f(X) = h(X) + tr(G^{\top}X)$, h(X) — orthogonal invariant

Algorithm Framework

- 1) Set tolerance $\epsilon > 0$, initialize: $X^0 \in S_{n,p}$, set k := 0;
- 2) Find a feasible point \bar{X} , based on X^k , satisfying sufficient function value reduction

$$f(X^k) - f(\bar{X}) \ge C_1 \cdot ||(I - X^k X^{k^{\top}}) \nabla f(X^k)||_{\mathrm{F}}^2;$$

3) Calculate X^{k+1} as follows

$$X^{k+1} := \begin{cases} \bar{X}, & \text{if } \bar{X}^\top G = G^\top \bar{X}; \\ -\bar{X}UT^\top, & \text{otherwise,} \end{cases}$$

where UΣT^T is the singular value decomposition of X^TG;
4) If ||(I - X^kX^{k^T})∇f(X^k)||_F² < ε, return X^{k+1}; Otherwise, set k := k + 1 and go to Step 2.

Properties of the Framework

Contributions

- No searching in manifold or its tangent space
- Three algorithms
 - gradient reflection
 - gradient projection
 - column-wise block coordinate descent
- Global convergence
 - convergence of GR or GP with a fixed stepsize
 - convergence of CBCD
- Satisfactory numerical performance

Deficiencies

Remove the ugly assumption

Wang-Gao-L., Multipliers Correction Methods for Optimization Problems with Orthogonality Constraints, upcoming

Parallelization?

A Key Bottleneck When p Is Large

Orthonormalization — lacks of concurrency

Column-wise parallelization — lacks of scalability

Solution: infeasible method

- Key point: efficient in serial
- To keep the structure: penalty function method
- Nonsmooth penalty function is intractable

 $\min_{X \in \mathbb{R}^{n \times p}} \quad f(X) + \gamma ||X^\top X - I_p||_1$

Augmented Lagrangian Method (ALM)

Augmented Lagrangian penalty function Powell 1969; Hestenes 1969

$$\mathcal{L}(X,\Lambda) := f(X) - \frac{1}{2} \operatorname{tr} \left(\Lambda(X^{\mathsf{T}} X - I_p) \right) + \frac{\beta}{4} \left\| X^{\mathsf{T}} X - I_p \right\|_{\mathrm{F}}^2.$$

Exact penalty function

ALM with dual ascend

- **1** Choose an initial point X_0 , Λ_0 , k = 0
- **2** Update X_k by $X_{k+1} = \arg \min_X \mathcal{L}(X, \Lambda_k)$
- 3 Update Λ_k by $\Lambda_{k+1} = \Lambda_k \tau_k \beta (X_{k+1}^\top X_{k+1} I_p)$
 - Solving subproblem with fixed multiplier
 - Updating multiplier by dual ascent
 - Numerically inefficient

Motivation: First-order Optimality

First-order Optimality

The first-order optimality conditions of (OCP) can be written as

 $\begin{cases} \nabla f(X) - X\Lambda &= 0; \\ X^{\top}X &= I. \end{cases}$

Lagrangian multipliers enjoy the closed-form expression $\Lambda = \nabla f(X)^{\top} X$ at any first-order stationary point.

Updating Multipliers by Closed-form

 $\Lambda^{k+1} := \Phi(\nabla f(X^k)^\top X^k),$

where $\Phi : \mathbb{R}^{n \times n} \mapsto \mathbb{S}^n$ is defined by $\Psi(A) := \frac{1}{2}(A + A^{\top})$.

Explicit Multiplier Updating Scheme Gao-L.-Yuan 2019, SIAM Journal on Scientific Computing

ORS

Proximal Linearized Augmented Lagrangian Method (PLAM)

- Taking one gradient step in the subproblem min $\mathcal{L}(X, \Lambda_k)$:

 $X_{k+1} = X_k - \eta_k \nabla_X \mathcal{L}(X_k, \Lambda_k).$

Exact penalty, global convergence, local linear convergence
 Comparable with existent algorithms with subtly selected β

Column-wise Block Minimization of PLAM (PCAL)

Column-wise normalization:

 $(X_{k+1})_i = (X_k - \eta_k \nabla_X \mathcal{L}(X_k, \Lambda_k)_i / \|(X_k - \eta_k \nabla_X \mathcal{L}(X_k, \Lambda_k)_i\|_2$

- Not sensitive with β
- Comparable with feasible algorithms
- Much better scalability in parallel computing

PCAL Applied in Electronic Structure Calculation

Gao-Hu-Kuang-L., Electronic Structure Calculation via a Parallelizable Framework without Orthogonalization, upcoming

Figure 1: Calculation on AFEABIC: C_{384} with n = 161322, p = 1152. Left: the isosurface of the electron density at value 0.2. Right: the speedup factor for this example.

Still Not Perfect

Xiao-L.-Yuan 2020, A Class of Smooth Exact Penalty Function Methods for Optimization Problems with Orthogonality Constraints, arXiv

PLAM & PCAL

Understanding of the merit function

 $h(X) := f(X) - \frac{1}{2} \operatorname{tr} \left(\Phi \left(X^\top \nabla f(X) \right) (X^\top X - I_p) \right) + \frac{\beta}{4} \left\| X^\top X - I_p \right\|_{\mathrm{F}}^2$

- Why PCAL is better?
- Possible extension: second-order method?

