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Abstract. In this paper, we investigate the polyhedral structure of a
mixed 0-1 set which consists of a mixed knapsack constraint and a gen-
eralized upper bound (GUB) constraint with n binary variables and m
bounded continuous variables. This set appears as a common substruc-
ture of the network design problems with discrete capacity installation
costs. For this set, we first introduce a family of valid inequalities, called
coefficient strengthening (CS) inequalities, derived by relaxing some con-
tinuous variables and strengthening the coefficients of some binary vari-
ables in the mixed knapsack constraint. Then we give a necessary and
sufficient condition to guarantee the CS inequality to be facet-defining
and prove that together with the initial constraints, the CS inequalities
are sufficient to describe the convex hull of this set. Furthermore, we
develop an exact polynomial-time separation algorithm for the CS in-
equalities. Finally, we perform numerical experiments on using the CS
inequalities as cutting planes for solving the network design problems.
Numerical results demonstrate the effectiveness of the CS inequalities
and the proposed exact separation algorithm.
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1 Introduction

Consider an extension of the mixed 0-1 knapsack set in which the 0-1 variables
are subjected to a generalized upper bound constraint (GUB):

X =

(x, y) ∈ {0, 1}n × Rm+ :

m∑
j=1

yj ≤ b+

n∑
i=1

aixi,

n∑
i=1

xi ≤ 1, y ≤ u

 ,

where ai > 0 for i ∈ N := {1, . . . , n}, uj > 0 for all j ∈ M := {1, . . . ,m}, and
b ≥ 0 are rational. This set appears as a common substructure of the network
design problems with discrete capacity installation costs [4,6]. Specifically, in
such problems, variable yj denotes the amount of commodity j with demand
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uj flowing along an edge in the network. The total flow on this edge is upper
bounded by capacity b+

∑n
i=1 aixi, i.e,

m∑
j=1

yj ≤ b+

n∑
i=1

aixi. (1)

Here b denotes the preinstalled capacity, ai stands for the capacity of module
i, and xi symbolizes that whether or not module i is installed on this edge. In-
stalling different modules on an edge will incur different costs. We are interested
in the model that at most one module may be installed on every edge, that is,

n∑
i=1

xi ≤ 1. (2)

Notice that this requirement, however, can be relaxed. Indeed, the model that
allows to install combinations of different modules on every edge can also be
transformed into the above model; see [8,18].

When the GUB constraint (2) is relaxed,X reduces to the mixed 0-1 knapsack
set whose polyhedral structure has been studied in the literature. In particular,
Richard et al. [16,17] described facets for the mixed 0-1 knapsack polytope using
lifting techniques. Narisetty et al. [13] developed the mixed lifted cover and pack
inequalities and gave conditions under which they are facet-defining. Marchand
and Wolsey [11] studied a closely related set where there exists only a single
unbounded continuous variable. We remark that with the GUB constraint (2),
the polyhedral structure of conv(X) is intrinsically different from that of the
mixed 0-1 knapsack polytope. Specifically, the optimization of a linear function
over set X can be done in polynomial time as by enumeration of the 0-1 solutions
for variables x, we can reduce the problem to n + 1 linear programming (LP)
problems. This implies the possibility to derive a polyhedral description and to
develop an efficient separation algorithm for polytope conv(X); see [15]. In sharp
contrast, for the mixed 0-1 knapsack polytope, there is little hope of doing this
as it is NP-hard to optimize a linear function over it.

Another closely related set is the splittable flow arc set Y = {(x, y) ∈ Z+ ×
Rn+ :

∑m
j=1 yj ≤ b+ cx, y ≤ u} where c > 0. Indeed, let n = max{0, d(u(M)−

b)/ce} and ai = i∗c for i = 1, . . . , n. Then set X can be seen as a binary extended
formulation of set Y ; see [5]. There exist several studies on polyhedron conv(Y ).
Magnanti et al. [10] proposed the residual capacity inequalities and showed that
when b = 0, polyhedron conv(Y ) can be described by these inequalities and the
initial constraints (see [1] for the generalized results of polyhedron conv(Y ) with
an arbitrary b). Atamtürk and Rajan [2] developed a linear-time separation
algorithm for the residual capacity inequalities. Unfortunately, with arbitrary
values of parameters ai with ai > 0, i = 1, . . . , n, the above results cannot
directly be applied to polytope conv(X).

