A Brief Survey of Approaches for Unconstrained Optimization Problems

Xin Liu

State Key Laboratory of Scientific and Engineering Computing
Institute of Computational Mathematics and Scientific/Engineering Computing
Academy of Mathematics and Systems Science
Chinese Academy of Sciences, China

Courant Institute of Mathematical Sciences New York University

> Deep Learning Seminar March 24, 2017

Outline

- Basic Conceptions
 - Problem Description
 - Optimality Conditions
 - Iterative Methods
- Classical Optimization Methods
 - Gradient Methods
 - Newton Methods
 - Trust Region Methods
 - Methods for Nonlinear Least Squares
 - Block Coordinate Descent
- Global Optimization Strategies
 - Overview
 - Undeterministic Methods

Section 1. Basic Conceptions

Problem Description

Unconstrained optimization models

$$\min_{x\in\mathbb{R}^n} f(x).$$

- \bullet $f: \mathbb{R}^n \longmapsto \mathbb{R}$.
- convex or nonconvex
- differentiable or nondifferentiable
- acquirable information: function value, derivative¹
- constrained optimization

$$\min_{x \in \mathbb{R}^n} f(x), \quad \text{s. t.} \quad x \in C.$$

- equivalent: $\min_{x \in \mathbb{R}^n} f(x) + \delta_C(x)$, where $\delta_C(x) := \begin{cases} 0, & \text{if } x \in C; \\ 1, & \text{otherwise.} \end{cases}$
- exact penalty functions: ℓ_1 penalty, augmented Lagrangian, ...

¹Derivative Free Optimization (DFO) is out of the scope of this presentation.

Optimality Conditions

First-order optimality conditions

- f is differentiable: $\nabla f(x) = 0$.
- *f* is nondifferentiable but convex:

$$0 \in \partial f(x) := \{ g \mid f(y) \ge f(x) + g^{\top}(y - x), \ \forall \ y \}.$$

Second-order necessary (sufficient) optimality conditions

• f is second-order differentiable: $\nabla^2 f(x) \ge (>)0$.

Optimality Conditions (Cont'd)

Optimization condition (differentiability is assumed)

- *f* is convex:
 - x^* is a global minimizer $\Leftrightarrow \nabla f(x^*) = 0$
- *f* is nonconvex:
 - x^* is a first-order stationary point $\Leftrightarrow \nabla f(x^*) = 0$
 - x^* is a local minimizer $\Rightarrow \nabla f(x^*) = 0$
 - x^* is a second-order stationary point \Leftrightarrow \bigstar and $\nabla^2 f(x^*) \geq 0$
 - x^* is a local minimizer $\Rightarrow \nabla^2 f(x^*) \ge 0$
 - x^* is a local minimizer \Leftarrow \bigstar and $\nabla^2 f(x^*) > 0$

Optimality Conditions (Cont'd)

Finding a minimizer (nonconvexness is assumed)

- finding global minimizer is numerically impossible
- finding global minimizer for quartic polynomial is already NP-hard
- finding local minimizer is not easier

The task of numerical optimization methods

- first-order methods: finding first-order stationary point
- second-order methods: finding second-order stationary point
- only when f is structured, finding global minimizer or local minimizer becomes possible

Stopping criterions

- first-order criterion: $\|\nabla f(x)\| < \epsilon$
- second-order criterion: $\lambda_{\min}(\nabla^2 f(x)) > -\epsilon$

Iterative methods – framework

- (1) Input: initial guess $x^{(0)}$, tolerance $\epsilon > 0$, k := 0:
- (2) Main iteration: $x^{(k+1)} = h(x^{(k)})$:
- (3) Check stopping criterion, if satisfied, then terminate and return $x^{(k+1)}$: otherwise, set k := k+1 and goto step (2).

Iterative methods – choosing h

- line search: $x^{(k+1)} = x^{(k)} + \alpha^{(k)} d^{(k)}$.
 - gradient methods;
 - Newton methods;
 -
- trust region methods
- block coordinate descent methods
- ...

