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Section 1. Basic Conceptions



Problem Description

Unconstrained optimization models
min  f(x).
@ f:R'+—R.
@ convex or nonconvex
@ differentiable or nondifferentiable
@ acquirable information: function value, derivative'
@ constrained optimization

min  f(x), s.t. xeC.

xXeR”
0, ifxeC;

e equivalent: £r€11n f(x) + dc(x), where §c(x) ::{ 1. otherwise.

e exact penalty functions: ¢; penalty, augmented Lagrangian, ...

"Derivative Free Optimization (DFO) is out of the scope of this presentation.



Optimality Conditions

First-order optimality conditions
@ f is differentiable: Vf(x) = 0.
@ f is nondifferentiable but convex:

0€dfx) :={g|fO)=f()+g (y—x), Vyh

f@)

@) + gl — 1) |
| fz2) + g5 (z — z2)

\\ / R CORFHCEED)

+ i
x1 ’ T2

Second-order necessary (sufficient) optimality conditions
@ f is second-order differentiable: V2f(x) > (>)0.
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Optimality Conditions (Cont’d)

Optimization condition (differentiability is assumed)
@ fis convex:

x* is a global minimizer & Vf(x*) =0

@ f is nonconvex:

x* is a first-order stationary point & Vf(x*) =0 *

x* is a local minimizer = Vf(x*) =0

x* is a second-order stationary point & % and V2f(x*) > 0
x* is a local minimizer = V2f(x*) > 0

x* is a local minimizer & % and V2f(x*) > 0
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Optimality Conditions (Cont’d)

Finding a minimizer (nonconvexness is assumed)
@ finding global minimizer is numerically impossible

@ finding global minimizer for quartic polynomial is already
NP-hard

@ finding local minimizer is not easier

The task of numerical optimization methods
@ first-order methods: finding first-order stationary point
@ second-order methods: finding second-order stationary point

@ only when f is structured, finding global minimizer or local
minimizer becomes possible



lterative Methods (Cont’d)

Stopping criterions
@ first-order criterion: ||[Vf(x)|| < €
@ second-order criterion: Apin(V2f(x)) > —¢

Iterative methods — framework
(1) Input: initial guess x| tolerance € > 0, k := 0;
(2) Main iteration: x**1 = p(x®));

(3) Check stopping criterion, if satisfied, then terminate and
return xX**1: otherwise, set k := k + 1 and goto step (2).



lterative Methods (Cont’d)

Iterative methods — choosing /
@ line search: XD = x® 4 o040,

e gradient methods;
o Newton methods;

@ trust region methods
@ block coordinate descent methods

Fixed-point convergence — contraction
@ |lIn(®)]l < 1 holds for a given norm || - || and any x € R”,
where g}, stands for the Jacobian of A.
@ p(Jn(x)) < 1is not sufficient for nonstationary iteration,

. . 0
eg. i) =| O 0

10
(2k)y — —
0 05 }’Jh(x )‘[ 10 05 [ 7K= 1




lterative Methods (Cont’d)

Global convergence — to stationarity
@ objective is bounded below: f(x) > —oo.
@ sufficient function value reduction:

SO = DY > el v ®))3.
@ convergence to first-order stationarity: klirn VFx®) =0
—+00

@ if iterate sequence is bounded, subsequence convergence to
a stationary point
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lterative Methods (Cont'd)
Local convergence
_ I — )

lim x® = x*, o=~ 2
k—+00 q ”x(k) — x*”p

@ p =1, lim ¢® = ¢ = 1: local Q-sublinear convergence
P Am g% =q

@ p=1, lim ¢® =4 (0,1): local Q-linear convergence
D Am g =q

@ p =1, lim ¢ = ¢ = 0: local Q-superlinear convergence
P Jim g

e p>1, klim ¢ = ¢: local convergence with order p

— 400

@ p =2, quadratic
e p =3, cubic

lim x® = x*, Ik® — x*|| < er*.
k—+0c0

@ r€(0,1), local R-linear convergence rate
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lterative Methods (Cont'd)

Wost case complexity/Global convergence rate
@ global linear convergence:
get e—solution after O (log é) iterations
@ global sublinear convergence:
dim fa®) = fa®) - f <

1
ellq

get e—solution after O () iterations

g > 0.
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lterative Methods (Cont'd)