Exact Penalty Function

h(*x*) — Exact Penalty Function?

If X^* is a first-order stationary point of (OCP), then

 $\nabla h(X^*) = 0.$

How about the other way round?

 $\nabla h(X) = 0 \Rightarrow X^\top X = I_p?$

A crucial issue:

h(*X*) — Not Necessarily Bounded Below

$$f(X) = \frac{1}{4} \|X^{\top}X\|_{F}^{2}$$

$$h(X) = \frac{1}{4} \|X^{\top}X\|_{F}^{2} - 2tr\left((X^{\top}X)^{2}(X^{\top}X - I_{p})\right) + \frac{\beta}{4} \|X^{\top}X - I_{p}\|_{F}^{2}$$

$$\|X\|_{F} \to +\infty \Rightarrow h(X) \to -\infty.$$

A New Penalty Model

Restrict h(X) in a Bounded Set

 $\min_{X \in \mathcal{M}} h(X). \quad (\text{PenC})$

- \mathcal{M} is convex and compact, $\mathcal{S}_{n,p} \subset \mathcal{M}$
- Projection to \mathcal{M} can be easily calculated

Possible Choices of \mathcal{M} :

....

- Ball (\mathcal{B}) with radius $K \ge \sqrt{p}$
- Convex hull of Stiefel manifold: $\{X \in \mathbb{R}^{n \times p} | ||X||_2 \le 1\}$
- Convex hull of Oblique manifold: $\{X \in \mathbb{R}^{n \times p} | ||(X)_i||_2 \le 1\}$

Assumptions

ORS

Assumption 1

f(X) is differentiable, $\nabla f(X)$ is Lipschitz continuous.

• Does not imply the existence of $\nabla h(X)$

Assumption 2

f(X) is twice continuous differentiable, and $\nabla^2 f(X)$ is Lipschitz continuous for each $X \in \mathbb{R}^{n \times p}$.

• Does not imply the existence of $\nabla^2 h(X)$

Constants

$$M_{0} := \sup_{X \in \mathcal{M}} \max\{1, \|\nabla f(X)\|_{F}\}, \qquad M_{1} := \sup_{X \in \mathcal{M}} \max\{1, \|\Lambda(X)\|_{F}\};$$

$$C_{1} := \sup_{X \in \mathcal{M}} \tilde{h}(X) - \inf_{X \in \mathcal{M}} \tilde{h}(X), \qquad L_{1} := \sup_{X \in \mathcal{M}} \frac{1}{\|X - Y\|_{2}} \|\Lambda(X) - \Lambda(Y)\|_{2};$$

$$L_{2} := \sup_{X \in \mathcal{M}, Y \in \mathbb{R}^{n \times p}} \limsup_{t \to 0} \frac{\|\nabla \tilde{h}(X + tY) - \nabla \tilde{h}(X)\|_{F}}{t\|Y\|_{F}}, M_{3} := \sup_{X \in \mathcal{M}} \max\{1, \|\nabla^{2} f(X)\|_{F}\}.$$

Properties of Penalty Model

First-order Stationarity

Theorem 1

Suppose Assumption 1 holds, $\beta \ge \max\left\{2pL_1, \frac{2p(M_0+M_1)}{3}\right\}$, and \tilde{X} is a first-order stationary point of (PenC), then either $\tilde{X}^{\top}\tilde{X} = I_p$ holds, which further implies that \tilde{X} is a first-order stationary point of problem (OCP), or the inequality $\sigma_{\min}(\tilde{X}^{\top}\tilde{X}) \le \frac{M_1+2L_1}{\beta}$ holds.

Lemma 1

For any $0 < \delta \leq \frac{1}{3}$ and $\beta \geq \max\left\{2pL_1, \frac{2p(M_0+M_1)}{3}, 3M_1 + 6L_1, \frac{2C_1}{\delta^2}\right\}$, we have

$$\sup_{\|X^{\top}X-I_p\|_{\mathrm{F}}\leq\delta}h(X)<\inf_{\|X^{\top}X-I_p\|_{\mathrm{F}}\geq2\delta}h(X).$$

Moreover, any global minimizer X^* of (PenC) satisfies $X^{*\top}X^* = I_p$ which further implies that it is a global minimizer of problem (OCP).

Properties of Penalty Model (Cont'd)

Second-order Stationarity

Theorem 2

Suppose Assumption 2 holds, and \mathcal{M} is chosen as $\mathcal{B} := \{X \in \mathbb{R}^{n \times p} | ||X||_F \le K, K > \sqrt{p}\}$ and $\beta \ge \max\left\{ 6M_1 + 12L_1, \frac{2}{3}p(M_0 + M_1), 2L_2 + 1, \frac{2(L_2 + pM_1)}{3} \right\}$. Then, any second-order stationary point \tilde{X} of (PenC) satisfies $\tilde{X}^{\top}\tilde{X} = I_p$. Moreover, \tilde{X} is a second-order stationary point of problem (OCP).