Fixed-point convergence – contraction

- $\|\mathcal{J}_h(x)\| < 1$ holds for a given norm $\|\cdot\|$ and any $x \in \mathbb{R}^n$, where \mathcal{J}_h stands for the Jacobian of h.
- $\rho(\mathcal{J}_h(x)) < 1$ is not sufficient for nonstationary iteration,

e.g.
$$\mathcal{J}_h(x^{(2k-1)}) = \begin{bmatrix} 0.5 & 10 \\ 0 & 0.5 \end{bmatrix}, \mathcal{J}_h(x^{(2k)}) = \begin{bmatrix} 0.5 & 0 \\ 10 & 0.5 \end{bmatrix}, \forall k = 1, ...$$

Global convergence - to stationarity

- objective is bounded below: $f(x) > -\infty$.
- sufficient function value reduction:

$$f(x^{(k)}) - f(x^{(k+1)}) \ge c ||\nabla f(x^{(k)})||_2^2$$

- convergence to first-order stationarity: $\lim_{k \to +\infty} \nabla f(x^{(k)}) = 0$
- if iterate sequence is bounded, subsequence convergence to a stationary point

Local convergence

$$\lim_{k \to +\infty} x^{(k)} = x^*, \qquad q^{(k)} = \frac{\|x^{(k+1)} - x^*\|}{\|x^{(k)} - x^*\|^p}.$$

- p = 1, $\lim_{k \to +\infty} q^{(k)} = q = 1$: local Q-sublinear convergence
- p = 1, $\lim_{k \to +\infty} q^{(k)} = q \in (0, 1)$: local Q-linear convergence
- p = 1, $\lim_{k \to +\infty} q^{(k)} = q = 0$: local Q-superlinear convergence
- p > 1, $\lim_{k \to +\infty} q^{(k)} = q$: local convergence with order p
 - p = 2, quadratic
 - p = 3, cubic

$$\lim_{k \to +\infty} x^{(k)} = x^*, \qquad ||x^{(k)} - x^*|| \le cr^k.$$

• $r \in (0, 1)$, local R-linear convergence rate

Wost case complexity/Global convergence rate

- global linear convergence: get ϵ -solution after $O\left(\log \frac{1}{\epsilon}\right)$ iterations
- global sublinear convergence:

$$\lim_{k \to +\infty} f(x^{(k)}) = f^*, \qquad f(x^{(k)}) - f^* < \frac{c}{k^q}, \quad q > 0.$$

get ϵ -solution after $O\left(\frac{1}{\epsilon^{1/q}}\right)$ iterations

Global convergence – iterate convergence

Sufficient reduction:

$$f(x^{(k)}) - f(x^{(k+1)}) \ge c_1 ||x^{(k)} - x^{(k+1)}||_2^2.$$

Asmptotic small stepsize safe-guard:

$$||x^{(k)} - x^{(k+1)}||_2 \ge c_2 ||g^{(k)}||_2, \qquad g^{(k)} \in \partial f(x^{(k)}).$$

• Łojasiewicz property: $\exists \theta \in [0, 1)$ such that

$$|f(x) - f(x^*)|^{\theta} \le c_3 ||g||_2, \quad \forall x \in \mathcal{B}(x^*, \epsilon), \quad \forall g \in \partial f(x).$$

- iterate convergence: $\sum_{k=1}^{\infty} ||x^{(k)} x^{(k+1)}||_2 < +\infty.$
- local convergence rate
 - if $\theta = 0$, the sequence $\{x^{(k)}\}_{k \in \mathbb{N}}$ finite termination;
 - if $\theta \in \left(0, \frac{1}{2}\right]$, there exist c > 0 and $Q \in [0, 1)$ such that $||x^{(k)} x^*||_2 \le c \cdot q^k$;
 - if $\theta \in (\frac{1}{2}, 1)$, there exist c > 0 such that $||x^{(k)} x^*||_2 \le c \cdot k^{-\frac{1-\theta}{2\theta-1}}$.