To the best of our knowledge, a polyhedral study on polytope conv(X) is
missing in the literature. The motivation of this paper is to fill the research
gap. In particular, we propose a family of valid inequalities, called coefficient



On the Mixed 0-1 Knapsack Set with a GUB Constraint 3

strengthening (CS) inequalities, derived by first relaxing some continuous vari-
ables yj and then strengthening the coefficients of some binary variables xi in
the mixed knapsack constraint (1). We give a necessary and sufficient condition
to guarantee the CS inequality to be facet-defining for polytope conv(X). In
addition, together with the initial constraints, the CS inequalities are shown to
be sufficient to describe polytope conv(X). Furthermore, we develop an exact
polynomial-time separation algorithm for the CS inequalities. We also perform
numerical experiments on using the CS inequalities as cutting planes for solving
the network design problems. Numerical results demonstrate the effectiveness of
the CS inequalities and the proposed exact separation algorithm.

We would like to emphasize that the proposed CS inequality can be seen
as the well-known mixed integer rounding (MIR) inequality [12,14]. However,
our exact separation algorithm for the CS inequalities is much more effective in
finding cuts and hence can improve the solution efficiency of the branch-and-cut
framework, as compared with the existing heuristic algorithm in [12].

The remainder of the paper is organized as follows. Section 2 describes the
CS inequality and the polyhedral description of conv(X). Section 3 presents
a separation algorithm for the CS inequalities. Finally, section 4 provides the
computational results.

Assumptions and notations. We assume 0 < a1 ≤ · · · ≤ an since other-
wise we can reorder the variables xi, i = 1, . . . , n. Denote w(S) =

∑
i∈S wi for

a vector w ∈ Rm and a subset S ⊆ M . Without loss of generality, we assume
an ≤ u(M)− b since otherwise, we can equivalently strengthen an as u(M)− b.
For notations convenience, we denote a0 = 0 and an+1 = +∞. Throughout this
paper, we denote XL as the linear relaxation of set X.

2 Polyhedral description

In this section, we first present the CS inequalities for set X and give a necessary
and sufficient condition for them to be facet-defining for polytope conv(X).
Then we show that together with the initial constraints, the CS inequalities
are sufficient to describe polytope conv(X).

Let S ⊆M such that bS := u(S)− b > 0. First, relaxing variables yj to zero
for all j ∈M\S in inequality (1), we obtain inequality

y(S) ≤ b+

n∑
i=1

aixi. (3)

Then, using the fact that xi, i = 1, . . . , n, are binary variables, we can strengthen
inequality (3) as

y(S) ≤ b+

r∑
i=1

aixi + bS

n∑
i=r+1

xi, (4)

where r ∈ N ∪ {0} satisfying ar ≤ bS < ar+1 (note that we assume a0 = 0
and an+1 = +∞). Clearly, inequality (4) is valid for X. We call (4) as the CS
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inequality. When it is associated with a specific subset S, we also call it as S-CS
inequality. Notice that if bS ≥ an, inequality (4) is dominated by or equivalent
to inequality (1) (as it is assumed that an ≤ u(M) − b). Hence, we are only
interested in the CS inequality (4) with bS < an, or equivalently, r + 1 ≤ n.

Remark 1. The CS inequality (with 0 < bS < an) can be seen as an MIR
inequality [12,14]. Indeed, inequality (3) can be written as

n∑
i=1

ai
an
xi + s ≥ bS

an
, (5)

where s = 1
an

∑
j∈S(uj − yj). The MIR inequality based on inequality (5) is

n∑
i=1

min

{
bS
an
,
ai
an

}
xi + s ≥ bS

an
. (6)

As a1 ≤ · · · ≤ an,
∑n
i=1 min

{
bS
an
, aian

}
xi =

∑r
i=1

ai
an
xi +

∑n
i=r+1

bS
an
xi. Then,

substituting s = 1
an

∑
j∈S(uj − yj) into inequality (6) and multiplying (6) by

an, we obtain the CS inequality (4) (for more details of the MIR inequality, see
[12,14]).

The following proposition give a necessary and sufficient condition for the
CS inequality (4) to be facet-defining for polytope conv(X). The proof can be
found in [3].

Proposition 1. Let S ⊆M such that 0 < bS < an. Then the CS inequality (4)
defines a facet of polytope conv(X) if and only if at least one of the following
three conditions holds: (i) a1 < bS ; (ii) |S| = 1; (iii) b > 0.