Algorithm

Problem Reformulation

$$\begin{array}{ll} \min & f(X) \\ \text{s.t.} & X^\top X = I_p, \end{array} \quad \Rightarrow \quad \min_{X \in \mathcal{B}} \quad h(X). \end{array}$$

•
$$K > \sqrt{p}$$

Gradient of h(X)

$$\begin{aligned} \nabla h(X) &= \nabla f(X) - X \Lambda(X) + \beta X (X^\top X - I_p) \\ &- \frac{1}{2} \left(\nabla f(X) (X^\top X - I_p) + \nabla^2 f(X) [X (X^\top X - I_p)] \right) \end{aligned}$$

Denote $G(X) := \nabla f(X) - X\Lambda(X) + \beta X(X^{\top}X - I_p)$

- Exact gradient involves $\nabla^2 f(X)$, unaffordable
- Omit the red part

First-order Method for Penalty Model with Compact Convex Constraints (PenCF)

- 1 Choose an initial guess X_0 , set k = 0;
- **2** Compute $\Lambda(X_k)$;
- 3 Update X_k by

 $X_{k+1} = X_k - \eta_k (\nabla f(X_k) - X_k \Lambda(X_k) + \beta X_k (X_k^\top X_k - I_p));$

- 4 If $||X_{k+1}||_F \ge K$, project X_{k+1} back to \mathcal{B} ;
- 5 If certain stopping criterion is satisfied, return X_{k+1} ; Otherwise, set k := k + 1 and go to Step 2.

Global Convergence

Theorem 3

Suppose Assumption 1 holds, $\delta \in (0, \frac{1}{3}]$, $K \ge \sqrt{p} + \delta \sqrt{p}$, and $\beta \ge \max \{2pL_1, \frac{2}{3}p(M_0 + M_1), 3M_1 + 6L_1\}$. Let $\{X_k\}$ be the iterate sequence generated by PenCF, starting from any initial point X_0 satisfying $||X_0^T X_0 - I_p||_F \le \delta$, and the stepsize $\eta_k \in [\frac{1}{2}\bar{\eta}, \bar{\eta}]$, where $\eta = \min \{\frac{\delta}{8KM_4}, \frac{\beta\delta^2}{9K^2L_1M_4^2}, \frac{1}{45(L_0+M_1)+137\beta}\}, M_4 = M_0 + M_1K + \beta\delta K$. Then, the iterate sequence $\{X^k\}$ has at least one cluster point, and each cluster point of $\{X^k\}$ is a stationary point of (OCP). More precisely, for any $k \ge 1$, it holds that

$$\min_{0 \le i \le N-1} \max\left\{ ||X_i^\top X_i - I_p||_{\mathsf{F}}, ||G(X_i)||_{\mathsf{F}} \right\} \le \max\left\{ \frac{2\sqrt{3}}{3M_1}, 1 \right\} \cdot \sqrt{\frac{5C_1 + \frac{5}{4}\beta\delta^2}{N\bar{\eta}}}.$$

Theorem 4

Suppose Assumption 2 holds, X^* is an isolated local minimizer of (OCP), and we denote

$$\tau := \inf_{Y^{\top}X^* + X^{*\top}Y = 0} \frac{\nabla^2 f(X^*)[Y, Y] - tr(Y^{\top}Y\Lambda(X^*))}{\|Y\|_{\rm F}^2}.$$
 (3)

The algorithm parameters satisfy $\beta \geq \frac{1}{2}M_3 + \frac{\sqrt{3}M_0}{3} + \frac{1}{2}\tau$ and $\eta^k \in [\frac{\bar{\eta}}{2}, \bar{\eta}]$, where $\bar{\eta} \geq M_3 + \frac{2\sqrt{3}M_0}{3} + 2\beta$. Then, there exists $\varepsilon > 0$ such that starting from any X^0 satisfying $||X^0 - X^*||_F < \varepsilon$, and the iterate sequence $\{X^k\}$ generated by PenCF converges to X^* *Q*-linearly.
PLAM and PCAL – Further Explanation **PLAM**

- $\blacksquare \mathcal{M} = \mathbb{R}^{n \times p}$
- h(x) is not bounded below: small $\beta \Rightarrow$ divergence
- PCAL
 - $\blacksquare \mathcal{M} = O\mathcal{B}_{n,p}$
 - (PenC) is bounded below: accept smaller β

PenCF

- $\mathcal{M} = \{X \in \mathbb{R}^{n \times p} | ||X||_{F} \le K\} \Rightarrow$ cheap projection
- Constraint becomes inactive when close to $S_{n,p}$

Both PLAM and PCAL can be regarded as applying approximate gradient method to solve corresponding $\left(PenC\right)$.

- better than ALM
- Comparable with existing retraction-based first-order methods

Post-process by Orthonormalization

Why Post-process?

- To attain high accuracy on feasibility
- To maintain mild accuracy on the substationarity

How to Post-process?