Section 2. Classical Optimization Methods

Gradient Methods

Line search

$$x^{(k+1)} = x^{(k)} + \alpha^{(k)}d^{(k)}.$$

- exact line search: $\alpha^{(k)} = \underset{\alpha \in \mathbb{R}}{\arg \min} f(x^{(k)} + \alpha d^{(k)})$
- Armijo line search (back tracking):
 - set $c_1 \in (0, 1), \tau \in (0, 1), \alpha_0 > 0$, and j := 0;
 - if $f(x^{(k)}) f(x^{(k)} + \alpha_j d^{(k)}) \ge -\alpha_j c_1 \nabla f(x^{(k)})^\top d^{(k)}$, return $\alpha^{(k)} := \alpha_j$;
 - otherwise, set j := j + 1 and $\alpha_j = \tau \alpha_{j-1}$.
- Wolfe condition: additional curvature condition with $c_2 \in (c_1, 1)$,

$$-\nabla f(x^{(k)} + \alpha_j d^{(k)})^{\top} d^{(k)} \le -c_2 \nabla f(x^{(k)})^{\top} d^{(k)}.$$

Gradient Methods (Cont'd)

Gradient methods

$$d^{(k)} = -\nabla f(x^{(k)}).$$

- steepest descent: exact line search
- gradient descent with inexact line search global convergence and local linear rate related to $\kappa(\nabla^2 f(x^*))$.
- Barzilai-Borwein (BB) stepsize:

$$\alpha^{(k)} = \frac{s^{(k)^{\top}} y^{(k)}}{y^{(k)^{\top}} y^{(k)}}, \quad \text{or} \quad \alpha^{(k)} = \frac{s^{(k)^{\top}} s^{(k)}}{s^{(k)^{\top}} y^{(k)}}.$$

where
$$s^{(k)} = x^{(k)} - x^{(k-1)} = \alpha^{(k-1)} d^{(k-1)}$$
, $y^{(k)} = \nabla f(x^{(k)}) - \nabla f(x^{(k-1)})$,

global convergence and local linear convergence only for $f(x) = \frac{1}{2}x^{T}Ax + b^{T}x$ with A > 0; local superlinear convergence in the case n = 2; global convergence if combined with nonmonotone line search.

Gradient Methods (Cont'd)

Conjugate gradient methods

$$d^{(k)} = -\nabla f(x^{(k)}) + \beta^{(k)} d^{(k-1)}.$$

- originally proposed for solving linear system
- $\alpha^{(k)}$: exact line search
- updating rules for $\beta^{(k)}$

• Fletcher-Reeves:
$$\beta^{(k)} = \nabla f(x^{(k)})^{\mathsf{T}} \nabla f(x^{(k)}) / \nabla f(x^{(k-1)})^{\mathsf{T}} \nabla f(x^{(k-1)})$$
;

• Polak-Ribière:
$$\beta^{(k)} = \nabla f(x^{(k)})^{\mathsf{T}} y^{(k)} / \nabla f(x^{(k-1)})^{\mathsf{T}} \nabla f(x^{(k-1)});$$

• Hestenes-Stiefel:
$$\beta^{(k)} = \nabla f(x^{(k)})^{\top} y^{(k)} / d^{(k-1)^{\top}} y^{(k)}$$
;

• Dai-Yuan:
$$\beta^{(k)} = \nabla f(x^{(k)})^{\top} \nabla f(x^{(k)}) / d^{(k-1)^{\top}} y^{(k)}$$
.

subspace strategy:

$$x^{(k+1)} := \underset{x-x^{(k)} \in \text{span}\{\nabla f(x^{(k)}), d^{(k-1)}\}}{\arg \min} f(x).$$

global convergence if combined with line search, local linear convergence rate not related to $\kappa(\nabla^2 f(x^*))$.

Newton Methods

Newton methods

$$d^{(k)} = -\nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)})$$

$$= \underset{d \in \mathbb{R}^n}{\min} f(x^{(k)}) + \nabla f(x^{(k)})^{\top} (x^{(k)} + d) + \frac{1}{2} (x^{(k)} + d) \nabla^2 f(x^{(k)}) (x^{(k)} + d).$$

- original ones: $\alpha^{(k)} = 1$ or exact line search local quadratic convergence.
- hybrid Newton method: $d^{(k)} = -\beta \nabla f(x^{(k)}) \nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)})$
- negative curvature descent: set $d^{(k)} = d$ if $d^{\top} \nabla^2 f(x^{(k)}) d < 0$.
- damped Newton method:

$$\alpha^{(k)} = 1 \left| \left(1 + \sqrt{\nabla f(x^{(k)})^{\top} \nabla^2 f(x^{(k)})^{-1} \nabla f(x^{(k)})} \right) \right|$$
 global convergence.