We now establish the main result of this section.

Theorem 1. Together with the initial constraints (1), (2), 0 ≤ xi ≤ 1, i ∈ N ,
and 0 ≤ yj ≤ uj, j ∈ M , the CS inequalities (4) are sufficient to describe
polytope conv(X).

Proof. We use the technique of [9]. Given an arbitrary objective function (c, d) 6=
(0, 0), let O(c, d) denote the set of optimal solutions of problem

min
{
c>x+ d>y : (x, y) ∈ X

}
. (7)

We shall prove the statement by showing that there exists an inequality listed
in the theorem such that it holds at equality for all (x, y) ∈ O(c, d).

If dj > 0 for some j ∈ M , the statement is true since yj = 0 for all (x, y) ∈
O(c, d). Thus we assume dj ≤ 0 for all j ∈ M . Let S = {j : dj < 0, j ∈ M}.
Consider the following two cases.

(i) u(S) − b ≤ 0. If |S| ≥ 1, then for every point (x, y) ∈ O(c, d), yq = uq
must be true for q ∈ S, and thus the statement holds true. Otherwise, it follows
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dj = 0 for all j ∈ M . As (c, d) 6= (0, 0), there must exist some p ∈ N such that
cp 6= 0. If cp > 0, we have xp = 0 for each (x, y) ∈ O(c, d). If cp < 0, since the
point (x̄, ȳ) defined by x̄p = 1, x̄i = 0 for i ∈ N\{p}, and ȳj = 0 for j ∈ M is
feasible and gives a negative objective value in problem (7),

∑n
i=1 xi = 1 must

be satisfied at each point (x, y) ∈ O(c, d).

(ii) u(S)−b > 0. This implies that S 6= ∅ as b ≥ 0. We complete the proof by
showing that the S-CS inequality (4) holds at equality for all (x, y) ∈ O(c, d). To
do this, we proceed by contradiction. Suppose that there exists a point (x̂, ŷ) ∈
O(c, d) such that

ŷ(S) < b+

r∑
i=1

aix̂i + bS

n∑
i=r+1

x̂i. (8)

Together with
∑n
i=1 x̂i ≤ 1 (as (x̂, ŷ) ∈ X), we can derive ŷ(S) < b + bS =

b+u(S)−b = u(S), which implies that ŷq < uq must hold for some q ∈ S. Then,
for each j ∈M\S, since dj = 0, it follows ŷj = 0. As a result, we have

n∑
i=1

aix̂i − ŷ(M) =

n∑
i=1

aix̂i − ŷ(S) ≥
r∑
i=1

aix̂i + bS

n∑
i=r+1

x̂i − ŷ(S) > b,

where the last inequality follows from (8). However, this indicates that increasing
ŷq by a small value ε > 0 gives another feasible solution of problem (7) whose
objective value is smaller than that of point (x̂, ŷ). As a result, it contradicts
with the fact that (x̂, ŷ) is optimal for problem (7). ut

3 Separation problem

In this section, we consider the separation problem of polytope conv(X). Since
the constraints in set XL can be checked for violations in linear time, the separa-
tion problem of polytope conv(X) can be reduced to, given a point (x̄, ȳ) ∈ XL,
either find a violated inequality (4) or prove that no such one exists. We note
that due to the potentially exponential number of selections of subset S ⊆ M
in the CS inequality (4), it is unrealistic to solve the separation problem by
enumeration. In the following, we show that by considering a linear number of
subsets of M , a most violated CS inequality (4) can be found.

First, to find a CS inequality (4) violated by point (x̄, ȳ) ∈ XL, we may as-
sume x̄ /∈ {0, 1}n since otherwise (x̄, ȳ) ∈ conv(X), and hence no violated one
exists. In addition, the CS inequality (4) with bS ≤ 0 or bS ≥ an cannot be vio-
lated by point (x̄, ȳ) (as (x̄, ȳ) ∈ XL), and hence we can also limit to consider the
CS inequality (4) with 0 < bS < an. We next further divide the separation prob-
lem of the CS inequalities into n subproblems where each subproblem attempts
to find a most violated CS inequality (4) with ak−1 ≤ bS < ak where k ∈ N . In
particular, to find a most violated CS inequality (4) with ak−1 ≤ bS < ak, we
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can solve problem