•
$$X_{\text{orth}}^k := UV^{\top}$$
, economy-size SVD: $X^k = U\Sigma V$

Proposition 1

Suppose Assumption 1 holds, $\beta \ge 1 + 2L_0 + 2L_1 + 2M_1$ and $X \in \mathcal{M}$. Let $X = U\Sigma V^{\top}$ be the economy-size SVD for X and $\operatorname{orth}(X) = UV^{\top}$. Then, it holds that

$$h(X_{\text{orth}}) \le h(X) - \frac{1}{4} \|X^{\top}X - I_p\|_{\text{F}}^2.$$

Suppose computing $\nabla^2 f(X)$ is affordable

• Computing $\nabla h(X)$ becomes affordable:

$$\begin{aligned} \nabla h(X) &= \nabla f(X) - X\Lambda(X) + \beta X(X^{\top}X - I_p) \\ &- \left(\nabla f(X)(X^{\top}X - I_p) + \nabla^2 f(X)[X(X^{\top}X - I_p)]\right) \end{aligned}$$

- Computing $\nabla^2 h(X)$ is still intractable
- Solution: approximate $\nabla^2 h(X)$ by ∇f and $\nabla^2 f$

Motivation: Delete High-order Terms in Hessian

$$\nabla^{2}h(X)[D,D] = \nabla^{2}f(X)[D,D] -\operatorname{tr}\left(\Lambda(X)D^{\mathsf{T}}D - D^{\mathsf{T}}\nabla f(X)\Phi(D^{\mathsf{T}}X) - X^{\mathsf{T}}\nabla^{2}f(X)[D]\Phi(D^{\mathsf{T}}X)\right) -\frac{1}{2}\operatorname{tr}\left(\left(D^{\mathsf{T}}\nabla^{2}f(X)[D] + \frac{1}{2}X^{\mathsf{T}}\nabla^{3}f(X)[D,D]\right)(X^{\mathsf{T}}X - I_{p})\right) +\operatorname{tr}\left(\beta X^{\mathsf{T}}XD^{\mathsf{T}}D + \beta D^{\mathsf{T}}XX^{\mathsf{T}}D + \beta X^{\mathsf{T}}DX^{\mathsf{T}}D - \beta D^{\mathsf{T}}D\right).$$

 $W(X)[D,D] := \nabla^2 f(X)[D,D]$ $- \operatorname{tr} \left(\Lambda(X)D^{\mathsf{T}}D - D^{\mathsf{T}} \nabla f(X)\Phi(D^{\mathsf{T}}X) - X^{\mathsf{T}} \nabla^2 f(X)[D]\Phi(D^{\mathsf{T}}X) \right)$ $+ \operatorname{tr} \left(\beta X^{\mathsf{T}} X D^{\mathsf{T}} D + \beta D^{\mathsf{T}} X X^{\mathsf{T}} D + \beta X^{\mathsf{T}} D X^{\mathsf{T}} D - \beta D^{\mathsf{T}} D \right).$

$$\blacksquare \left\| W(X) - \nabla^2 h(X) \right\|_{\mathrm{F}} \to 0 \text{ as } \left\| X^\top X - I_p \right\|_{\mathrm{F}} \to 0$$

Subproblem

$$\min \quad \frac{1}{2} W(X_k)[D,D] + \operatorname{tr} \left(D^\top \nabla h(X_k) \right)$$
s.t. $||X_k + D||_{\mathrm{F}} \le K.$
(4)

- Trust region subproblem: computing global minimizer is tractable
- $\nabla h(X)$ is sufficiently small \Rightarrow inactive constraint

Second-order Method for Penalty Model with Compact Convex Constraints (PenCS)

- **1** Choose an initial guess X_0 , set k = 0;
- **2** Compute stepsize η_k ;
- 3 Compute D_k by solving (TRS), set $X_{k+1} = X_k + \eta_k D_k$;
- If certain stopping criterion is satisfied, return X_{k+1}; Otherwise, set k := k + 1 and go to Step 2.

Theorem 5

Suppose Assumption 2 holds. X^* is an isolated local minimizer of (OCP) with

$$\tau := \inf_{Y^{\top}X^{*}+X^{*\top}Y=0} \frac{\nabla^{2} f(X^{*})[Y,Y] - tr(Y^{\top}Y\Lambda(X^{*}))}{||Y||_{\mathrm{F}}^{2}}.$$
 (5)

When $\delta \in (0, \frac{1}{3}), K \geq \sqrt{p + \delta \sqrt{p}}, \beta \geq \max\left\{2pL_1, \frac{2}{3}p(M_0 + M_1), 6M_1 + 12L_1, \frac{2(L_2 + pM_1)}{3}, 2L_2 + 1, \frac{4L_2^2}{\tau} + \tau\right\}$ and stepsize $\eta_k = 1$, there exists a sufficiently small ε such that when $||X_0 - X^*||_F \leq \varepsilon, X_k$ generated by PenCS converges to X^* quadratically.

Nondifferentiable Objective f(X)

Sparse Variable PCA

Ulfarsson-Solo 2008, Chen-Zou-Cook 2010

$$\begin{split} \min_{X \in \mathbb{R}^{n \times p}} & -\frac{1}{2} \operatorname{tr} \left(X^{\top} M X \right) + \sum_{j=1}^{n} \gamma_j \left\| X_{j \cdot} \right\|_2 \\ \text{s.t.} & X^{\top} X = I_p, \end{split}$$

where *M* is the covariance matrix and γ_j are parameters to regularization term.