Global convergence - iterate convergence
@ Sufficient reduction:
SO = D) 2 el ® = xE D,
@ Asmptotic small stepsize safe-guard:
D =2Vl 2 eallg®l. 8© € o ().
@ tojasiewicz property: 36 € [0, 1) such that

IF(x) = fNN < esliglla, Vx € B(x",e), Vg€ df(x).
@ iterate convergence: Y [Ix® — x**D||; < +co.
k=1

@ local convergence rate
e if § =0, the sequence {x®}«y finite termination;
e iffe (O, %] there exist ¢ > 0 and Q € [0, 1) such that
Ix® — x|, < ¢ - ¢
o if 6 ¢ (3.1), there exist c > 0 such that [x®) — x|l < ¢ - k™37
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Section 2. Classical
Optimization Methods



Gradient Methods

Line search

L) ) 0 k)

@ exact line search: o® = arg min f(x® + ad®)
a€eR

@ Armijo line search (back tracking):
@ setc;€(0,1),7€(0,1), ap >0,andj:=0;
o if f(x®) — (P + @;d®) > —ajc; VF(xP)Td®), return o := o;
e otherwise, setj:=j+1and a; = 7a;;.

@ Wolfe condition: additional curvature condition with ¢, € (c1, 1),

~VF P + ;d®)Ta® < -, V) Ta®),
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Gradient Methods (Cont'd)

Gradient methods

4% = —Vf(x(k)).

@ steepest descent: exact line search

@ gradient descent with inexact line search
global convergence and local linear rate related to x(V2f(x)).

@ Barzilai-Borwein (BB) stepsize:

T T
SO Ty® o  S®Ts®

® _
a = (0] = .
T ’ T
Y Ty 50T yh)

where s® = x® _ k=D &= gh- 6 = gr(0) _ yfk-D),

global convergence and local linear convergence only for
fx) = %xTAx + b"x with A > 0; local superlinear convergence in the case
n = 2; global convergence if combined with nonmonotone line search.
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Gradient Methods (Cont'd)
Conjugate gradient methods
d(k) — —Vf(x(k)) +B(k)d(/<—1)_

@ originally proposed for solving linear system
a®: exact line search
@ updating rules for g
o Fletcher-Reeves: B0 = VF(x®)TVf(x®) / VF(x* ) TVfk-Dy;

e Polak-Ribiere: g% = Vf(x®)Ty® / Vi (& D)Tvf (k=D
o Hestenes-Stiefel: X = Vf(x*)Ty® / d%DTyk
o Dai-Yuan: g% = Vf(x®)TVf(x®) [ a®DTy®

@ subspace strategy:

KD = arg min f(x).

x—x%) € span{Vf(xK)), dk-D}
global convergence if combined with line search, local linear convergence

rate not related to x(V*f(x")).
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Newton Methods

Newton methods

4 = -2 () vra®)

= argminf(x®) + VFx®)T(x® + d) + 1P + )V )P + a).
deR"

@ original ones: a® = 1 or exact line search

local quadratic convergence.
e hybrid Newton method: d® = —aVf(x®)) — V2£(x0) " vF ()
@ negative curvature descent: set d© = 4 if dTV2f(x*F)d < 0.
@ damped Newton method:

a® =1 /(1 + \/Vf(x(k))Tsz(x(k))_lVf(x(k)))

global convergence.
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Newton Methods (Cont’d)

Motivation of quasi-Newton methods

d® = _B(k)fl Vf(x(k)).

@ B% is an approximation of V2f(x*))

@ easy to calculate, possess the essential characteristics of
Hessian, descent direction (positive definiteness of B®)

@ solution: the secant equation

BOs® = y®,

@ SR-1 (symmetric rank—1 update) can not guarantee the
positive definiteness

@ rank—2 update is more favorable
o start from BO, (e.g. ol.)

e in each iteration, add rank—2 update B**1 = B® + quu™ +wT;

e choose u = y®, v = BOs® we arrive at — BFGS.
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Newton Methods (Cont’d)

BFGS (Broyden-Fletcher-Goldfarb-Shanno)

BTk g0 T gk

y
B<k+l) - B® 4 _
BFGS y(k)TS(k) s T Bk g(k)

e consider the update for inverse H® = p®™!