vk = min
z, b̄

b+

k−1∑
i=1

aix̄i + b̄

n∑
i=k

x̄i −
∑
j∈M

ȳjzj

s.t. ak−1 ≤ b̄ =
∑
j∈M

ujzj − b < ak, zj ∈ {0, 1}, j ∈M,

(Pk)

where z ∈ {0, 1}m is the characteristic vector of subset S ⊆ M . If vk < 0, then
the CS inequality (4) corresponding to an optimal solution (z, b̄) of problem (Pk)
is violated by point (x̄, ȳ); otherwise, no violated one with ak−1 ≤ bS < ak exists.
The separation problem of the CS inequalities can then be solved by enumerat-
ing vk, k = 1, . . . , n. To be more specific, let v = mink=1,...,n{vk}. If v < 0, we
can find a most violated inequality (4); otherwise, we conclude that no violated
one exists. Problems (Pk), k = 1, . . . , n, are mixed integer programming (MIP)
problems, which are hard to solve in general. In the following, by investigating
the relationship of different problems (Pk), k = 1, . . . , n, we are able to pro-
vide a strongly polynomial-time separation algorithm for solving the separation
problem of the CS inequalities (4).

We first substitute b̄ =
∑
j∈M ujzj − b into the objective function of problem

(Pk) and obtain an equivalent problem:

vk = min
z

k−1∑
i=1

aix̄i + b

(
1−

n∑
i=k

x̄i

)
+
∑
j∈M

(
uj

n∑
i=k

x̄i − ȳj

)
zj

s.t. ak−1 ≤
∑
j∈M

ujzj − b < ak, zj ∈ {0, 1}, j ∈M.

(P′k)

Let Tk denote the index set of negative objective coefficients of variables zj ,
j ∈M , in problem (P′k), i.e.,

Tk =

{
j : uj

n∑
i=k

x̄i − ȳj < 0, j ∈M

}
. (9)

In addition, for k ∈ N , let gk(z) denote the objective value of problem (P′k) at
point z ∈ {0, 1}m, i.e.,

gk(z) =

k−1∑
i=1

aix̄i + b

(
1−

n∑
i=k

x̄i

)
+
∑
j∈M

(
uj

n∑
i=k

x̄i − ȳj

)
zj . (10)

We have the following observation.

Observation 1 Let Tk be defined as in (9) and ẑ ∈ {0, 1}m be the associated
characteristic vector. Then vk ≥ gk(x̂). Furthermore, (i) if gk(ẑ) ≥ 0, no CS
inequality (4) with ak−1 ≤ bS < ak violated by point (x̄, ȳ) ∈ XL exists; (ii) if
ak−1 ≤ bTk

< ak and g(ẑ) < 0, among the CS inequalities (4) with ak−1 ≤ bS <
ak, the Tk-CS inequality is the most violated one for point (x̄, ȳ) ∈ XL.
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By Observation 1, we only need to consider problem (P′k) with bTk
< ak−1 or

bTk
≥ ak.

Lemma 1. Let Tk be defined as in (9) and (x̄, ȳ) ∈ XL. If bTk
≤ 0 or bTk

≥ an,
no CS inequality (4) with ak−1 ≤ bS < ak can be violated by point (x̄, ȳ).

Proof. Let ẑ ∈ {0, 1}m be the characteristic vector of set Tk. By Observation 1
(i), it is enough to show that if bTk

≤ 0 or bTk
≥ an, gk(ẑ) ≥ 0 must be hold

where

gk(ẑ) =

k−1∑
i=1

aix̄i + b

(
1−

n∑
i=k

x̄i

)
+
∑
j∈Tk

(
uj

n∑
i=k

x̄i − ȳj

)
.

Indeed, if bTk
= u(Tk)− b ≤ 0, or equivalently, b ≥ u(Tk), we have

gk(ẑ) ≥
k−1∑
i=1

aix̄i + u(Tk)

(
1−

n∑
i=k

x̄i

)
+
∑
j∈Tk

(
uj

n∑
i=k

x̄i − ȳj

)

=

k−1∑
i=1

aix̄i +
∑
j∈Tk

(uj − yj) ≥ 0,

where the first inequality follows from
∑n
i=k x̄i ≤

∑n
i=1 x̄i ≤ 1 and the second

one follows from x̄i ≥ 0 and ȳj ≤ uj for all i ∈ N and j ∈ M , respectively (as
(x̄, ȳ) ∈ XL). If bTk