Eliminate the variables that contains little information of the principle component of the distribution

Regularized Discriminative Feature Selection

Yang-Shen-Ma-Huang-Zhou 2011, Tang-Liu 2012

$$\begin{split} \min_{X \in \mathbb{R}^{n \times p}} \quad & \frac{1}{2} \operatorname{tr} \left(X^{\top} M X \right) + \sum_{j=1}^{n} \gamma_j \left\| X_{j \cdot} \right\|_2 \\ \text{s.t.} \quad & X^{\top} X = I_p, \end{split}$$

where M is constructed by the given samples.

- Unsupervised feature selection, linear classifier $X \in \mathbb{R}^{n \times p}$
- X(j, :) are zero $\rightarrow j$ -th labels is ignored in classifying
- \Rightarrow Select the most representative labels.

 $\ell_{2,1}$ Norm Regularization Minimization with Orthogonality Constraints

General Form

$$\min_{\substack{X \in \mathbb{R}^{n \times p}}} f(X) := F(X) + R(X)$$
s.t. $X^{\top}X = I.$ (OCPR)

•
$$F: \mathbb{R}^{n \times p} \longmapsto \mathbb{R}$$
, differentiable

$$R(X) = \sum_{j=1}^{n} \gamma_j ||X(j,:)||_2, X_{j} := X(j,:)^{\top}, X_{i} = X(:,i)$$

■ *n* > *p*

$$p(p+1)/2$$
 constraints -- nonconvex

Stiefel manifold:

$$\mathcal{S}_{n,p} := \{ X \in \mathbb{R}^{n \times p} | X^\top X = I \}.$$

Existing Approaches

Subgradient Methods

- Subgradient method on Riemann manifold: Ferreira-Oliveria 1998
- *ε* subgradient method: Grohs-Hosseini 2016
- Gradient sampling method: Hosseini-Uschmajew 2017

.....

Not fully exploit the composite structure \Rightarrow inefficient

Existing Approaches (Cont'd)

ADMM-based Proximal Gradient Methods

- Splitting for orthogonality constrained problems (SOC): Lai-Osher 2014
- Manifold ADMM (MADMM): Kovnatsky-Glashoff-Bornstein 2016
- PAMAL: Chen-Ji-You 2016
- **Properties of These Approaches**
 - Simple subproblems
 - Multiple-block alternating updating ⇒ usually not very efficient;
 - Updating multiplier via dual-ascend ⇒ many parameters need to be tuned.

Existing Approaches (Cont'd)

Proximal Gradient Approaches

Proximal gradient method on manifold (ManPG): Chen-Ma-So-Zhang 2020

$$\min_{D \in \mathcal{T}_{X^k}} \left\langle D, \nabla F(X^k) \right\rangle + R(X^k + D) + \frac{\|D\|_F^2}{2\eta^k} \quad \text{(proximal mapping)}$$

 Alternating manifold proximal gradient method (AManPG): Chen-Ma-Xue-Zhou 2019

Properties of These Approaches

- No closed-form expression for proximal mapping in ManPG ⇒ main bottleneck
- Orthonormalization process is required in each iteration
 ⇒ lacks of scalability, hard for parallelism

First-order Optimal Condition

Definition 1

(Yang-Zhang-Song 2014, Chen-Ma-Xue-Zhou 2019) A point $X \in S_{n,p}$ is called as first-order stationary point of (OCPR) if and only if it satisfies

 $0\in \mathcal{P}_{\mathcal{T}_X}\left(\nabla F(X)+\partial R(X)\right),$

where \mathcal{T}_X denotes the tangent space at X, $\mathcal{P}_{\mathcal{T}_X}(\mathcal{Y}) := \{Y - X\Phi(Y^\top X) \mid Y \in \mathcal{Y} \subseteq \mathbb{R}^{n \times p}\}$ consists of all the projection points of $Y \in \mathcal{Y}$ onto the tangent space \mathcal{T}_X , and ∂R stands for the Clarke subdifferential of R.

Equivalent Version

There exists $D \in \partial R(X)$ and $\Lambda \in \mathbb{R}^{p \times p}$:

 $\begin{cases} X\Lambda = \nabla F(X) + D \\ \Lambda = \Lambda^{\top} \\ X^{\top}X = I_p \end{cases}$

Motivation: Exact Penalty Model with Compact Convex Constraints

Xiao-L.-Yuan 2020, Exact Penalty Function for $\ell_{2,1}$ Norm Minimization over the Stiefel Manifold, upcoming

Differentiable Objective $\Lambda(X) = \Phi(X^{\top} \nabla f(X))$

$$\min f(X) \qquad \text{s.t. } X^{\mathsf{T}}X = I_p$$
$$\implies \qquad \min_{X \in \mathcal{M}} f(X) - \frac{1}{2} \left\langle \Lambda(X), X^{\mathsf{T}}X - I_p \right\rangle + \frac{\beta}{4} \left\| X^{\mathsf{T}}X - I_p \right\|_{\mathrm{F}}^2.$$

 $\ell_{2,1}$ -norm Regularized Minimization

 $\Lambda(X) \in \Phi\left(X^\top \nabla F(X) + X^\top \partial R(X)\right)$

• How to choose suitable $\Lambda(X)$ for (OCPR)?