Motivation of quasi-Newton methods

$$d^{(k)} = -B^{(k)^{-1}} \nabla f(x^{(k)}).$$

- $B^{(k)}$ is an approximation of $\nabla^2 f(x^{(k)})$
- easy to calculate, possess the essential characteristics of Hessian, descent direction (positive definiteness of $B^{(k)}$)
- solution: the secant equation

$$B^{(k)}s^{(k)} = y^{(k)}.$$

- SR-1 (symmetric rank-1 update) can not guarantee the positive definiteness
- rank-2 update is more favorable
 - start from $B^{(0)}$, (e.g. αI .)
 - in each iteration, add rank-2 update $B^{(k+1)} = B^{(k)} + \alpha u u^{\top} + v v^{\top}$;
 - choose $u = y^{(k)}$, $v = B^{(k)}s^{(k)}$, we arrive at BFGS.

BFGS (Broyden-Fletcher-Goldfarb-Shanno)

$$B_{\mathrm{BFGS}}^{(k+1)} = B^{(k)} + \frac{y^{(k)^\top}y^{(k)}}{y^{(k)^\top}s^{(k)}} - \frac{B^{(k)}s^{(k)}s^{(k)^\top}B^{(k)}}{s^{(k)^\top}B^{(k)}s^{(k)}}.$$

• consider the update for inverse $H^{(k)} = R^{(k)-1}$

$$H_{\mathrm{BFGS}}^{(k+1)} = \left(I - \frac{s^{(k)} {y^{(k)}}^{\top}}{s^{(k)} {}^{\top} y^{(k)}}\right) H^{(k)} \left(I - \frac{s^{(k)} {y^{(k)}}^{\top}}{s^{(k)} {}^{\top} y^{(k)}}\right) + \frac{s^{(k)} s^{(k)}}{s^{(k)} {}^{\top} y^{(k)}}.$$

minimum change property:

$$H^{(k+1)} = \min_{H \in \mathbb{SR}^{n \times n}} ||H - H^{(k)}||_G, \quad \text{s. t.} \quad Hy^{(k)} = s^{(k)}$$

where
$$||A||_G = ||G^{\frac{1}{2}}AG^{\frac{1}{2}}||_F$$
, $G \in \{G \mid Gs^{(k)} = y^{(k)}\}$, e.g. $G = \int_0^1 \nabla^2 f(x^{(k)} + \tau \alpha^{(k)} d^{(k)}) d\tau$

global convergence if combined with line search; local linear convergence if f is strict convex; local superlinear convergence if *f* is strongly convex.

DFT (Davidon-Fletcher-Powell)

$$B_{\mathrm{DFP}}^{(k+1)} = \left(I - \frac{s^{(k)}y^{(k)^{\top}}}{s^{(k)^{\top}}y^{(k)}}\right) B^{(k)} \left(I - \frac{s^{(k)}y^{(k)^{\top}}}{s^{(k)^{\top}}y^{(k)}}\right) + \frac{y^{(k)}y^{(k)^{\top}}}{s^{(k)^{\top}}y^{(k)}}.$$

• consider the update for inverse $H^{(k)} = B^{(k)^{-1}}$

$$H_{\mathrm{DFP}}^{(k+1)} = H^{(k)} + \frac{{s^{(k)}}^{\top} s^{(k)}}{{y^{(k)}}^{\top} s^{(k)}} - \frac{H^{(k)} y^{(k)} y^{(k)^{\top}} H^{(k)}}{{y^{(k)}}^{\top} H^{(k)} y^{(k)}}.$$

global convergence if combined with line search and local linear convergence if f is strict convex; local superlinear convergence if *f* is strongly convex.

The Broyden family

$$B^{(k+1)} = (1 - \phi^{(k)}) B_{\text{BFGS}}^{(k+1)} + \phi^{(k)} B_{\text{DFP}}^{(k+1)}, \qquad \phi^{(k)} \in [0, 1].$$

 $\phi^{(k)} \in [0,1)$ same convergence property with BFGS.