k) (0T k) (0T LGEGH
sty o, s®y® RORG!
50 Tyk) shTy® | 7 g0 Tyh

(k+1) _
HBFGS -

@ minimum change property:
H*Y = min [|H-HP|lg, s.t. H® =s®
HESRIIXH
where [lAll = IGEAG Ik, G € {G | Gs® = y¥),
e.g. G = [ V(¥ +1aWd®)dr
global convergence if combined with line search; local linear convergence if f is
strict convex; local superlinear convergence if f is strongly convex.
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Newton Methods (Cont’d)

DFT (Davidon-Fletcher-Powell)

k(T k)T (k) ()T
w sOy® Ty sy Y0y
Boep = |1 - 57 BU\ - -5 T

SO Ty® sOTy® | g0 y®

e consider the update for inverse H® = p®~!

T (k k) ,(k) () T (ke
HED Z 0 sOTsh oy 0y ®OT gk

YOTgl BT F

global convergence if combined with line search and local linear convergence if f
is strict convex; local superlinear convergence if f is strongly convex.

The Broyden family
B = (1 - ¢(k))B(B]§£é) n ¢(k)B(DI'<:;1)’ o® € [0, 1].

#® € [0, 1) same convergence property with BFGS.
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Newton Methods (Cont’d)

Limited memory quasi-Newton method

o if the storage of B® (HV)) is not affordable®
@ rank—2 update provides a limited memory strategy

store -£ = {S(k), S(k—l), . smax{k—erl,O]’ y(k),y(k—l)’ m,ymax{k—erl,O]}

H® is built up from H® by a rank—2 max{m, k} update

reduce the storage from O(n?) to O(mn) at a cost of O(mn)
arithmetic operation

reduce the computational cost from O(n?) to O(mn), if there is
no structure

@ numerically successful

BFGS update

e m=10

global convergence if combined with line search and local linear convergence.

2The difference between using B® or H® appears at the computational cost,
and the storage is a whole other story.
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Newton Methods (Cont’d)

The explanation of BB stepsize

s© Ty o sOT (o)

(k+1) _ (k) (k) (k) i (k) _
=x" —a™WVf(x"), with = , or = .
* FE) ¢ YO T y(h s T (k)

@ Using 1 -1 to approximate V2f(x®))
a® = l/arg min”,Bs(k) - y(k)”; .
BER

@ Using « - I to approximate sz(x(k))_l

a® = arg min ||ay(k) - s(k)llg.
a€R
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Trust Region Methods

N )

® _

s argmin - m®(s), st |Islh < AP,

seR

o m®™(s) quadratic approximation of f(x® + s) at x©
1
m(k)(s) = Vf(x(k))Ts + ESTB(k)S.
@ solving subproblem

e exactly solver: Moré-Sorensen
e approximate: Chauchy point, dog-leg

e inexact solver: truncated CG, 2—-D subspace minimization

@ the choice of B®
o V2f(x9)
e quasi-Newton update
e other approximation of V2f(x®)
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Trust Region Methods (Cont'd)

@ approximation ratio

#) _ Tedrea F®Y — (P 4 50y

redpreq m(0) — m(s®)

@ accept trial step of not:

)C(k+1) _ x(k) =+ S(k), |f n(k) > O,
- x®, otherwise.

@ updating trust region radius A®)

bzA(k), if T](k) > (o,
ARD =3 AD ey > ® > ¢
b AW, otherwise.

where 0 <cy < <1,0<b; <1 <b,.

global convergence only requires subproblem inexactly solved; convergence to
second-order stationary point if B® = V2f(x®) and subproblem exactly solved.
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Methods for Nonlinear Least Squares

Nonlinear least squares

m

f@) = IF@I = > ()

i=1
@ F(x) := (i(X), e, fru(x) T, €ACH fi(x) :R" > R (i = 1, ...,m)
@ Jacobian matrix: Jr(x) = (VA (%), ..., V(X)) T

@ gradient: Vf(x) = Jr(x)"F(x)

@ Hessian: V’f(x) = Jr(x)" Jr(x) + ﬁlff(X)Vzﬁ(x)

@ linear approximation: F(x) ~ F(x®) + Jr(x%)(x — xX)

@ new approximation of Hessian: 77 (x)" Jr(x)
e approximation quality depends on residuals f;(x) (i = 1, ...,m)
@ obtain partial Hessian information by collecting derivatives
e positive definiteness
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Methods for Nonlinear Least Squares (Cont'd)
Gauss Newton method
d® = ~ (T TR ) v