Motivation: Explicit Expression Expression for $\partial R(X)$

 $\partial R(X) = [\gamma^1 \partial (||X_1 \cdot ||_2), \gamma^2 \partial (||X_2 \cdot ||_2), ..., \gamma^n \partial (||X_n \cdot ||_2)]^\top$

$$\partial(\|X_{j\cdot}\|_2) = \begin{cases} \frac{X_{j\cdot}^T}{\|X_{j\cdot}\|_2}, & \text{if } \|X_{j\cdot}\|_2 \neq 0, \\ u_j \text{ satisfying } \|u_j\|_2 = 1, & \text{otherwise.} \end{cases}$$

For any $D \in \partial R(X)$,

$$X^{\mathsf{T}}D = \sum_{i=1}^{n} \gamma_i S(X_{i \cdot}), \quad \text{where } S(x) := \begin{cases} \frac{xx^{\mathsf{T}}}{\|x\|_2}, & \text{if } x \neq 0; \\ 0, & \text{otherwise.} \end{cases}$$

If $\lim_{x\to 0} S(x) = 0$, hence, if we denote $\frac{xx^{\top}}{\|x\|_2}\Big|_{x=0} = 0$, $S(x) = \frac{xx^{\top}}{\|x\|_2}$. Hence, arrive at

$$\Lambda(X) = \Phi(X^{\top} \nabla F(X)) + \sum_{i=1}^{n} \gamma^{i} S(X_{i})$$

- Closed-form expression;
- Lipschitz continuous.

New Penalty Function

$$h(X) := F(X) - \frac{1}{2} \left\langle \Lambda(X), X^\top X - I_p \right\rangle + \frac{\beta}{4} \left\| X^\top X - I_p \right\|_{\mathrm{F}}^2 + R(X),$$

where

$$\Lambda(X) = \Phi(X^{\top} \nabla F(X)) + \sum_{j=1}^{n} \gamma^{i} S(X_{i}).$$

- h is not bounded below
- Restrict h in a bounded set

 $\min_{X \in \mathcal{M}} h(X). \quad (\text{PenC})$

- \mathcal{M} is a convex compact set, $\mathcal{S}_{n,p} \subset \mathcal{M}$
- \Rightarrow Projection to \mathcal{M} can be easily calculated

Proximal Gradient Method for Solving PenC with Exact Lambda (PenCPG)

- 1 Choose an initial guess X^0 , set k = 0;
- **2** Choose stepsize η^k ;
- 3 Compute $D^k = \nabla F(X^k) + \beta X^k \left[(X^{k^\top} X^k I_p) \Lambda(X^k) \right];$
- 4 Update X^k by

$$X^{k+1} = \arg\min_{X \in \mathbb{R}^{n \times p}} \quad \left\langle X - X^k, D^k \right\rangle + R(X) + \frac{\left\| X - X^k \right\|_F^2}{2\eta^k}$$

- 5 If $||X^{k+1}||_{F} > K$, project X^{k+1} back to \mathcal{B} ;
- 6 If certain stopping criterion is satisfied, return X^{k+1} ; Otherwise, set k := k + 1 and go to Step 2.

Assumptions

Assumption 3

• F(X) is differentiable and $\nabla F(X)$ is Lipschitz continuous.

Constants

$$M_0 := \sup_{X \in \mathcal{M}} \|\nabla F(X)\|_{\mathrm{F}}$$

$$M_1 := \sup_{X \in \mathcal{M}} \|\Lambda(X)\|_2$$

$$L_0 := \sup_{X,Y \in \mathcal{M}} \frac{\|\nabla F(X) - \nabla F(Y)\|_{\mathrm{F}}}{\|X - Y\|_{\mathrm{F}}}$$

$$L_1 := \sup_{X \in \mathcal{M},Y \in \mathcal{M}} \frac{\|\Lambda(X) - \Lambda(Y)\|_{\mathrm{F}}}{\|X - Y\|_{\mathrm{F}}}$$

$$L_r := \sum_{i=1}^n \gamma^i$$

Global Convergence

Theorem 6

Suppose Assumption 3 holds. For any given $\delta \leq \frac{1}{3}$ and $K \geq \sqrt{p + 4\sqrt{p}\delta}$, suppose $\beta \geq \max\{6M_1, 36L_1, 2(M_0 + M_1), \frac{2C_1}{\delta^2}\}$, PenCPG starts with X^0 satisfying $\left\|X^{0^{\top}}X^0 - I_p\right\|_F \leq \frac{\delta}{2}$ and uses the stepsize $\eta^k \in [\frac{1}{2}\eta^+, \eta^+]$ where $\eta^+ = \min\left\{\frac{1}{L_0+3\beta+2L_1+M_1}, \frac{1}{20(M_0+2M_1+\beta+L_r)}, \frac{1}{4(L_0+3\beta+M_1)}\right\}$. Then any accumulation point of $\{X^k\}$ is the first-order stationary point of (OCPR).