Limited memory quasi-Newton method

- if the storage of $B^{(k)}$ ($H^{(k)}$) is not affordable²
- rank-2 update provides a limited memory strategy
 - store $\mathcal{L} := \{s^{(k)}, s^{(k-1)}, ..., s^{\max\{k-m+1,0\}}, y^{(k)}, y^{(k-1)}, ..., y^{\max\{k-m+1,0\}}\};$
 - $H^{(k)}$ is built up from $H^{(0)}$ by a rank- $2 \max\{m, k\}$ update
 - reduce the storage from $O(n^2)$ to O(mn) at a cost of O(mn) arithmetic operation
 - reduce the computational cost from $O(n^2)$ to O(mn), if there is no structure
- numerically successful
 - BFGS update
 - m = 10

global convergence if combined with line search and local linear convergence.

²The difference between using $B^{(k)}$ or $H^{(k)}$ appears at the computational cost, and the storage is a whole other story.

The explanation of BB stepsize

$$x^{(k+1)} = x^{(k)} - \alpha^{(k)} \nabla f(x^{(k)}), \quad \text{with } \alpha^{(k)} = \frac{s^{(k)^\top} y^{(k)}}{y^{(k)^\top} y^{(k)}}, \text{ or } \alpha^{(k)} = \frac{s^{(k)^\top} s^{(k)}}{s^{(k)^\top} y^{(k)}}.$$

• Using $\frac{1}{\alpha} \cdot I$ to approximate $\nabla^2 f(x^{(k)})$

$$\alpha^{(k)} = 1 \left| \underset{\beta \in \mathbb{R}}{\operatorname{arg \, min}} \left\| \beta s^{(k)} - y^{(k)} \right\|_{2}^{2} \right.$$

• Using $\alpha \cdot I$ to approximate $\nabla^2 f(x^{(k)})^{-1}$

$$\alpha^{(k)} = \underset{\alpha \in \mathbb{R}}{\operatorname{arg \, min}} \|\alpha y^{(k)} - s^{(k)}\|_{2}^{2}$$

Trust Region Methods

$$x^{(k+1)} = x^{(k)} + s^{(k)},$$

 $s^{(k)} = \underset{s \in \mathbb{R}}{\arg \min} m^{(k)}(s), \quad \text{s. t.} \quad ||s||_2 \le \Delta^{(k)}.$

• $m^{(k)}(s)$ quadratic approximation of $f(x^{(k)} + s)$ at $x^{(k)}$

$$m^{(k)}(s) := \nabla f(x^{(k)})^{\top} s + \frac{1}{2} s^{\top} B^{(k)} s.$$

- solving subproblem
 - exactly solver: Moré-Sorensen
 - approximate: Chauchy point, dog-leg
 - inexact solver: truncated CG, 2-D subspace minimization
- the choice of $B^{(k)}$
 - $\nabla^2 f(x^{(k)})$
 - quasi-Newton update
 - other approximation of $\nabla^2 f(x^{(k)})$

Trust Region Methods (Cont'd)

approximation ratio

$$\eta^{(k)} = \frac{\text{red}_{\text{real}}}{\text{red}_{\text{pred}}} = \frac{f(x^{(k)}) - f(x^{(k)} + s^{(k)})}{m(0) - m(s^{(k)})}.$$

accept trial step of not:

$$x^{(k+1)} = \begin{cases} x^{(k)} + s^{(k)}, & \text{if } \eta^{(k)} > 0; \\ x^{(k)}, & \text{otherwise.} \end{cases}$$

• updating trust region radius $\Delta^{(k)}$

$$\Delta^{(k+1)} = \left\{ \begin{array}{ll} b_2 \Delta^{(k)}, & \text{if } \eta^{(k)} > c_2; \\ \Delta^{(k)}, & \text{if } c_2 \geq \eta^{(k)} > c_1; \\ b_1 \Delta^{(k)}, & \text{otherwise.} \end{array} \right.$$

where $0 < c_1 < c_2 < 1$, $0 < b_1 < 1 < b_2$.

global convergence only requires subproblem inexactly solved; convergence to second-order stationary point if $B^{(k)} = \nabla^2 f(x^{(k)})$ and subproblem exactly solved.