@ similar performance as Newton method if small residual
@ similar performance as gradient method if large residual
@ numerically unstable if 7-(x*) is singular or close to singular

Levenberg-Marquardt method

50 = — (T TR + 4 1) V)

@ regularization parameter 4®' can be tuned

@ in the same manner as trust region radius
o [IFG™)I, (z=11,2])

global convergence; quadratic local convergence rate if u® — 0 and zero
residual at solution
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Block Coordinate Descent

x(kH) = arg min f(xy, x(k) ...,x(k));
xi €RM
(kH) = arg min f(x(lm) X2, xgk). xp))
xER™
k+1 . k+1 k+1
xf, +D _ arg mmf(xg D ...,x;fl ),xp).
X, €R"P

® x=(x],x,, ...,x;)T, xeR(i=1,.,p,n+---+n,=n

@ convergence under strongly convex

@ essentially Gauss-Seidel iteration: / = Jx"Ax — bTx with A > 0 8
@ question: does Jacobi iteration work? Imear proximal variant:

ﬁ(k)

(k+1) ©
X 5 i —xl3, i=1,...p.

= argmin V,.f(x*) T, +

x;€R"i

3This condition can be relaxedto A > 0,A; >0 (i = 1, ..., p).
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Section 3. Global Optimization
Strategies



Overview
A few strategies
@ deterministic methods*
e branch and bound
@ cutting plane
@ undeterministic methods

homotopy

randomly multi-start
simulated annealing
genetic algorithm
ant colony algorithm

@ approximation methods
o SDP relaxation: x"Ax = (A, xx"), xx"' =>X>0

@ problems have nice properties
e special quartic objective: phase retrieval, matrix completion, ...
e problem input obeys a certain distribution
@ no nonglobal local minimizer: stationary < global or saddle

“Combinatorial optimization can be modeled as binary variable programming.

Since x € {0, 1} & x? = x, it can be viewed as a special nonlinear programming.
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Undeterministic Methods

Homotopy (Global continuation)

@ let g(x) be a convex relaxation® of f(x)

@ define the homotopy function: F(x,7) : R” x [0,1] = R
° F(x,0)=rf(x);
° F(x,1) = gx);
e eg. Fx,) =1 -1 -f(x)+1-gkx).

@ main idea — solving

min F(x,1),

xeR"
with 7 varying from 1 to 0.

@ particularly useful for problems

@ one main valley
e surrounded by side valleys
e side valleys occur by oscillation

SUsually, it means that the epigraph of g(x), {(x,v) | v > f(x)}, completely
contains the epigraph of f(x).
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Undeterministic Methods (Cont’d)

Randomly multi-start

@ different with multi-start from grids or other patterns
@ main procedure

1.

N oA wWN

8.

input: MaxL € N, MaxW € N.

set CL := 0, CW := 0, x° := 0, f° = +o0.

certain random sampling procedure: obtain x*°.

certain local search procedure: obtain x°¢, CL := CL + 1.
if £(x'°) < f™¢, set X" := x'°°, ¢ = £(x'°°), CW := 0, goto 3.
otherwise, CW := CW + 1.

if CL = MaxL or CW = MaxW, terminate and return x"¢.
otherwise, goto 3.

@ trade off between sampling phase and local search phase
@ convergence

e finding global minimizer in a compact domain
o locally Lipschitz
e when MaxL — +oo, probability approaches 1
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Undeterministic Methods (Cont’d)

Simulated annealing

@ inspiration comes from annealing in metallurgy
@ main framework

1. input: initial temperature 7' > 1, initial point x, L € N,
MaxW € N; set CW :=0,i:=0.

if i = L, goto Step 7; otherwise, goto Step 3.

find a new point x” by certain simple procedure.
evaluate the incremental A’ := f(x") — f(x).

if A’ <0,x:=x",CW=0;elseif, setx:=x", CW=0in
probability exp(—A’/(kT))®; otherwise, CW := CW + 1.

6. if CW > MaxW and T = 0, terminate; otherwise, seti:=i+ 1
and goto Step 2.

7. decrease temperature T slowly, set i := 0 and goto Step 2.

A S R\

8k takes Boltzmann constant.
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Thanks for your attention!

Email: liuxin@]lsec.cc.ac.cn
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