Moreover, for any $N \ge 0$,

$$\min_{0 \le k \le N} \frac{\left\| X^{k+1} - X^k \right\|_{\mathrm{F}}}{\eta^k} \le \sqrt{\frac{16C_1 + \beta\delta^2}{2N\eta^+}}.$$

Comparison on Computational Complexity

ManPG		
Computing gradient	$\nabla f(X^k)$	1 first-order oracle
Computing Riemann gradient	$\nabla f(X^k) - X^k \Phi(X^{k^{\top}} \nabla f(X^k))$	$4np^2$
Retraction ³	$qr(X^{k+1})$	$2np^2$
SSN for proximal subproblem ⁴⁵	$E(\Lambda^k)$ vec $(\Lambda^{k+1}) = -D(\Lambda^k)$	$2np^2 \cdot l_{CG}$
total	1 first-order oracle + $6np^2 + 2np^2 \cdot l_{CG}$	
PenCPG		
Computing gradient	$\nabla f(X^k)$	1 first-order oracle
Computing D^k	D^k	$6np^2$
Solving subproblem	thresholding	2np
Retraction	no retraction in PenCPG	0
total	1 first-order oracle + $6np^2$	

 ${}^{4}I_{CG}$ denotes the total iterations in CG method for solving the linear system, and ManPG can take multiple SSN steps in each iteration.

 $^{5}l_{CG} \gg 1.$

³Grad-Schmidt orthonormalization

Post-process by Orthonormalization Projection After Convergence

- Obtain X^k , and economy-size SVD decomposition $X^k = U\Sigma V^{\top}$:
- Return $X_{\text{orth}} := UV^{\top}$.

Theoretical Analysis for Post-process

Proposition 2

Given $\delta \in (0, \frac{1}{3}]$, $K \ge \sqrt{p + \delta \sqrt{p}}$. Then for $\beta \ge \max\{6M_1, 36L_1, 2(M_0 + M_1), \frac{2C_1}{\delta^2}, 2(L_0 + L_1 + 3M_1 + 2M_2)\}$. Suppose PenCPG starts with initial value $\left\|X^{0^{\mathsf{T}}}X^0 - I_p\right\|_{\mathsf{F}} \le \frac{\delta}{2}$ with stepsize $\eta^k \in [\frac{1}{2}\eta^+, \eta^+]$, and generates a sequence $\{X^k\}$. Then for any k > 0, let X^k has compact SVD $X^k = U^k \Sigma^k V^{k^{\mathsf{T}}}$ and define $X_{orth} = U^k V^{k^{\mathsf{T}}}$, then

$$h(X^k) \ge h(X_{\text{orth}}).$$
 (6)

Decrease feasibility violation
 Reduce function value

Numerical Experiments for Post-process

▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □
 ▲ □

Problem Generation

- Randomly generates uniformly distributed samples, N = 200, and set *A* as their covariance matrix; $\gamma^i = \frac{b}{2} \sqrt{\log(2n)/50}$
- Gao-Ma-Zhou 2017, Chen-Ma-Xue-Zhou 2019
- 10 experiments with random initial point

Testing Algorithms

Testing Methods

- SOC: Splitting method for orthogonality constrained problems, Lai-Osher 2014 ;
- PAMAL: Proximal alternating minimized augmented Lagrangian, Chen-Ji-You 2016;
- ManPG : Manifold proximal gradient method, Chen-Ma-So-Zhang 2020 ;
- ManPG-Ada: Accelerated version of ManPG, Chen-Ma-So-Zhang 2020 ;
- PenCPG: $\beta = s, K = 10 \sqrt{p}$, fixed stepsize $\eta^k = \frac{1}{2s}$;
- PenCPG-BB: PenCPG with BB1 stepsize, $\beta = s, K = 10 \sqrt{p}$.

Numerical Results on n

Comparable in the aspect of iterationsLess CPU time

Numerical Results on p

• Cheap proximal mapping \Rightarrow High scalability.

Extensions

Sparse Canonical Correlation Analysis Gao-Ma-Zhou 2017, Chen-Ma-Xue-Zhou 2019

$$\min_{X,Y \in \mathbb{R}^{n \times p}} \quad -\operatorname{tr} \left(X^{\top} B_1^{\top} B_2 Y \right) + \gamma_1 \|X\|_{2,1} + \gamma_2 \|Y\|_{2,1}$$

s.t. $X^{\top} B_1 B_1^{\top} X = I_p, \ Y^{\top} B_2 B_2^{\top} Y = I_p.$

- B_1, B_2 contain correlated samples.
- $\gamma_1, \gamma_2 \ge 0$ control the sparsity of *X* and *Y*.
- $B_1B_1^{\top}$ and $B_2B_2^{\top}$ can be singular.