Methods for Nonlinear Least Squares

Nonlinear least squares

$$f(x) = ||F(x)||_2^2 = \sum_{i=1}^m f_i^2(x)$$

- $F(x) := (f_1(x), ..., f_m(x))^{\top}$, each $f_i(x) : \mathbb{R}^n \mapsto \mathbb{R} \ (i = 1, ..., m)$
- Jacobian matrix: $\mathcal{J}_F(x) = (\nabla f_1(x), ..., \nabla f_m(x))^{\top}$
- gradient: $\nabla f(x) = \mathcal{J}_F(x)^{\mathsf{T}} F(x)$
- Hessian: $\nabla^2 f(x) = \mathcal{J}_F(x)^\top \mathcal{J}_F(x) + \sum_{i=1}^m f_i(x) \nabla^2 f_i(x)$
- linear approximation: $F(x) \approx F(x^{(k)}) + \mathcal{J}_F(x^{(k)})(x x^{(k)})$
- new approximation of Hessian: $\mathcal{J}_F(x)^{\top} \mathcal{J}_F(x)$
 - approximation quality depends on residuals $f_i(x)$ (i = 1, ..., m)
 - obtain partial Hessian information by collecting derivatives
 - positive definiteness

Methods for Nonlinear Least Squares (Cont'd)

Gauss Newton method

$$d^{(k)} = -\left(\mathcal{J}_F(x^{(k)})^{\top} \mathcal{J}_F(x^{(k)})\right)^{-1} \nabla f(x^{(k)})$$

- similar performance as Newton method if small residual
- similar performance as gradient method if large residual
- numerically unstable if $\mathcal{J}_F(x^{(k)})$ is singular or close to singular

Levenberg-Marguardt method

$$s^{(k)} = -\left(\mathcal{J}_F(x^{(k)})^{\top} \mathcal{J}_F(x^{(k)}) + \mu^{(k)} \cdot I\right)^{-1} \nabla f(x^{(k)})$$

- regularization parameter $\mu^{(k)}$ can be tuned
 - in the same manner as trust region radius
 - $||F(x^{(k)})||_2^t$ (t = [1, 2])

global convergence; quadratic local convergence rate if $\mu^{(k)} \to 0$ and zero residual at solution

Block Coordinate Descent

$$\begin{cases} x_1^{(k+1)} = \underset{x_1 \in \mathbb{R}^{n_1}}{\arg\min} f(x_1, x_2^{(k)}, ..., x_p^{(k)}); \\ x_2^{(k+1)} = \underset{x_2 \in \mathbb{R}^{n_2}}{\arg\min} f(x_1^{(k+1)}, x_2, x_3^{(k)}, ..., x_p^{(k)}); \\ \\ x_p^{(k+1)} = \underset{x_p \in \mathbb{R}^{n_p}}{\arg\min} f(x_1^{(k+1)}, ..., x_{p-1}^{(k+1)}, x_p). \end{cases}$$

- $x = (x_1^\top, x_2^\top, ..., x_n^\top)^\top, x_i \in \mathbb{R}^{n_i} (i = 1, ..., p), n_1 + \cdots + n_p = n$
- convergence under strongly convex
- essentially Gauss-Seidel iteration: $f = \frac{1}{2}x^{T}Ax b^{T}x$ with $A > 0^{3}$
- question: does Jacobi iteration work? linear proximal variant:

$$x_i^{(k+1)} = \underset{x_i \in \mathbb{R}^{n_i}}{\min} \, \nabla_{x_i} f(x^{(k)})^{\top} x_i + \frac{\beta^{(k)}}{2} ||x_i - x_i^{(k)}||_2^2, \quad i = 1, ..., p.$$

³This condition can be relaxed to $A \ge 0$, $A_{ii} \ge 0$ (i = 1, ..., p).

Section 3. Global Optimization Strategies

Overview

A few strategies

- deterministic methods⁴
 - branch and bound
 - cutting plane
- undeterministic methods
 - homotopy
 - randomly multi-start
 - simulated annealing
 - genetic algorithm
 - ant colony algorithm
- approximation methods
 - SDP relaxation: $x^{T}Ax = \langle A, xx^{T} \rangle$, $xx^{T} \Rightarrow X \geq 0$
- problems have nice properties
 - special quartic objective: phase retrieval, matrix completion, ...
 - problem input obeys a certain distribution
 - no nonglobal local minimizer: stationary ⇔ global or saddle

⁴Combinatorial optimization can be modeled as binary variable programming. Since $x \in \{0, 1\} \iff x^2 = x$, it can be viewed as a special nonlinear programming.