= u(Tk)− b ≥ an, or equivalently, −b ≥ an− u(Tk), we have

gk(ẑ) =

k−1∑
i=1

aix̄i + b− b
n∑
i=k

x̄i +
∑
j∈Tk

(
uj

n∑
i=k

x̄i − ȳj

)

≥
k−1∑
i=1

aix̄i + b+ [an − u(Tk)]

n∑
i=k

x̄i +
∑
j∈Tk

(
uj

n∑
i=k

x̄i − ȳj

)

=

k−1∑
i=1

aix̄i + an

n∑
i=k

x̄i + b−
∑
j∈Tk

ȳj ≥
n∑
i=1

aix̄i + b−
∑
j∈M

ȳj ≥ 0,

where the second inequality follows from an ≥ ai and x̄i ≥ 0 for i = k, . . . , n and
ȳj ≥ 0 for j ∈M\Tk and the last one follows from

∑
j∈M ȳj ≤ b+

∑n
i=1 aix̄i (as

(x̄, ȳ) ∈ XL). ut

Together with Observation 1 and Lemma 1, we are left with the case that
aτ−1 < bTk

≤ aτ for some τ with τ 6= k and 1 ≤ τ ≤ n. The following lemma
shows that in this case, if there exists an S-CS inequality with ak−1 < bS ≤ ak
violated by point (x̄, ȳ) ∈ XL by ε, then there must also exist an S′-CS inequality
with aτ−1 < bS′ ≤ aτ violated by point (x̄, ȳ) by ε1 ≥ ε.

Lemma 2. Let Tk be defined as in (9) and (x̄, ȳ) ∈ XL. If aτ−1 < bTk
≤ aτ for

some τ with τ 6= k and 1 ≤ τ ≤ n, then vτ ≤ vk.
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Proof. Let ẑ ∈ {0, 1}m be the characteristic vector of set Tk. The difference of
the objective values of problems (P′k) and (P′τ ) at point ẑ is

gk(ẑ)− gτ (ẑ) =

k−1∑
i=1

aix̄i + b

(
1−

n∑
i=k

x̄i

)
+
∑
j∈Tk

(
uj

n∑
i=k

x̄i − ȳj

)
−

τ−1∑
i=1

aix̄i + b

(
1−

n∑
i=τ

x̄i

)
+
∑
j∈Tk

(
uj

n∑
i=τ

x̄i − ȳj

) .
If τ < k, since ai ≥ aτ ≥ bTk

= u(Tk)− b and x̄i ≥ 0 for i = τ, . . . , k−1, we have

gk(ẑ)− gτ (ẑ) =

k−1∑
i=τ

aix̄i + b

k−1∑
i=τ

x̄i − u(Tk)

k−1∑
i=τ

x̄i =

k−1∑
i=τ

[ai + b− u(Tk)] x̄i ≥ 0.

Otherwise, it follows τ > k as τ 6= k. Since ai ≤ aτ−1 < bTk
= u(Tk) − b and

x̄i ≥ 0 for i = k, . . . , τ − 1, we have

gk(ẑ)− gτ (ẑ) = −
τ−1∑
i=k

aix̄i− b
τ−1∑
i=k

x̄i+u(Tk)

τ−1∑
i=k

x̄i =

τ−1∑
i=k

[−ai− b+u(Tk)]x̄i ≥ 0.

In both cases, we have gτ (ẑ) ≤ gk(ẑ). Notice that as aτ−1 < bTk
≤ aτ , point ẑ

is a feasible solution of problem (P′τ ), implying that vτ ≤ gτ (ẑ). This, together
with gk(ẑ) ≤ vk in Observation 1, shows that vτ ≤ vk. ut

By Observation 1 and Lemmas 1-2, to find a most violated CS inequality by
point (x̄, ȳ) ∈ XL, it suffices to test the n ones associated with subsets T1, . . . , Tn.
More specifically, we first initialize v := 0. Then, for k = 1, . . . , n, we test whether

ak−1 < bTk
≤ ak and vk = b+

k−1∑
i=1

aix̄i + bTk

n∑
i=k

x̄i − ȳ(Tk) < v (11)

hold or not and if yes, update v := vk. In the end, if v < 0, a most violated
CS inequality (4) is found; otherwise, no violated one exists. Apparently, this
gives an O(n(m+n)) separation algorithm. The following important observation,
however, enables us to design a much more efficient separation algorithm when
n is large (see Algorithm 1).