Exact Penalty Function for Sparse CCA

Exact Penalty Function

$$h(X, Y) := -\operatorname{tr} \left(X^{\top} B_{1}^{\top} B_{2} Y \right) - \frac{1}{2} \left\langle \Lambda_{1}(X), X^{\top} B_{1} B_{1}^{\top} X - I_{p} \right\rangle$$
$$+ \gamma_{1} \|X\|_{2,1} + \gamma_{2} \|Y\|_{2,1} - \frac{1}{2} \left\langle \Lambda_{2}(Y), Y^{\top} B_{2} B_{2}^{\top} Y - I_{p} \right\rangle$$
$$+ \frac{\beta}{4} \left\| X^{\top} B_{1} B_{1}^{\top} X - I_{p} \right\|_{\mathrm{F}}^{2} + \frac{\beta}{4} \left\| Y^{\top} B_{2} B_{2}^{\top} Y - I_{p} \right\|_{\mathrm{F}}^{2}$$

$$\Lambda_1(X) := -\Phi(X^{\top}B_1^{\top}B_2Y) \Lambda_2(Y) := -\Phi(X^{\top}B_1^{\top}B_2Y)$$

Properties

Bounded below

Experiments for Sparse CCA

Problem Generation

Souo-Minden-Nelson-Tibshirani-Saunders 2017

Testing Methods

 A-ManPG: Alternating direction descent version of ManPG, Chen-Ma-Xue-Zou 2019

PenCPG with constant stepsize & BB1 stepsize and $\beta = s, K = 100 \sqrt{p}$.

Stopping Criteria

$$\max\left\{\frac{||X^{k+1}-X^k||_F}{\eta^k}, \frac{||Y^{k+1}-Y^k||_F}{\eta^k}\right\} \le 10^{-4} \text{ for PenCPG and A-ManPG.}$$

Numerical Results on n

Comparable in the aspect of iterationsLess CPU time

Numerical Results on p

• Cheap proximal mapping \Rightarrow high scalability.

Extensions

Sparse Dictionary Learning

$$\min_{W \in \mathbb{R}^{n \times p}} \quad -\frac{1}{m} \left\| W^{\top} Y \right\|_{m}^{m}$$

s.t. $W^{\top} W = I_{p},$

■
$$Y \in \mathbb{R}^{n \times N}$$
 is a given data matrix
■ $||Y||_m = \left[\sum_{i=1}^n \sum_{j=1}^N (Y_{ij})^m\right]^{\frac{1}{m}}$ with constant $m \in (2, 4]$

Exactly Penalty Function Hu-L. 2020, Sensors

$$h(W) := f(W) - \frac{1}{2} \left\langle W^{\top} W - I_p, \Phi(W^{\top} \nabla f(W)) \right\rangle + \frac{\beta}{6} \|W\|_{\rm F}^6 - \frac{\beta}{2} \|W\|_{\rm F}^2$$

Other Extensions

- Graph clustering: combining with other constraints
- Sparse principal component analysis: ℓ_1 norm minimization

Emerging New Demands

Distributed and Secure Singular Value Decomposition

Wang-L.-Zhang, A Distributed and Secure Algorithm for Dominant Singular Value Decomposition, upcoming

The matrix A is divided into s column blocks:

 $A = [A_1, \cdots, A_s],$

where $A_i \in \mathbb{R}^{n \times m_i}$ $(i = 1, \dots, s)$ and $m_1 + \dots + m_s = m$

Distributed Memory

- Sub-matrices A_i distributedly stored in s cores
- Each core: access to local data A_i
- Ultimate goal: obtain the dominant SVD of the whole matrix A

Security/Privacy

- Each core: no sharing A_i or $A_i A_i^{\top}$ with others
- Each core: no chance to recover *A* or *AA*^T by solving an inverse problem
Online Principal Component Analysis

Zhou-L.-Xu, A Stochastic Gauss-Newton Method for Online Principal Component Analysis, upcoming

- High dimension d
- large volume N
- Solution: dynamically stored samplings forget old ones

Conclusions

Contributions

- Exact penalty framework for optimization problems with orthogonality constraints
 - eigenspace calculation
 - differentiable objective
 - let $\ell_{2,1}$ -norm minimization
 - other manifolds
- Orthonormalization-free
 - parallelizable
 - easy subproblem

Further Developments

- Extension to general nonsmooth cases
- Distributed and secure singular value decomposition
- Online principal component analysis

Giam 中国工业与应用数学学会

协办单位:

网络科萝根等一 "六一"儿童节的礼物

胡旭东 研究员

胡旭东,中国科学院数学与系统科学研究院研究员, 博士生导师,中国运筹学会理事长。1985年毕业于 清华大学,获应用数学专业学士学位,1985年毕业于 于中国科学院应用数学研究所,获运筹与控制论专 业博士学位。自1989年始,一直在中国科学院从事 运筹学的理论研究和教学工作,主要研究方向为组 合优化、网络博弈、近似算法。2012年被评为第五 届"全国优秀科技工作者",2016年获"中国科学院朱 李月华优秀教师奖"。

运筹学—求解生活中的数学趣题

直播时间: 5月31日 15:00-16:30 直播平台: Classin 扫码直接观看

Thanks for your attention!

Email: liuxin@lsec.cc.ac.cn Homepage: http://lsec.cc.ac.cn/~liuxin/