Undeterministic Methods

Homotopy (Global continuation)

- let g(x) be a convex relaxation⁵ of f(x)
- define the homotopy function: $F(x,t): \mathbb{R}^n \times [0,1] \mapsto \mathbb{R}$
 - F(x,0) = f(x);
 - F(x, 1) = g(x);
 - e.g. $F(x, t) = (1 t) \cdot f(x) + t \cdot g(x)$.
- main idea solving

$$\min_{x\in\mathbb{R}^n} F(x,t),$$

with t varying from 1 to 0.

- particularly useful for problems
 - one main valley
 - surrounded by side valleys
 - side valleys occur by oscillation

⁵Usually, it means that the epigraph of g(x), $\{(x, v) \mid v \ge f(x)\}$, completely contains the epigraph of f(x).

Undeterministic Methods (Cont'd)

Randomly multi-start

- different with multi-start from grids or other patterns
- main procedure
 - 1. input: $MaxL \in \mathbb{N}$, $MaxW \in \mathbb{N}$.
 - 2. set CL := 0, CW := 0, $x^{\text{rec}} := 0$, $f^{\text{rec}} = +\infty$.
 - 3. certain random sampling procedure: obtain x^{sp} .
 - 4. certain local search procedure: obtain x^{loc} , CL := CL + 1.
 - 5. if $f(x^{\text{loc}}) < f^{\text{rec}}$, set $x^{\text{rec}} := x^{\text{loc}}$, $f^{\text{rec}} = f(x^{\text{loc}})$, CW := 0, goto 3.
 - 6. otherwise, CW := CW + 1.
 - 7. if CL = MaxL or CW = MaxW, terminate and return x^{rec} .
 - 8. otherwise, goto 3.
- trade off between sampling phase and local search phase
- convergence
 - finding global minimizer in a compact domain
 - locally Lipschitz
 - when MaxL $\rightarrow +\infty$, probability approaches 1

Undeterministic Methods (Cont'd)

Simulated annealing

- inspiration comes from annealing in metallurgy
- main framework
 - 1. input: initial temperature $T \gg 1$, initial point $x, L \in \mathbb{N}$, $MaxW \in \mathbb{N}$: set CW := 0, i := 0.
 - 2. if i = L, goto Step 7; otherwise, goto Step 3.
 - 3. find a new point x' by certain simple procedure.
 - 4. evaluate the incremental $\Delta' := f(x') f(x)$.
 - 5. if $\Delta' \leq 0$, x := x', CW = 0; else if, set x := x', CW = 0 in probability $\exp(-\Delta'/(kT))^6$; otherwise, CW := CW + 1.
 - 6. if $CW \ge MaxW$ and T = 0, terminate; otherwise, set i := i + 1and goto Step 2.
 - 7. decrease temperature T slowly, set i := 0 and goto Step 2.

⁶k takes Boltzmann constant.

References

- JORGE NOCEDAL AND STEPHEN J. WRIGHT, Numerical Optimization, Springer, 2006.
- Ya-xiang Yuan, Computational Methods for Nonlinear Optimization (in Chinese), Science China Press, 2008.
- STEPHEN BOYD AND LIEVEN VANDENBERGHE, Convex Optimization Cambridge University Press, 2004.
- R. Horst, Panos M. Pardalos and Nguyen Van Thoai, Introduction to Global Optimization, Kluwer Academy Publishers, 2008.
- НÉDY АТТОИСН AND JÉRÔME BOLTE, On the Convergence of the Proximal Algorithm for Nonsmooth Functions Involving Analytic Features, Mathematical Programming, 116(2009), pp. 5–16.
- AMIR BECK AND LUBA TETRUASHVILI, On the Convergence of Block Coordinate Descent Type Methods, SIAM Journal on Optimization 23(2013), pp. 2037–2060.
- EMMANUEL J. CANDES, XIAODONG LI, AND MAHDI SOLTANOLKOTABI, Phase retrieval via wirtinger flow: Theory and algorithms, IEEE Transactions on Information Theory, 61(2014), pp. 1985–2007.
- Rong Ge, Jason D. Lee and Tengyu Ma, Matrix Completion has No Spurious Local Minimum, NIPS, 2016.

Thanks for your attention!

Email: liuxin@lsec.cc.ac.cn