Observation 2 Let (x̄, ȳ) ∈ XL. Rewriting Tk (defined in (9)) as{
j :

n∑
i=k

x̄i <
ȳj
uj
, j ∈M

}
, k = 1, . . . , n, (12)

we have T1 ⊆ · · · ⊆ Tn.

In Algorithm 1, we reorder the variables yj , j = 1, . . . ,m, such that ȳ1
u1
≤

· · · ≤ ȳm
um

in step 1 in the complexity of O(m logm). By Observation 2 and this
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Algorithm 1: A separation algorithm for the CS inequalities (4)

Input: The set X and the point (x̄, ȳ) ∈ XL;
1 Reorder the variables yj , j = 1, . . . ,m, such that ȳ1

u1
≤ · · · ≤ ȳm

um
;

2 Initialize v := 0, k0 = −1, SAX0 = 0, SAX1 = a1x̄1, SX1 =
∑n

i=1 x̄i,
YT1 = ȳ(T1), UT1 = u(T1);

3 for k = 2, . . . , n do
4 Compute YTk = YTk−1 + ȳ(Tk\Tk−1) and UTk = UTk + u(Tk\Tk−1);
5 Compute SAXk = SAXk−1 + akx̄k and SXk = SXk−1 − x̄k−1;

6 for k = 1, . . . n do
7 if ak−1 < bTk = UTk − b ≤ ak then
8 Compute vk = b + SAXk−1 + bTk ∗ SXk −YTk;
9 Update v := vk and k0 := k if vk < v;

10 If v < 0, the CS inequality (4) with subset Tk0 is violated by point (x̄, ȳ);
otherwise no violated one exists.

ordering, the computation of YTk = ȳ(Tk) and UTk = u(Tk) for k = 1, . . . , n in

steps 3-4 can be done in O(n). Clearly, the computation of SAXk =
∑k
i=1 aix̄i

and SXk =
∑n
i=k x̄i for k = 1, . . . , n can also be done in O(n). Finally, with

the arrays YT, UT, SAX, and SX, we can test whether conditions (11) hold
or not for all k = 1, . . . , n in the complexity of O(n); see steps 6-10. Overall,
the complexity of Algorithm 1 is O(n+m logm). Together with the previously
mentioned O(n(n+m)) separation algorithm, we have the following.

Theorem 2. The separation problem for the CS inequalities (4) can be solved
in O(min{n(m+ n), n+m logm}).

To end this section, we would like to highlight the advantage of our exact
separation algorithm for the CS inequalities over the heuristic algorithm in [12].
Recall that in Remark 1, the CS inequality (4) is shown to be the MIR inequality.
As for the separation of the MIR inequalities, the author in [12] suggested to
heuristically choose subset S as{

j : ȳj > uj − ȳj , j ∈M
}

=
{
j : ȳj/uj > 0.5, j ∈M

}
and test whether or not the corresponding inequality is violated by point (x̄, ȳ) ∈
XL. To the best of our knowledge, this heuristic algorithm is still employed in
state-of-the-art MIP solvers; see, for example, [19]. We note that this heuristic
algorithm uses a “0.5” strategy, i.e., it prefers to leave variables yj , with ȳj/uj >
0.5, in the CS inequality (or MIR inequality). Our exact separation algorithm
for the CS inequality also prefers to leave variables yj , with a large ȳj/uj , in
the CS inequality; see Tk in (12). However, in contrast to the “0.5” heuristic
strategy that does not consider values x̄i, i ∈ N , our separation algorithm finds
a most violated CS by enumerating subsets T1, . . . , Tn and taking fully values x̄i,
i ∈ N , into consideration. Moreover, it guarantees to find a violated inequality
by point (x̄, ȳ) ∈ XL (if such one exists). In the next section, we will present
computational results to illustrate this advantage.
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4 Numerical results

In this section, we present numerical results to illustrate the effectiveness of using
the CS inequalities (4) as cutting planes and the proposed exact separation
algorithm in the branch-and-cut solver SCIP [7] for solving the single-source
network design problem formulated as:

min
x,y

∑
e∈E

le
∑
i∈N

ceixei

s.t.
∑

e∈δ+(v)

yej −
∑

e∈δ−(v)

yej =

−uj if j = v
uj if j = r
0 otherwise

∀v ∈ V

(xe ·, ye ·) ∈ Xe ∀e ∈ E

(13)

where V and E are the sets of nodes and edges respectively, r ∈ V is the root
node routing demand uj to node j ∈M ⊆ V , δ+(v) and δ−(v) are the outgoing
and incoming edges of node v, respectively, le is the length of edge e, and Xe is
defined by

Xe =

{
(xe ·, ye ·) ∈ {0, 1}|N | × R|M |+ :

∑
j∈M

yej ≤
∑
i∈N

aeixei,
∑
i∈N

xei ≤ 1,

yej ≤ uj , j ∈M
}
.

Variable yej describes the amount of flow, from node r to node j, through edge
e, and variable xei stands for whether module i, with capacity aei and cost cei,
is installed on edge e.

Our data set is generated using the random procedure in [8,18]. The number
of nodes |V | is chosen in {20, 30, 40}. There are two ways of choosing the root
node r. One selects r to be the central node and the other one selects r randomly.
There are also two ways of generating the demands u = (u1, . . . , u|M |), which
randomly select uj , j ∈ M , in [0, 30] and [0, 60], respectively. We refer to [18]
for a procedure of generating capacities and costs of the modules and a detailed
description of the random procedure. For each combination of triple (|V |, r, u),
we generate 100 instances. Thus, in total, we have 1200 instances. All numerical
experiments were conducted on a cluster of Intel(R) Xeon(R) Gold 6140 CPU
@ 2.30GHz computers, with 180 GB RAM, running Linux (in 64 bit mode). We
set a time limit of 3600 seconds for SCIP. Unless otherwise stated, we use the
default setting of SCIP.

We first compare the performance of adding the CS inequalities (4) into
SCIP (CS) with the default setting of SCIP (Default). Table 1 summarizes the
computational results of the two settings where we remove those instances that
cannot be solved by both CS and Default within the time limit. We report
the number of instances solved to optimality (Solved), the average running time
(Time) which includes the time spent in separating the cuts, the average num-
ber of explored nodes (Nodes), the average percentage gap improvement (Gap)
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Table 1: Performance comparison of the setting that uses CS cuts with
the default setting.

|V | Total
CS Default

Solved Time Nodes Gap Solved Time Nodes Gap

20 397 397 12.48 318 92.85 397 14.08 382 92.39

30 325 317 130.29 4563 87.33 312 161.11 6867 87.16

40 141 135 512.01 16316 86.55 117 685.77 29360 86.08

defined by 100 · (zROOT − zLP)/(zMIP − zLP), where zLP is the objective value
of the initial LP relaxation, zROOT is the objective value of the LP relaxation
after adding cuts, and zMIP is the objective value of the optimal solution.

From Table 1, we observe that CS performs better than Default, especially
for problems with a larger size. In particular, when |V | = 40, (i) CS is about
1.34× (685.77/512.01) faster than Default and can solve 18 (135-117) more
instances to optimality; (ii) the number of nodes decreases by a factor of 1.80
(29360/16316). In addition, we observe that the gap improvement of CS is only
slightly better than that of Default. This can be explained by the reason that
the CS cuts can be seen as the MIR cuts (see Remark 1) and Default also gen-
erates the MIR cuts. Notice that the above results also imply that the proposed
exact separation algorithm for the CS inequalities contributes this improvement,
i.e., it enables to find more CS/MIR cuts, as compared with the heuristic algo-
rithm of SCIP. To further verify this, we perform another test where we do not
generate other cuts in SCIP and compare the performance of using the exact
separation algorithm (EXACT) and the “0.5” heuristic algorithm (HEUR) to
find CS cuts. Table 2 reports the number cuts (found at the root node) and the
gap improvement of using EXACT and HEUR. Apparently, using the exact
separation algorithm, we can find more cuts than the “0.5” heuristic algorithm.
As a result, we can also observe a clear gap improvement in this case.

Table 2: Performance comparison of using the exact separation algo-
rithm and the “0.5” heuristic algorithm to find CS cuts.

|V |
EXACT HEUR

Cuts Gap Cuts Gap

20 66 71.70 42 69.22

30 122 70.05 75 67.62

40 185 66.55 109 64.30

In summary, our computational results show that (i) the CS cuts can strengthen
the LP relaxation and improve the solution efficiency of solving the single-source
network design problem; (ii) the proposed exact separation algorithm is much
more effective in finding cuts, as compared with the “0.5” heuristic algorithm.
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